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ABSTRACT 
 

 

The global surface mass variations obtained by the Gravity Recovery and Climate Experiment 
(GRACE) satellite Level-2 products show significant north-south strip noise, which seriously 

affects the estimation of regional surface mass variations. Most existing filtering methods are 

based on the processing of spherical harmonic basis functions to remove stripes. However, because 
spherical harmonic basis functions are only orthogonal globally, they may not be orthogonal in 

regions, which hinders the effective constraint of quality changes in specific regions. Therefore, 

this paper converts the spherical harmonic base of GRACE Level-2 to the Slepian base of the 
interested region and truncates it based on the Shannon number of the region. Even though the 

signals are concentrated in the region, there are still many stripes present. In order to remove the 

stripes, it is necessary to introduce the regularization and consider the statistical information of the 
spherical harmonic coefficient. The Tikhonov regularization matrix of the Slepian coefficient is 

obtained, combined with a power-law model to construct the prior covariance matrix of the signal 

and the optimal regularization coefficient is selected by using the generalized cross-validation 

(GCV) method, which is represented as the statistically optimal Slepian method (SO-Slepian) in 

this study. The results show that the ability of SO-Slepian and decorrelation and denoising Kernel 

(DDK) filtering with the same regularization parameters as SO-Slepian to remove stripes and 
retain signals in the selected region is comparable. The line chart comparing the differences 

between SO-Slepian and DDK not only demonstrates the close similarity in results between 

SO- Slepian and traditional DDK filtering in the regional domain but also emphasizes the logical 
application of regularization during the Slepian modeling stage. It further supports the rationality 

of developing a regularization scheme for GRACE data processing based on Slepian. 
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1. INTRODUCTION 

GRACE is a gravity satellite launched by the 

German Aerospace Center and NASA in March 2002, 

its main purpose is to acquire monthly time-varying 

Earth gravity fields to explore hydrosphere, ice, and 

ocean mass changes (Tapley et al., 2004). From its 

launch in March 2002 to its end in July 2017, GRACE 

satellites have observed the global gravity field during 

their orbit and accumulated a large amount of gravity 

data, which is widely used in the study of changes in 

land water storage, changes in the mass of the 

Antarctic and Greenland ice sheets, and global sea 

level changes (Huan et al., 2022). The north-south 

flight trajectory of the GRACE satellite leads to an 

uneven distribution of subsatellite points. This leads to 

a denser data distribution at higher latitudes, causing 

the presence of distinct north-south stripes in the 

GRACE satellite Level-2 product. This phenomenon 

is unrealistic and referred to as strip noise. In addition 

to strip noise, the time-variable gravity field model of 

GRACE also exhibits significant high-frequency 

noise, particularly in the spherical harmonic 

coefficients beyond the 40th degree. The noise level 

surpasses the signal. This is mainly attributed to the 

attenuation of gravity field signals with height, design 

flaws in the GRACE satellite orbit, errors in the 

background models, and observation errors resulting 

from the inaccuracies in on-board load measurements 

(Chambers et al., 2004; Velicogna and Wahr, 2006). 

In order to reduce the impact of errors on the true 

signal, some constraints need to be added to the 

Level- 2 products released by various centers. 

Currently, the existing constraint methods can be 

broadly classified into three categories. The first 

category is spatial domain constraints, which utilize 

the spatial correlations in the data to impose 

constraints. Examples include isotropic or anisotropic 

smoothing (Wahr et al., 1998), DDK filtering based on 

inversion or regularization (Klees et al., 2008; Kusche, 

2007; Kusche et al., 2009), and so on. The second 

category is time domain constraints, which use 

a suitable method to characterize the characteristics of 

the observations in the time domain by forming a time 

series from a continuous set of observations. Examples 
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 include wavelet analysis (Andrew et al., 2017), time 

differencing regularization (Ditmar et al., 2018), and 

so on. The third category is spatial-temporal joint 

constraints, such as principal component analysis 

(PCA) (Chao and Liau, 2019), singular spectrum 

analysis (SSA) (Guo et al., 2018), and so on. There are 

some other filters such as: Gaussian filtering (Wahr et 

al., 1998), Swenson filtering (Swenson and Wahr, 

2006), P3M6 filtering (Chen et al., 2007), Low-pass 

filtering (Yang et al., 2022) and so on. The filtering 

methods mentioned above are primarily designed for 

global-scale processing, aiming to attenuate global 

striping errors while retaining the true geophysical 

signals from all regions as much as possible. However, 

these methods may overlook the signal preservation in 

special areas to some extent. The focus of this study is 

to use the Slepian method to transform GRACE 

spherical harmonic coefficients to a region of interest 

while considering the statistical properties of the 

spherical harmonic coefficients. The study aims to 

gradually search for optimal Slepian coefficients to 

obtain "clean" geophysical signals in the region and 

ultimately invert the regional surface mass changes. 

The Slepian functions were first introduced by 

American applied mathematician Slepian in the 1960s. 

They are a group of orthogonal functions that can be 

constructed by maximizing signal energy in a certain 

frequency band. They can be used in various fields 

such as spectrum estimation, signal filtering, noise 

analysis and so on, to improve the accuracy and 

reliability of signal processing (Simons et al., 2006). 

The main purpose of introducing the Slepian functions 

is to solve problems such as finite signal truncation 

and improve the estimation of signal power spectral 

density (Slepian, 1983). In general, the problems that 

can be addressed using the Slepian method can be 

divided into two categories: spatial concentration of 

finite spectral signals and spectral concentration of 

finite spatial signals. The GRACE Level 2 data 

provided by various analysis centers are finite spectral 

or band-limited. Therefore, when applying the Slepian 

method to process this data, it addresses the spatial 

concentration problem of finite spectral signals. 

After Simons applied the Slepian functions to the 

sphere, more and more scholars began to use the 

Slepian functions for data processing. Some of them 

have also applied Slepian functions in processing 

GRACE satellite data products, such as using Slepian 

functions for mass estimation of the Antarctic ice sheet 

(Gao et al., 2019) and using Slepian functions to invert 

for local-scale hydrological information in the Congo 

and Nile river sub-basins (Ramillien et al, 2021); 

Using Slepian functions to monitor water storage in 

the Aral Sea and its adjacent basins (Tao et al., 2020) 

and so on. Some of these applications are in regions 

with weaker strip errors in high-latitude areas, some 

involve pre-processing of GRACE data, and others 

involve post-processing after using Slepian functions. 

Therefore, in this paper, the spherical harmonic basis 

of GRACE Level-2 data is converted to the Slepian 

basis of the region of interest. Regularization is 

applied during the Slepian modeling stage, and 

a reasonable regularization scheme based on Slepian 

for processing GRACE data is derived. 

 
2. METHOD  

2.1. PRINCIPLES OF THE SLEPIAN METHOD 

Any finite spectral signal on the sphere Ω can be 

represented by the following spherical harmonic 

model (Simons and Dahlen, 2006)， 
 

 𝒇(𝒙) = ∑ ∑ 𝒇𝒍𝒎𝒀𝒍𝒎(𝒙)𝒍
𝒎=−𝒍

𝑳
𝒍=𝟎                                  (1) 

 

Here, x represents the location (θ, λ) of any point on 

the sphere Ω, where θ is the latitude and λ is the 

longitude. Ylm represents the normalized spherical 

harmonics, and the flm represents the spherical 

harmonic coefficients. For a given local region R on 

the sphere Ω, we aim to find a signal within that region 

that maximizes the proportion of energy (minimizes 

the energy outside of that region). This can be 

expressed as follows: 
 

 
∫ [𝒇(𝒙)]𝟐𝒅𝝈(𝒙)

𝑹

∫ [𝒇(𝒙)]𝟐𝒅𝝈(𝒙)
𝜴

= 𝒎𝒂𝒙                                        

(2) 
 

Where σ(x) represents the area element at x. 

Substituting equation (1) into the above equation, we 

can derive the corresponding relationship in the 

spectral domain. The relationship that the spherical 

harmonic coefficients of the signal (with maximized 

energy within region R) must satisfy. Introducing the 

following variable: 
 

 𝒅𝒍𝒎𝒍′𝒎′ = ∫ 𝒀𝒍𝒎(𝒙)𝒀𝒍′𝒎′(𝒙)𝒅𝝈
𝑹

                                (3) 
 

Considering ∫ 𝑌𝑙𝑚(𝑥)𝑌𝑙′𝑚′(𝑥)𝑑𝜎
𝛺

= 1, the 

equation (2) is equivalent to the following expression. 
 

 
∑ ∑ ∑ ∑ 𝒅

𝒍𝒎𝒍′𝒎′𝒇𝒍𝒎𝒇
𝒍′𝒎′

𝒍
𝒎=−𝒍

𝑳
𝒍=𝟏

𝒍
𝒎=−𝒍

𝑳
𝒍=𝟏

∑ ∑ ∑ ∑ 𝒇𝒍𝒎𝒇
𝒍′𝒎′

𝒍
𝒎=−𝒍

𝑳
𝒍=𝟏

𝒍
𝒎=−𝒍

𝑳
𝒍=𝟏

= 𝒎𝒂𝒙               

(4) 
 

By adopting the vector-matrix form, the equation 

(4) can be equivalently expressed as follows. 
 

 
𝒇𝑻𝑫𝒇

𝒇𝑻𝒇
= 𝒎𝒂𝒙                                                          (5) 

 

The left side of equation (5) represents the 

Rayleigh quotient. Considering that the scale of the 

Rayleigh quotient is invariant, for any given constant 

c, we can obtain the following. 
(𝑐𝑓𝑇)𝐷(𝑐𝑓)

(𝑐𝑓𝑇)(𝑐𝑓)
=

𝑐2𝑓𝑇𝐷𝑓

𝑐2𝑓𝑇𝑓
=

𝑓𝑇𝐷𝑓

𝑓𝑇𝑓
  Therefore, to solve equation (5), it is sufficient to 

solve the following equation. 
 

 𝒇𝑻𝑫𝒇 = 𝒎𝒂𝒙,  𝒔𝒖𝒃𝒋𝒆𝒄𝒕  𝒕𝒐  𝒇𝑻𝒇 = 𝟏      (4) 
 

Solving equation (2) is thus equivalent to solving 

equation (6), and the solution of equation (6) is given 

by the saddle point of the following Lagrangian. 
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Fig. 1 The eigenvalue λ corresponding to the 3721 Slepian basis function expanded up to degree-60 (left) and 

the corresponding ratio of the sum of the energy concentration of the first items to the total energy (right), 

(Amazon as an example). 

 
 𝝋 = 𝒇𝑻𝑫𝒇 − 𝝀 (𝒇𝑻𝒇 − 𝟏)                                               (5) 

 

Thus, we have the necessary conditions for the 

saddle point, as shown below (setting the first 

derivative of the above equation to zero): 
 

 𝑫𝒇 = 𝝀 𝒇                                                                  (6) 
 

It can be observed that the solution f of equation 

(6) must be an eigenvector of D. Let the i-th 

eigenvector of D be represented by gi, where i=1, 2, ..., 

n=(L+1)2. Then, the above equation is equivalent to 

Dgi=λgi, where λi is the i-th eigenvalue. Assuming the 

eigenvalues λi are arranged in descending order, let us 

define the following eigen-signals, also known as 

Slepian bases. 

𝑓𝑖(𝑥) = ∑ ∑ 𝑔𝑖𝑙𝑚𝑌𝑙𝑚(𝑥)𝑙
𝑚=−𝑙

𝐿
𝑙=0                                 (9) 

The element of the feature vector gi 

corresponding to the l-th degree m-th order is denoted 

as gilm. For any i ≠ j, we can get the following equation. 
 

 
( ) ( )

( ) ( )

T T

T

d  0

d 0

i j i j j i j
R

i j i j

f f

f f

 










= = =

= =





x x g Dg g g

x x g g
              (10) 

 

It is easy to observe from equation (10) that the 

aforementioned feature signal fi is orthogonal on both 

the spherical region Ω and the domain R. Then 

substituting equation (9) into the  
∫ [𝑓(𝑥)]2𝑑𝜎𝑅

∫ [𝑓(𝑥)]2𝑑𝜎𝛺

, get the 

following equation. 

∫ [𝑓𝑖(𝑥)]2𝑑𝜎𝑅

∫ [𝑓𝑖(𝑥)]2𝑑𝜎𝛺

= 𝑔𝑖
𝑇𝐷𝑔𝑖 = 𝜆𝑖𝑔𝑖

𝑇𝑔𝑖 = 𝜆𝑖                          (11) 

The above equation indicates that the energy of 

the feature signal fi in the region R decreases 

progressively. 

Finally, any spectrum-limited signal of the form 

given in equation (1) can be represented as a linear 

combination of the feature signals fi. Thus, we have 

the following expression: 

𝑓(𝑥) = ∑ ∑ 𝑓𝑙𝑚𝑌𝑙𝑚(𝑥)𝑙
𝑚=−𝑙

𝐿
𝑙=0 = ∑ 𝛼𝑖𝑓𝑖(𝑥)(𝐿+1)2

𝑖=1 =

∑ 𝛼𝑖 ∑ ∑ 𝑔𝑖𝑙𝑚𝑌𝑙𝑚(𝑥)𝑙
𝑚=−𝑙

𝐿
𝑙=0

(𝐿+1)2

𝑖=1                            (12) 
 

Where the ai is the Slepian coefficient. By substituting 

fi(x) into equation (12), we can obtain: 

∑ ∑ 𝑓𝑙𝑚𝑌𝑙𝑚(𝑥)𝑙
𝑚=−𝑙

𝐿
𝑙=0 =

∑ ∑ ∑ 𝛼𝑖𝑔𝑖𝑙𝑚𝑌𝑙𝑚(𝑥)𝑙
𝑚=−𝑙

𝐿
𝑙=0

(𝐿+1)2

𝑖=1                                (13)

Considering the arbitrariness of the position x, 

the above equation is equivalent to the following 

expression: 

𝑓𝑙𝑚 = ∑ 𝑔𝑖𝑙𝑚𝛼𝑖
(𝐿+1)2

𝑖=1                                                (14) 

Written in vector-matrix form, it is as follows: 

𝒇 = 𝑮𝜶                                                                               (15) 

It is easy to understand from equation (15) that 

the spherical harmonic coefficients f and Slepian 

coefficients α can be converted to each other, 

indicating that f and α are just coordinates of the 

gravitational signal in different coordinate systems 

and are one-to-one corresponding to each other. 

Figure 1 shows the 3721 energy concentrations 

(means eigenvalues λ) and the corresponding sum of 

the first energy concentrations as a ratio of the total 

energy, obtained for the 60th-degree Slepian basis 

functions in the Amazon. Figure 2 shows the spatial 

distribution of the first 16 Slepian basis functions in 

the Amazon. Due to the smooth spreading from the 

center, Slepian basis functions located near 

the boundary and far away from the center of the 

integration area exhibit a reduced sensitivity (Cheng et 

al., 2021; Harig and Simons, 2012). Therefore, in 

order to concentrate the signal in the target region as 

much as possible in the study area, a buffer zone 

analysis was performed on the study area to establish 

an appropriately sized buffer zone. In this paper, the 

buffer selection for the test area is three degrees. The 

outer blue border in Figure 2 represents the buffer zone 
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Fig. 2 Signal distribution of the first 16 Slepian basis function (Amazon as an example) i is the number of basis 

function items, λ is the energy concentration, the inner black contour is the boundary of Amazon and the 

outer blue contour is the extended boundary for integral calculation. 

 
boundary, which is the new boundary of the 

integration area. From Figure 1, it can be observed that 

the concentration of energy for Slepian basis functions 

becomes closer to 1 as they appear earlier. Combining 

this with the signal distribution of the Slepian basis 

functions shown in Figure 2, it is not difficult to find 

that Slepian basis functions appearing earlier have 

a larger presence in the specified region, thus allowing 

for better concentration of the signal in the region of 

interest. According to equations (11) and (12), the 

energy contained in the region R for each term on the 

right side of these equations is different. As the index 

' i ' becomes sufficiently large, the corresponding λi 

becomes smaller, and as a result, the energy of fi 

becomes small enough to be negligible. Based on this, 

it is possible to truncate the right side of equation (12) 

to obtain a simpler model with fewer unknowns. For 

instance, equation (16) computes the Shannon number 

N, which only includes a finite number of significant 

non-zero feature signals. 

𝑁 = (𝐿 + 1)2 ∫ 𝑑𝜎𝑅

∫ 𝑑𝜎𝛺

= (𝐿 + 1)2 𝐴

4𝜋
= ∑ 𝜆𝑖

(𝐿+1)2

𝑖=1 =

trace[𝑫]                                                                         (16)

Therefore, equation (12) is approximated as 

follows: 

𝑓(𝑥) = ∑ 𝛼𝑖𝑓𝑖(𝑥)(𝐿+1)2

𝑖=1 ≈ ∑ 𝛼𝑖𝑓𝑖(𝑥)𝑁
𝑖=1                    (17)

Similar to the reasoning process from equation 

(13) to equation (14), we can get the following 

observation equation: 

𝑓𝑙𝑚 = ∑ 𝛼𝑖𝑔𝑖𝑙𝑚
𝑁
𝑖=1                                                     (18)

Now the observation equation is an 

overdetermined equation containing (L+1)2 

observations and N unknowns. It can be expressed in 

the following vector-matrix form as: 

𝒇 = �̄��̄�                                                                   (19)

Where 𝑮 is a submatrix of the orthogonal matrix G, 

and the elements of α are the first N elements of α. 

When we don’t consider the statistical properties of 

the observation vector f and the priori variance of α , 

the parameter estimation is shown as follows.  

�̂̄� = (�̄�𝑻�̄�)−𝟏�̄�𝑻𝒇 = �̄�𝑻𝒇                                          (20)
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 However, without considering the statistical 

information of the observation f in equation (20), (its 

covariance matrix Q), the statistical information of 

measurement errors (including striping error and 

high- frequency noise) can’t be reflected, and the effect 

of stripe removal can’t be achieved. Moreover, it is 

also important to consider the prior information of the 

variable α (its prior covariance matrix �̄�). This allows 

for the contraction of high-degree signals and is also 

the key to reducing high-frequency noise. Therefore, 

the optimal estimation of the parameter will be 

elaborated in detail in the next section. 

 

2.2. OPTIMAL ESTIMATION OF PARAMETER �̄� 

Compared to the ordinary estimation in equation 

(20), it is difficult to achieve effective error removal. 

Therefore, a regularized estimation that weights the 

data and constrains the parameter α  should be 

adopted. It is not difficult to observe that using the 

inverse of the covariance matrix of spherical harmonic 

coefficients as the weighting matrix for the data is the 

optimal choice. Similar to DDK filtering, this paper 

constructs the prior covariance matrix of parameters 

on the well-known power law model (generalized 

Kaula criterion) and uses it as the Tikhonov 

regularization matrix. According to the generalized 

Kaula criterion, a suitable prior variance for flm is 

chosen as shown below (Sasgen et al., 2006). 

𝑣𝑎𝑟[𝑓𝑙𝑚] = 𝑙−𝜇                                                               (21)

The μ is a hyperparameter that needs to be 

adjusted. The prior covariance matrix S of vector f is a 

diagonal matrix with the above variances as diagonal 

elements. The equation (15) is reversible and one-to-

one correspondence, the prior covariance matrix of 

parameter a is as follows: 

𝑷 = 𝑐𝑜𝑣[𝜶] = 𝑐𝑜𝑣[𝑮𝑇𝒇] = 𝑮𝑇𝑺𝑮                           (22)

Considering that α is the truncation of 

parameter a (�̄�=F a ) where F is the first N rows of 

the (L+1)2×(L+1)2 identity matrix, the following 

equation can be obtained: 

�̄� = 𝑐𝑜𝑣[�̄�] = 𝑐𝑜𝑣[𝑭𝜶] = 𝑭𝑷𝑭𝑻 = 𝑭𝑮𝑻𝑺𝑮𝑭𝑻 =
�̄�𝑻𝑺�̄�                                                                        (23)

The definition and calculation equation of the 

Tikhonov regularization estimation with equation (19) 

as the observation equation is as follows, respectively: 

�̂̄� = 𝑎𝑟𝑔𝑚𝑖𝑛
�̄�

[(𝒇 − �̄��̄�)𝑇𝑸−1(𝒇 − �̄��̄�) +

𝜎�̄�𝑇𝑷−1�̄�] = (�̄�𝑇𝑸−1�̄� + 𝜎�̄�−1)−1�̄�𝑇𝑸−1𝒇          (24)

According to the defined equation, as shown 

below, the prediction matrix (also known as the hat 

matrix H) is obtained: 

𝑯 = �̄�(�̄�𝑻𝑸−𝟏�̄� + 𝜎�̄�−𝟏)−𝟏�̄�𝑻𝑸−𝟏                          (25)

The σ is also a hyperparameter that needs to be 

adjusted. The commonly used criteria for determining 

the regularization parameter are the L- curve method 

(Hansen and O’Leary, 1993), Generalized Cross-

Validation (GCV) (Golub et al., 1979; Qian et al., 

2021), and minimum Mean Squared Error (MSE) 

criteria (Hoerl and Kennard, 2000; Ji et al., 2022; Shen 

et al., 2012). Each of these criteria has its own merits 

and limitations (Xu, 1992). In this work we choose the 

GCV. 

𝐺𝐶𝑉 =
(𝒇−�̄��̂̄�)

𝑻
𝑸−𝟏(𝒇−�̄��̂̄�)

((𝑳+𝟏)𝟐−tr[𝑯])
𝟐                                                (26)

 

The selection of the two hyperparameters μ and 

σ in the equation (21) and (24) is performed based on 

the GCV method as shown in equation (26). This paper 

takes into account the statistical information of the 

spherical harmonic coefficients, namely the 

covariance matrix Q, and the prior variance P of 

parameter a. Among the models corresponding to 

different parameters, the parameter selected by 

minimizing the GCV is optimal within the chosen 

parameters. This is how the name "SO- Slepian" 

method used in this paper is derived. 

 
3. EXPERIMENTAL AND RESULT DISCUSSION  

3.1. ANALYSIS OF FILTERING EFFECT 

Due to the availability of the covariance matrix 

of 136 months of GRACE Level-2 RL05 (Release-05) 

spherical harmonic coefficients up to degree 60, only 

provided by the Center for Space Research (CSR), 

University of Texas at Austin, for the period from 

April 2002 to June 2014. Therefore, in this paper, the 

60-degree unconstrained spherical harmonic 

coefficients of GRACE Level-2 data for the period 

from April 2002 to June 2014 are used (excluding the 

missing months), and the data is processed by 

removing the effects of non-tidal atmospheric signals, 

high-frequency ocean signals, various tidal 

components, solid tides, and polar motion. The 

spherical harmonic coefficients and their 

corresponding covariance matrix used in the 

experiments of this paper can be downloaded from the 

website: http://download.csr.utexas.edu/outgoing/grace/. 

Before conducting the experiments, the following pre-

processing steps are applied to the spherical harmonic 

coefficients:  

1: The first four terms of the spherical harmonic 

coefficients are omitted. 

2: The mean value of the coefficients during the 

period from 2004 to 2009 is subtracted. 

3: The coefficients are adjusted for glacier 

isostatic adjustment (GIA) using the ICE-6G_D 

model. 

Considering the similarity between the 

Decorrelation and Denoising Kernel (DDK) filtering 

method and the SO-Slepian method proposed in this 

paper, the same parameters are often used for 

comparison analysis. Therefore, the DDK filtering and 

SO-Slepian method adopt the same hyperparameters μ 

and σ. The arbitrariness of variable x in Equation (1) 

allows for the arbitrary selection of experimental 
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Fig. 3  Experimental area. 

 

regions. Therefore, in this paper, five regions were 

randomly selected for the experiments: a region in the 

Pacific, the Amazon, the Congo, the Mississippi, and 

the Yangtze River. Figure 3 shows the selected regions 

for the experiments. 

Changes in quality are usually represented by 

Equivalent Water Height (EWH), and the following 

equation can be used to obtain changes in EWH on 

a global scale. 
 

𝛥𝐻 =
𝑎𝜌𝑎𝑣𝑒

3𝜌𝑤

∑ ∑
2𝑙+1

1+𝑘𝑙
𝑙
𝑚=𝑜

𝐿
𝑙=0 �̄�𝑙𝑚(𝑐𝑜𝑠 𝜃)(𝛥𝐶𝑙𝑚 𝑐𝑜𝑠( 𝑚𝜆) +

        +𝛥𝑆𝑙𝑚 𝑠𝑖𝑛( 𝑚𝜆))                                                                          (27)

In the equation, ΔH is the change in Equivalent 

Water Height, a is the radius of the Earth, ρave is the 

average density of the Earth, ρw is the density of water, 

kl is the load Love number, and θ and λ is the 

geocentric latitude and longitude, respectively. By 

substituting the result obtained from equation (9) into 

equation (17) and considering equation (21) and (24), 

the change in Equivalent Water Height in the region R 

can be obtained as follows: 
 

𝛥𝐻𝑟𝑒𝑔𝑖𝑜𝑛 =
𝑎𝜌𝑎𝑣𝑒

3𝜌𝑤

∑ ∑
2𝑙+1

1+𝑘𝑙
𝑙
𝑚=−𝑙

𝐿
𝑙=0 ∑ �̂̄�𝐴𝑖

𝑔𝑖𝑙𝑚𝑌𝑙𝑚(𝑥)𝑁
𝑖=1   

(28) 

The optimal parameters obtained from equation 

(26) in the five regions are shown in Table 1. It can be 

seen that both μ and σ are highest in oceanic regions, 

as there is very little signal and almost all of it is noise. 

As latitude increases, the regularizing parameter σ 

decreases because the influence of strip errors 

weakens with increasing latitude and the limitations 

naturally decrease. 

Table 1 The optimal parameters for the five regions obtained from equation (24). 

 
Region Parameter 

  μ σ 

Amazon 3.5 1.1×1019 

Congo 4.35 1.0×1019 

Pacific 6.8 5.6×1019 

Mississippi 4.13 6.36×1017 

Yangtze 4.35 5.24×1018 

 

Fig. 4 The global grid map in June 2008 after Slepian (left) and SO-Slepian (right) processing (Amazon as an 

example). 
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Fig. 5 The processed CSR data results of the Amazon in June, July, August and September 2008 using DDK, 

Slepian and SO-Slepian methods, as well as the corresponding original results and the difference between 

Slepian and original (the inner black contour is the boundary of Amazon and the outer blue contour is the 

extended boundary for integral calculation). 

 
Figure 4 shows that the global grid maps after 

Slepian and SO-Slepian processing have significantly 

concentrated signals in the regions of interest, while 

there are minimal signals outside those regions. The 

results after Slepian processing still exhibit 

a considerable number of strip errors, whereas the 

results after SO-Slepian processing practically 

eliminate strip errors. Figures 5, 6, and 7 demonstrate 

the Equivalent Water Height variations in the 

Amazon, Mississippi, and a specific region of the 

Pacific in June, July, and August 2008. The figures 

display the results of Slepian, DDK, and SO-Slepian 

processing and the corresponding raw data. From the 

first three lines of these three figures, which represent 

the results after Slepian processing, the corresponding 

raw data and the difference between Slepian and 

original, it can be clearly observed that the Slepian 

results closely resemble the raw data. This further 

indicates that the results obtained from Slepian basis 

functions and spherical harmonic basis functions are 

just different coordinate representations of the gravity 

signal, and they are one-to-one correspondences with 
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Fig. 6 The processed CSR data results of the Mississippi in June, July, August and September 2008 using DDK, 

Slepian, and SO-Slepian methods, as well as the corresponding original results and the difference between 

Slepian and original (the inner black contour is the boundary of Mississippi and the outer blue contour is 

the extended boundary for integral calculation). 

 
each other. There are some residual signals in the 

regional difference (the third line) due to the error 

caused by the introduction of Shannon numbers for 

simplified calculation. The Slepian functions do not 

have the capability to remove strip errors. Then 

looking at the remaining two lines which represent the 

results after SO-Slepian and DDK processing, it is 

evident that strip errors have been effectively 

removed. Furthermore, the filtering effects of these 

two methods have highly similar results. It emphasizes 

the logical application of regularization during the 

Slepian modeling stage and further supports the 

rationality of developing a regularization scheme for 

GRACE data processing based on Slepian. From the 

results in Figure 7, it can be observed that both 

SO- Slepian and DDK show weak signals in the 

oceanic region. This is due to the use of the GSM 

model data in this study, which has already subtracted 

the atmospheric and oceanic signals. Therefore, only 

a residual oceanic mass signal that the model did not 
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Fig. 7 The processed CSR data results of an area in the Pacific in June, July, August, and September 2008 using 

DDK, Slepian, and SO-Slepian methods, as well as the corresponding original results and the difference 

between Slepian and original (the inner black contour is the boundary of an area in the Pacific and the 

outer blue contour is the extended boundary for integral calculation). 
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Fig. 8 The processed ITSG data results of Amazon, Mississippi and an area in the Pacific in June, July, August, 

and September 2008 using DDK and SO-Slepian methods (the inner black contour is the boundary of an 

area in the Pacific and the outer blue contour is the extended boundary for integral calculation). 
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Fig. 9 Changes in EWH over time in five regions filtered by SO-Slepian and DDK (left) and differences between 

the two filtering (right). 
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Fig. 10 RMS of EWH for DDK and SO-Slepian filtering methods and difference in the Amazon, Mississippi, 

and Pacific, April 2002 to June 2014. 

 

completely remove may be present. As a result, this 

leads to weak signals in the oceanic region. The 

purpose of selecting the oceanic region in this paper is 

mainly to examine the effect of stripe errors removal. 

For the Amazon and Mississippi, the grid maps 

obtained after SO-Slepian and DDK processing 

clearly show the variations in EWH within these 

regions. For instance, in the Mississippi, there is 

a noticeable positive EWH change around June 2008, 

followed by a significant negative EWH change 

around August 2008. Interestingly, these patterns of 

change are consistent between the results obtained 

from both SO-Slepian and DDK filtering methods.

To verify the universality of the filtering method 

proposed in this paper, we added the ITSG-Grace2018 

data for experiment. On the website 

(http://ftp.tugraz.at/outgoing/ITSG/GRACE/ITSG-

Grace2018/monthly), it only provides the ITSG-

Grace2018 covariance matrix of degree 96th. We 

selected the same months (June, July, August, and 

September of 2008) as the CSR data mentioned above 

and truncated them to 60th degree for experiments. 

 

From the processing results of ITSG data, it can 

be seen that the SO-Slepian method used in this paper 

is universal and reflects the effectiveness of the 

Slepian-based regularization scheme derived in this 

paper. 

 
3.2. TIME SERIES ANALYSIS 

This paper uses a total of 136 months of GRACE 

spherical harmonic coefficients from April 2002 to 

June 2014 (including missing months) to obtain EWH 

through different filtering methods, including Slepian, 

SO-Slepian, and DDK constraints. Figure 9 shows the 

EWH time series obtained by SO-Slepian and DDK 

methods in the five selected regions (left), as well as 

the differences between the two filtering methods 

(right) (missing months are ignored in the plot). From 

the EWH time series (left column), it can be seen that 

SO-Slepian results are essentially in agreement with 

DDK for all five regions. From the differences relative 

to DDK (right column), the filtering results show very 

little difference, and this combined with the grid maps 

presented in Figures 5, 6, and 7 suggests that these two 

filtering methods produced nearly identical results. 

http://ftp.tugraz.at/outgoing/ITSG/GRACE/ITSG-Grace2018/monthly
http://ftp.tugraz.at/outgoing/ITSG/GRACE/ITSG-Grace2018/monthly


STATISTICALLY OPTIMAL SLEPIAN METHOD FOR PROCESSING GRACE LEVEL 2 DATA. 

 

49 

 

 

Figure 10 illustrates the root mean square (RMS) 

of the grid in the Amazon, Mississippi, and a specific 

area of the Pacific region. In terms of error level, both 

DDK and SO-Slepian exhibit close values and 

minimal errors. Judging by the differences between 

DDK and SO-Slepian, the filtering effects of them are 

very close. Combining the above information with the 

results shown in Figure 8, it can be concluded that 

SO- Slepian and DDK filtering methods have nearly 

identical effects in the specified regions. 

 
4. CONCLUSION 

This paper applies the Slepian function with 

regularization to the GRACE Level-2 data. The data 

used in this study are the CSR RL05 GRACE Level-2 

products from April 2002 to June 2014. The regional 

mass changes are obtained by applying constraints and 

compared with the DDK filtering method using the 

same parameters as SO-Slepian. The following results 

are obtained. 

1. By comparing the grid maps globally and 

regionally, it is evident that the simple Slepian 

method only represents the gravity signal in 

another coordinate system. It can concentrate the 

signal in a specific region of interest. However, it 

fails to effectively remove the stripe errors in the 

region. 

2. From the time series in the five selected regions 

and the differences relative to the DDK solution, 

it can be observed that the results obtained from 

SO-Slepian are almost identical to those of DDK. 

The slight discrepancies can be attributed to the 

truncation introduced using the Shannon number 

to simplify the computation in SO-Slepian. 

3. Considering the RMS of the regional EWH, as 

well as the time series and corresponding grid 

maps in the five selected regions, this not only 

confirms the consistency between SO-Slepian and 

DDK results but also highlights the rationality of 

applying regularization during the Slepian 

modeling stage in this study, which leads to 

a regularized scheme for GRACE data processing 

based on Slepian. 
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