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ABSTRACT 
 

 

The strong striping and high-frequency noise existed in Gravity Recovery and Climate Experiment 
(GRACE) solutions drowned the real geophysical signals, which need other signal extraction 

methods. Considering the advantages of local mean decomposition (LMD) in extracting 

geophysical signals from noisy time series, we adopt it to filter the noise and estimate the terrestrial 
water storage (TWS) changes over 25 global main river basins from the time series of 14-year 

(2002.04~2016.08) Release 06 (RL06) monthly gravity field models provided by Center for Space 

Research (CSR), together with the empirical mode decomposition (EMD) as a comparison. To 
evaluate the efficiency of eliminating noise by LMD and EMD, the ratios of the latitude weighted 

RMS over the land and ocean signals are adopted. The results show that all RMS ratios of land 

relative to ocean signals derived by LMD are higher than EMD with the mean values 3.4458 and 

3.3302, respectively. Moreover, relative to the Global Land Data Assimilation System (GLDAS) 

Noah model, the extracted TWS changes by LMD approach have smaller root mean squared errors 
than EMD over 25 global river basins. Therefore, it is reasonable to conclude that LMD approach 

outperforms EMD in extracting TWS changes and filtering out the strong noise existed in GRACE 

monthly gravity field solutions. 
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1. 1 INTRODUCTION 

GRACE satellites, launched in March 2002, 

provided the possibility to directly monitor the Earth's 

time-varying gravity field gradually and which is 

valuable to detect the large-scale changes such as 

surface land water, groundwater, glacier melting and 

ocean mass changes etc. (Chen et al., 2002; Wouters 

et al., 2014).  Due to the limitation of GRACE satellite 

orbit, sensor error, aliasing of sampling frequency and 

other reasons, there exists strong noise in the obtained 

spherical harmonic (SH) coefficients models, 

especially the north-south striping (NSS) error, which 

make the geophysical signals drowned in strong noise 

(Yi and Sneeuw, 2022), therefore developing suitable 

signal extraction method is great valuable. 

For the tough problem, many approaches were 

developed and adopted to reduce the strong noise of 

GRACE spherical harmonic coefficient models to 

better extract the geophysical signals. And, in order to 

better follow up work, several GRACE data release 

official agencies were launched. The new generation 

of GRACE observation data products: Mascon 

products which are provided by the Center for Space 

Research at University of Texas (CSR), NASA Jet 

Propulsion Laboratory (JPL) and Goddard Space 

Flight Center (GSFC). These Mascon products are 

solved in a couple of ways, which include the 

regularization methods for the monthly gravity field 

solutions (one type is the post-processing (Klees et al., 

2008; Swenson and Wahr, 2011) and the other is 

solving along with the least-squares estimation (Chen 

et al., 2021; Zhong et al., 2023). Firstly, the commonly 

used Gaussian smoothing with a certain radius was 

proposed by Wahr et al. (1998), whose smoothing 

kernel function was constructed based on the degrees 

of SH coefficients. On the basis of Gaussian 

smoothing, Han et al. (2005) modified and developed 

the anisotropic Gaussian filtering algorithm. Besides, 

Fan filtering (Zhang et al., 2009) and Wiener filtering 

(Sasgen et al., 2007), were also proposed to filter noise 

and extract real geophysical signals. However, these 

above-mentioned filtering methods will certainly lead 

to the signal leakage during the filtering procedure for 

better reducing the NSS error to eliminate the 

correlation error between odd and even orders of the 

degree. In this contribution, the sliding window 

polynomial fitting de-correlation algorithm 

(Chambers and Bonin, 2012), PnMm approach 
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(Chambers and Bonin, 2012; Chen et al., 2007), 
sliding variable window polynomial fitting 

de- correlation filtering algorithm (Duan et al., 2009) 
were proposed. A two-step (de-striping and Gauss 

based smoothing) process that take on account 

possible over smoothing results, introduces additional 

uncertainty, and error propagation, a low-pass spectral 

filtering algorithm is proposed (Yang et al., 2022). 

Above these two introduced filtering types, other 

effectively signal extraction methods, such as 

statistical filter (Davis et al., 2008), independent 

component analysis filter (Guo et al., 2014), principal 

component analysis filter (Mu et al., 2014), 

multichannel singular spectral analysis (Wang et al., 

2020; Shen et al., 2021), empirical mode 

decomposition (Huan et al., 2022; 2023), etc. Among 

these methods, EMD can adaptively extract the 

periodic components of different frequencies and 

amplitudes without need any prior information and 

parameters, however, it can be easily affected by the 

endpoint effect and needs more iterations. Compared 

with EMD approach, LMD has been effectively 

improved in terms of aliasing modes, endpoint effects, 

over enveloping and under-enveloping (Wang et al., 

2010) etc., which has been widely used in various 

research fields such as GNSS signal processing (Qiu 

et al., 2020), natural gas pipeline leak aperture 

identification and location (Sun et al., 2016), 

processing of scalp electroencephalographic visual 

perception data (Smith, 2005) and in fault diagnosis of 

rotating machinery (Cheng et al., 2012), therefore we 

will adopt the LMD to extract the real geophysical 

signals from noisy GRACE gravity field solutions, and 

take EMD as the comparisons. The rest of this paper 

is organized as follows: Section 2 introduces the 

method and data used in this study, Section 3 analyzes 

the results from three aspects, Section 4 shows the 

summary of experiment results. 

 
2. PROCESSING METHODS AND ADOPTED 

DATASETS 

2.1. LOCAL MEAN DECOMPOSITION 

Local mean decomposition (LMD) is a new 

spectral class analysis method proposed in recent 

years. And it is a new adaptive time-frequency 

analysis method, that can decompose the complex 

multi-component amplitude-modulation signal into 

a finite sum of single-component amplitude-

modulation signals according to the characteristics of 

the signal itself, and then obtain the instantaneous 

frequency and instantaneous amplitude and combine 

them to obtain the complete time-frequency 

distribution of the original signal, therefore, it does not 

need prior information and it has a posteriori property. 

The adaptability of this method has a good effect in 

processing non-stationary and non-linear time series. 
The LMD method compared to the EMD method has 

some advantages, which are better than EMD method 

in suppressing end effect, reducing the number of 

iterations and preserving signal integrity, false 

component, over envelope and under envelope in 

practical application. According to the characteristics 

of the signal, LMD can decompose the complex 

multi- component time series into several components 

related to signal and noise. The procedures of LMD 

approach are as follows: 

1. For the original time series ( )x t , find out each 

local extreme point 
in , and calculate the average 

value of 
in and 

1in +
: 

 

1( ) 2i i im n n += +                                           (1) 
 

2. Calculate local amplitude 
ia : 

 

1| | 2i i ia n n += −               (2) 
 

All local amplitudes 
ia  are extended in a straight 

line between 
it  and 

1it +
 at the time of the 

corresponding extreme point, and the extended 

straight line is smoothed by the moving average 

method to obtain the envelope estimates 
11( )a t . 

3. The local mean value function 
11( )m t is separated 

from the original series ( )x t : 
 

11 11( ) ( ) ( )h t x t m t= −              (3) 

 

Demodulation 
11( )a t  to 

11( )h t  is obtained: 
 

11 11 11( ) ( ) ( )s t h t a t=                           (4) 
 

4. In this case, we need to determine whether 
11( )s t  

is a pure frequency modulation function (pure 

frequency modulation function has a constant 

amplitude of 1, and
111 ( ) 1s t−   . If 12a is the 

envelope estimation function of 
11( )s t  function, 

then 
12 ( ) 1a t = ); if it is not a pure frequency 

modulation function, then return to step (1) and 

repeat the above iterative process for 
11( )s t until a 

pure frequency modulation signal 
1 ( )ns t  is 

obtained, then: 
 

11 11

12 11 12

1 1( 1) 1

( ) ( ) ( )

( ) (t) ( )

( ) ( ) ( )n n n

h t x t m t

h t s m t

h t s t m t−

= −

= −

= −

                          (5) 

 

5. Multiply all the local envelope functions 

generated in the whole iteration process to get the 

envelope signal
1( )a t : 

 

1 11 12 1 1

1

( ) ( ) ( ) ( ) ( )
n

n q

q

a t a t a t a t a t
=

= =            (6) 
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6. The first PF (Product Function) component of the 

original signal is the product of envelope signal 

1( )a t and pure FM (Frequency Modulation) signal

1 ( )ns t : 
 

1 1 1( ) ( ) ( )nPF t a t s t=            (7) 
 

7. Component 
1( )PF t is separated from the original 

time series ( )x t , and the new series 
1( )u t  is used 

as a new original series. Steps (1) to (7) are 

repeated and repeated for k times until ( )ku t is 

a monotone function. 
 

1 1

2 1 2

1

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )k k k

u t x t PF t

u t u t PF t

u t u t PF t−

= −

= −

= −

           (8) 

 

8. After decomposition of many iterations, the 

original time series is finally decomposed into 

the form of the sum of k PF components and a 

margin ( )ku t , i.e. 
 

1

( ) ( ) ( )
k

p k

p

x t PF t u t
=

= +               (9) 

 

2.2. EXTRACTING THE GEOPHYSICAL SIGNALS 

FROM NOISY GRACE SH SOLUTIONS BY LMD 

Based on the research of the GRACE SH models 

that noise is mainly existed in after 20 degrees (Yi and 

Sneeuw, 2022), for this reason here in this study we 

split the GRACE SH models into two parts, the part of 

lower 20 degree which do not filtering and higher 

20 degree part which do filtering and the strategy is 

same as Yi and Sneeuw (2022). Before filtering we 

deduct background field of whole studying period of 

2002 April to 2016 August. Each SH coefficient series 

can be divided into several PF components by LMD 

approach, and then determine the signal components 

by power spectrum analysis to reconstruct the signals. 

Similar to EMD, the PF components are arranged from 

high to low frequency, here we select the PF 

components whose period larger than 0.8 to 

reconstruct signal for the d/o 21~60 SH coefficients, 

which are decided through experimental comparisons. 

Since simply using LMD approach is not enough to 

remove strip errors accurately, therefore 300 km 

Gaussian smoothing are adopted together with LMD. 

The specific flowchart is shown in Figure 1. 

With the GRACE SH time series filtered by 

LMD and EMD approaches, the global mass changes 

in terms of the equivalent water height (EWH) are 

computed as follows (Wahr et al., 1998), 

 

ave

w 0 0

2 1
( , ) (sin )

3 1

( cos sin )

l

lm
ll m

lm lm

a l
h P

k

C m S m


  



 



= =

+
 = 

+

  + 


             (10) 

 

where a  is the averaged Earth radius,  𝜌ave is the mean 

Earth density, w  is the water density,   and   are 

the latitude and longitude, respectively, (sin )lmP   is 

the fully normalized associated Legendre function 

with degree l  and order m , lk  is the load Love 

number of degree l , lmC  and lmS  are the SH 

coefficients reconstructed by LMD and EMD. 
 

2.3. ADOPTED DATASETS 

We adopt the SH coefficients models (truncated 

at maximum degree and order 60) provided by Center 

Space Research (CSR) covering the period from April 

2002 to August 2016, with 17 missing months data. 

Besides, we add the degree-1 back and replace C2,0 

coefficients with the GRACE TN13 (Landerer, 2019) 

and SLR products (Loomis et al., 2020), correct the 

GIA effect with ICE6G-D model (Peltier et al., 2018). 

Noting that the missing data are filled using the cubic 

spline interpolation method (Guo et al., 2014).  

Besides, hydrological models have been 

commonly used to validate the gravity field variation 

caused by the variations of soil moisture, near-surface 

air temperature, accumulated snow and other 

hydrological  components over the land regions 

(Wang et al., 2021).  Here  in  this  study  we  adopt 

the monthly 1◦×1◦ GLDAS Noah models 

(https://daac.gsfc.nasa.gov/datasets?keywords=Noah), 

whose related parameters can be seen in the website 

https://daac.gsfc.nasa.gov.  

Fig. 1 The flowchart of filtering processing. 

 

https://daac.gsfc.nasa.gov/datasets?keywords=Noah
https://daac.gsfc.nasa.gov/
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Fig. 2 The scatter plots of EWH for LMD from April to July 2004. 

 
Table 1 Pearson correlation coefficient of four months in 2004. 

 
Index 

Pearson correlation coefficient R2 

EMD LMD EMD LMD 

2004.04 0.2351 0.2144 0.0553 0.0460 

2004.05 0.2248 0.1988 0.0505 0.0395 

2004.06 0.2243 0.1955 0.0503 0.0382 

2004.07 0.2199 0.1990 0.0484 0.0396 

 
3. RESULTS AND ANALYSIS 

3.1. THE CORRELATION ANALYSIS BETWEEN THE 

EXTRACTED GEOPHYSICAL SIGNAL AND 

NOISE 

Normally assuming that the GRACE SH model 

contains additive noise (Eom et al., 2017; Pu et al., 

2022), and the correlation between the signal and noise 

may not be very strong (Yang et al., 2022). To test the 

efficiency of LMD for extracting geophysical signals 

form noisy GRACE solutions, the global mass 

changes ( , )h   in terms of the equivalent water 

height (EWH) (1 1 grids) are computed with the 

filtered GRACE SH time series by LMD and EMD 

based on Equation (10) (Wahr et al., 1998). At the 

same time, the filtered term ( , )e    (noise) can also 

be obtained. Then we use three indexes including the 

scatter plots, Pearson correlation coefficient and R2 

(Square of the Pearson correlation coefficient) to 

analyze the correlation between the extracted gridded 

mass change signals and noise.  No obvious patterns 

and smaller Pearson correlation coefficient indicate 

that the better filtering efficiency. The scatter plots of 

EWH in April, May, June and July 2004 are shown in 

Figure 2. It can be found that there are no apparent 

patterns between ( , )h    and ( , )e   among the 

selected four months, indicating that LMD can divide 

the signal and noise more reliably and accurately to 

some extent. The Pearson correlation coefficient and 

R2 of LMD and EMD approaches are presented in 

Table 1. 

As shown in Table 1, the Pearson correlation 

coefficients of LMD in three months are lower than 

0.20, only one month slightly more than 0.2 and 

smaller than those of EMD approach, indicating that 

LMD performs better than EMD in filtering the noise, 

however there still exist relative weak correlations 

between the extracted geophysical signal and noise, 

may mainly due to the inaccurately separation 

between the signal and noise component. Besides, we 

further compute the square of the Pearson correlation 

coefficient, which draw the similar conclusion to that 

from Pearson correlation coefficients. Therefore, to 

better validate the performances of LMD in extracting 

the geophysical signals with respect to EMD 

approach, we will analyze the global mass changes in 

next sections. 
 

3.2. THE COMPARISONS OF GLOBAL MASS 

CHANGE DERIVED FROM GRACE DATA 

The global mass changes extracted by LMD and 

EMD approaches in September 2004 and March 2015 

are shown in Figure 3. It is clearly to find that LMD 

can better filter out the noise than EMD with less 

remained noise. Considering the remaining noise, we 

adopted similar processing strategy to Shen et al. 

(2022) by applying 300 km Gaussian smoothing. To 

quantitatively evaluate the filtering efficiency of LMD 
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Fig. 3 Global mass change comparisons of LMD and EMD in September 2004 and March 2015. 
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Table 2 The RMS_ratios in September 2004 and March 2015. 

 
Index EMD LMD EMD&G300 LMD&G300 

2004.09 1.4496 1.6482 3.3598 3.5419 

2015.03 1.4124 1.6728 3.1871 3.5849 

 

Fig. 4 The RMS_ratios of all available months over period April 2002 to August 2016. 

 

and EMD, we computed the latitude weighted the ratio 

of RMS between land and oceans (Chen et al., 2006). 

To reduce the leakage of signals from land, a 300-km 

buffer zone is adopted. 
 

( )
_

( )

land

ocean

RMS MASS Err
RMS ratio

RMS MASS Err

+
=

+
,         (11) 

 

where andland oceanMASS MASS   represent the signals 

over lands and oceans, respectively, Err is the noise. 

The corresponding RMS_ratios are presented in 

Table 2. The RMS ratio of LMD in September 2004 

and March 2015 was 1.6482 and 1.6728, and 1.4496 

and 1.4124 for EMD, respectively. After applying 

300 km Gaussian smoothing (G300), the RMS_ratios 

of LMD, and EMD are increased. The RMS_ratios of 

LMD are all higher than EMD approach regardless of 

applying Gaussian smoothing or not, indicating that 

the advantage of LMD in extracting the geophysical 

signals with respect to EMD.  

Figure 4 shows all the RMS_ratios of 156 

available months of four adopted filtering methods. 

The mean RMS_ratios of LMD and EMD are 1.8329 

and 1.6729, respectively. After 300 km Gaussian 

smoothing, the mean RMS_ratios are increased to 

3.4458 and 3.3302, respectively. The relative 

improvements of the mean RMS_ratio of LMD with 

respect to EMD is 9.56%, after adopting the 300 km 

Gaussian smoothing, the relative improvements are 

3.47 %, may mainly due to that 300 km Gaussian 

smoothing will weaken signals and produce additional 

signal leakage (Shen et al., 2021). In all, it is 

reasonable to conclude that LMD can extract 

geophysical signals and eliminate noise more 

efficiently than EMD approach. 

3.3. TWS CHANGE COMPARISON WITH THE GLDAS 

NOAH MODEL OVER 25 GLOBAL RIVER BASINS 

In section 3.2, we have analyzed and compared 

the global mass changes of LMD and EMD, and find 

that LMD can obtain higher RMS_ratios than EMD, 

which draw the conclusion that LMD can better filter 

out the noise. To detailed validate the signal extraction 

ability of LMD, here in this section we will adopt the 

GLDAS Noah model as reference signals. Since the 

GLDAS Noah model does not include groundwater 

changes, which, unlike the GRACE solution, are 

usually small over the basin, we eliminate their effects 

by subtracting the corresponding average and then 

obtaining the corresponding difference (Wang et al., 

2021). The latitude weighted root mean squared errors 

(RMSE) are calculated as follows: 
 

2( .cos )

( )=
cos

i i

i

i

i

v

RMSE





 

 







                                (12) 

 

where
iv represents the differences between the 

GLDAS signals and the reconstructed signals by LMD 

and EMD, 
i  is the corresponding latitude,   

represents a spatial range and can be global or 

regional. And all grids within   are summed based 

on their area weights reflected by latitudes.  

Here we take three river basins Limpopo, Wisla 

and Mississippi rivers basins as example. The 

correlation coefficients and RMSEs of all EWH grid 

data of LMD and EMD combined with Gaussian 

smoothing 300km relative to the GLDAS Noah model 

over three river basins are respectively presented in 

Figures 5 and 6. In Figures 5 and 6, it is clearly to see 
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Limpopo Mississippi Wisla 

   

   

 

Limpopo Mississippi Wisla 

   

   

 

Fig. 5 RMSEs of using LMD and EMD methods relative to the GLDAS Noah models over three river basins. 

 

Fig. 6 Pearson correlation coefficients of using LMD and EMD methods relative to the GLDAS Noah model 

over three river basins. 

 that the RMSEs of the LMD&G300 over three river 

basins are similar to those of EMD&G300 approach 

just with slight smaller values and higher correlation 

coefficients.  

To quantitatively evaluate the extracted TWS 

change signals of LMD and EMD with respect to 

GLDAS models, Figure 7 shows the computed TWS 

change series and absolute differences with respect to 

GLDAS Noah models over three river basins. The 

RMSEs and correlation coefficients are computed and 

presented in Table 3. The RMSEs of LMD are all 

smaller than those of EMD approach, likewise the 

higher Pearson correlation coefficients over three river 

basins. Through the above results, we can draw the 

conclusion that after the combination filter of the 

LMD is closer to the GLDAS Noah models in three 

river basins.  
Finally, we selected 25 major river basins around 

the world, whose spatial distributions are shown in 

Figure 8. The corresponding statistics results are 

summarized in Table 4, which including the mean 

latitude weighted RMSEs and the corresponding 
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Fig. 7 The TWS change series and absolute differences between TWS change series and GLDAS Noah models 

in three river basins. 

 
Table 3 The RMSEs and Pearson correlation coefficients of LMD&G300 and EMD&G300 with respect to 

GLDAS Noah models. 

 
Index 

RMSE/cm Pearson correlation coefficients 

LMD&G300 EMD&G300 LMD&G300 EMD&G300 

Wisla 4.5031 4.6118 0.8256 0.8131 

Limpopo 3.9282 4.0512 0.7034 0.6925 

Mississippi 4.9373 4.9665 0.7310 0.7271 

 

Asia 7 Yangtze 12 Wisla 17 Salado 23 Mississippi 

1 Kolyma Europe Africa 18 Tocantins 24 Severn 

2 Kerulen 8 Loire 13 Limpopo 19 Magdalena Oceania 

3 Salween 9 Neva 14 Lake Rudolf 20 Amazon 25 Lake Eyre 

4 Indus 10 Pechora 15 Zambezi North America  

5 Amur 11 Volga 16 Nile 21 Mackenzie  

6 Yellow River 12 Wisla South America 22 Yukon  

 
Fig. 8 The selected 25 major rivers basins around the world. 
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Table 4 The mean RMSEs of LMD and EMD with respect to GLDAS Noah models and corresponding relative 

improvement percentages (IMP) for 25 major river basins. 

 Index ID RMSE (cm) IMP (%) 

LMD&G300 EMD&G300 

Kolyma 1 4.9185 5.0335 2.28 

Kerulen 2 1.9747 2.0249 2.48 

Salween 3 5.4269 5.5493 2.21 

Indus 4 6.2589 6.3238 1.03 

Amur 5 4.4023 4.4170 0.33 

Yellow river 6 3.7236 3.7368 0.35 

Yangtze 7 4.7199 4.8127 1.93 

Loire 8 5.2868 5.3154 0.54 

Neva 9 7.6997 7.7302 0.40 

Pechora 10 6.3423 6.3514 0.14 

Volga 11 6.2462 6.2807 0.55 

Wisla 12 4.0320 4.1413 2.64 

Limpopo 13 3.7292 3.8278 2.58 

Lake Rudolf 14 6.1948 6.2270 0.52 

Zambezi 15 8.7909 8.8653 0.84 

Nile 16 5.3328 5.4256 1.71 

Salado 17 5.7483 5.7512 0.06 

Tocantins 18 9.6463 9.8051 1.62 

Magdalena 19 5.5472 5.6394 1.63 

Amazon 20 12.2075 12.4049 1.59 

Mackenzie 21 7.1362 7.1571 0.30 

Yukon 22 10.2371 10.2445 0.07 

Mississippi 23 4.9187 4.9540 0.72 

Severn 24 8.4950 8.5160 0.16 

Lake Eyre 25 3.4594 3.5856 3.52 

 relative improvement percentage (IMP) of 25 major 

river basins from April 2002 to August 2016. We can 

find that all RMSEs of 25 river basins of LMD are less 

than those of EMD approach. The corresponding IMPs 

of RMSE for LMD with respect to EMD range from 

0.07 to 3.52. Based on the above analysis, the 

extracted TWS signals by LMD are closer to those of 

GLDAS Noah models than EMD, therefore we can 

believe that LMD can more efficiently and accurately 

extract the geophysical signals and filtering the strong 

noise of GRACE SH solutions.  
 

4. CONCLUSIONS 

Strong noise drowns the geophysical signals in 

GRACE monthly SH coefficients solutions, which 

limits the study of TWS change over global main river 

basins. In this contribution, we firstly apply LMD for 

extracting the TWS change signals during the filtering 

procedure together with EMD approach. The 

computed scatter plots, Pearson correlation coefficient 

and R2 (Square of the Pearson correlation coefficient) 

show that LMD can better divide the signal and noise 

with  the smaller correlation coefficients and R2 

values.  All RMS _ratios  of LMD are higher than 

EMD regardless of applying the 300 km Gaussian 

smoothing or not, indicating that LMD outperforms 

EMD in filtering noise and extracting geophysical 

signals.  Besides, through the comparisons with 

GLDAS Noah model in 25 major river basins around 

the world, it can be found that the mean latitude 

weighted RMSEs for LMD approach are all smaller 

than that of EMD, indicating that the extracted TWS 

change signals by LMD are closer to those of GLDAS 

Noah models. Therefore, we can conclude that LMD 

is better than EMD for extracting geophysical signals 

and filtering the noise from GRACE solutions. 
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