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ABSTRACT 
 

 

In geoscience research, elevation anomaly modeling plays vital roles in engineering 

design and construction. In this paper, an improved Hardy function based on Tikhonov 

regularization is proposed to model elevation anomalies in which the improved model 

is not constrained by the ill-posed problem induced by that the number of nodes is less 

than the number of data points, and it has a wider range of use scenarios. In the 

experimental part, numerical simulation is used to generate simulated data of elevation 

anomaly, which is divided into training group and checking group, and the hardy 

functions before and after improvement are used to establish elevation anomaly models, 

and the performances of the two models are compared. is the results show  that  the 

improved Hardy function has better prediction performance with accuracy 

improvement of 79.75 % due to selecting more nodes and obtaining a more optimal 

model.  
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1. INTRODUCTION 

It is necessary to model the elevation anomaly to 

improve the accuracy of projection correction in some 

engineering applications (e.g. geological research, 

engineering design and construction and correction of 

local coordinate system) (Gao and Xu, 2004). In order 

to improve the accuracy of plane coordinate 

adjustment calculations, elevation anomaly values 

within the research area could be obtained by 

constructing model of elevation anomalies (Liu et al., 

2021). Additionally, geodetic heights measured by 

GNSS receivers and elevation anomalies also could be 

used to calculated normal heights for aligning to the 

Chinese height system. Recently, the Hardy function 

has extensive applications in geoscience. Yang 

summarized several characteristics of Hardy functions 

and applied them to rate surface fitting (Yang and 

Huang, 1990). Wen systematically expounded the 

theory of hardy functions and inverted the motion state 

of blocks (Wen and Xu, 2009). Bayer applied hardy 

functions to calculate the strain parameters of blocks 

and obtained the strain field of a regional area (Bayer 

et al., 2006). In addition, many scholars have 

improved hard functions and broaden their application 

scope and improved modeling accuracy. Du (2016) 

replaced the distance-type Kernel function with an 

exponential-type Kernel function in Hardy functions, 

and found that the improved method has advantages in 

describing regional deformations (Du, 2016). Peng 

introduced Tikhonov regularization into hardy 

functions to replace the smoothing factor. The 

improved function is not constrained by the condition 

where the number of nodes is less than the number of 

stations, addressing the ill-posed problem of Hardy 

function. However, this improvement also brings the 

drawback that the Kernel function cannot be in the 

form of inverse hyperbolic sine functions (Peng et.al., 

2019). 

Gathering all previous studies, although hardy 

function has a wide range of applications in 

geoscience, scholars continually strive to enhance and 

innovate the theory. Therefore, this paper presents an 

improved Hardy model in form of inverse hyperbolic 

sine function using Tikhonov regularization and 

utilizes numerical simulation methods to verify the 

effectiveness of the method finally.  

 
2. HARDY FUNCTION IMPROVED BY 

TIKHONOV REGULARIZATION 

The Hardy function was firstly proposed by Prof. 

Hardy in 1977, and the key point of this method is that 

any regular or irregular continuous surface can be 

represented by the superposition of multiple simple 

and regular surfaces (Hardy, 1971). The elevation 

anomaly at any point on a mathematical surface can be 

expressed as: 
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 𝜉(𝑋, 𝑌) ∑ 𝛽𝑖
𝑛
𝑖=1 𝐾(𝑋, 𝑌, 𝑋𝑋0,𝑌𝑌0)                             (1) 

In which, 𝜉 represents the elevation anomaly, X 

and Y are the geodetic or plane coordinate components 

of known points, n is the number of selected nodes, 

𝑋𝑋0𝑖  and 𝑌𝑌0𝑖 represent the geodetic or plane 

coordinate components of the nodes, 𝛽𝑖 stands for the 

coefficient to be determined, and 𝐾(𝑋, 𝑌, 𝑋𝑋0𝑖 , 𝑌𝑌0𝑖) 

is a quadratic function of X and Y known as the 

Kernel function. In geoscience research, symmetric 

distance- type Kernel functions often yield better 

results (Hardy, 1978), and the Kernel function can be 

expressed as: 

𝐾(𝑋, 𝑌, 𝑋𝑋0𝑖 , 𝑌𝑌0𝑖 , 𝛿) = (𝑑𝑖𝑠𝑎 + 𝛿2)𝑏                        (2) 

Where dis denotes the distance between the 

selected position and the node, with its value being 

𝑑𝑖𝑠 = ((𝑋𝑖 − 𝑋𝑋0𝑖)
2 + (𝑌𝑗 − 𝑌𝑌0𝑗)

2
)

1

2
. a and b are two 

adjustable variables, and different values correspond 

different Kernel function forms (Du, 2016). When a is 

2 and b is -1/2, the Kernel function is the inverse 

hyperbolic sine function. When a is 2 and b is 1/2, the 

Kernel function is defined as hyperbolic sine function. 

While a is 3 and b is 1, the Kernel function is a cubic 

surface function. 𝛿2 is the smoothing factor, used to 

adjust the shape of the Kernel function, and the 

appropriate value can improve the stabilities and 

accuracies of the model. Typically, 𝛿2 is chosen as 

a random number between 1 and 10 (Hu and Sun, 

2003). Assuming the number of known elevation 

anomaly points is m and the number of selected nodes 

is n, then the equation is constructed: 

( )

( )

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1

2 2

m m

1 1 01 01 1 1 02 02 1 1 0n 0n

2 2 01 01 2 2 02 02 2 2 0n 0n

m m 01 01 m m 02 02 m m 0n 0n

L ,B

L ,B

L ,B

K L ,B ,L ,B K L ,B ,L ,B K L ,B ,L ,B

K L ,B ,L ,B K L ,B ,L ,B K L ,B ,L ,B

K L ,B ,L ,B K L ,B ,L ,B K L ,B ,L ,B







 
 
  =
 
 
  

 
 
 =
 
 
  

β

  

 (3) 

The vector-matrix form is given by: 

𝜃 = 𝐾𝛽                                                                     (4) 

In the equation, K represents the coefficient matrix, 

and 𝛽 signifies the parameter vector. 
When establishing a velocity field model using 

hardy function, it is required that the number of 

stations m is greater than the number of nodes n. When 

the number of nodes exceeds the number of stations, 

i.e., the unknown parameters exceed the number of 

equations, it leads to an unsolvable parameter 

situation. However, when the number of stations is 

relatively small, the available nodes are limited, 

resulting in a model that lacks good applicabilities. 

Therefore, L2 regularization is introduced to improve 

the classical Hardy function, which removes the 

constraint that the number of Kernel function n cannot 

exceed the number of stations m. When m < n, due to 

the introduction of the regularization term, the matrix 

remains invertible, and the model still has a unique 

solution. The L2 regularization improves the hardy 

function by addressing ill-posed problems while 

preventing overfitting, thus enhancing the 

generalization capabilities of the model. 

Introducing Tikhonov regularization matrix and 

imposing the condition of minimizing the norm of the 

parameter vector, the coefficient solution can be 

obtained according to the following equation: 

𝛽̂ = 𝑎𝑟𝑔𝑚𝑖𝑛[(𝜃 − 𝐾𝛽)𝑇𝑄−1(𝜃 − 𝐾𝛽) + 𝑢‖𝛽‖2
2]  (5)

The formula for the analytical solution is: 

𝛽̂ = 𝑎𝑟𝑔𝑚𝑖𝑛(𝐾𝑇𝑃𝐾 + 𝑢𝐷)−1𝐾𝑇𝑃𝜃                       (6)

In which, K is the Kernel function matrix (Jin,2005), 

P represents the weights of the observed values. In this 

example, randomly chosen uniformly distributed grid 

points are used as nodes, thus the weights are all set to 

1 (Peng et al., 2019), i.e., 𝑃 = 𝑄−1, where P signifies 

the identity matrix. u is the regularization parameter, 

and D is the positive definite regularization matrix, 

typically an identity matrix. Elevation anomaly value 

at any point (𝑋𝑞 , 𝑌𝑞) can be obtained through Equation 

(1), resulting in an elevation anomaly distribution map 

(Tang et al., 2018; Wang et al., 2016). 
 

3. SEVERAL IMPORTANT PARAMETERS IN 

THE IMPROVED HARDY FUNCTION 

There are three main issues to consider with 

Hardy functions: 

1. Kernel function, which is different for different 

data, and the previous studies have also drawn 

different conclusions. When fitting the crustal 

vertical movement using the Hardy function, it is 

considered that the fitting result of inverse 

hyperboloid function is the best, followed by the 

positive hyperboloid function (Yang and Huang, 

1990). However, it is considered that using 

positive hyperboloid function has the best fitting 

result in establishment of China crustal horizontal 

movement velocity field (Liu et al., 2002). In this 

paper, the experimental results show that the 

optimal Kernel function is inverse hyperboloid 

(Han et al., 2021).  

2. Smoothing factor, which can slightly change the 

shape of the Kernel function curve, and has the 

effect on smoothing the curve (Fang and Huang, 

2022). Being in the manipulation of modeling, the 

normal matrix is required to be non-singular. So 

that the Kernel curve will be distorted to a certain 

extent with the increase of smoothing factor, and 

the relationship between Kernel function and the 

distance is non-linear (Peng, 2019). The larger 

the value of smoothing factor, the greater the 

distortion of Kernel curve, the worse the linear 

correlation with distance, and the higher the 

stability of the model (Zhang and Lv, 2017). But 

at the same time, the fitting error (not necessarily 

the interpolation/prediction error) of the model 
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will also be increased. Empirically, the most 

appropriate value of smoothing factor is set 

between 1-10 and we set this value as 1 (The value 

is 1-10 gives similar experimental results) (Zhang 

et al., 2010). 

3. Nodes, which has a significant influence on fitting 

and prediction. There has been systematic 

selection method on this: The interpolation 

accuracy of the hardy function model increases 

with the increase of the number of nodes (i.e. the 

spacing of nodes decreases) (Huang et al., 1993), 

and all sites and regularly distributed grids are 

used as nodes in this article (Yang, 1990). The 

observations uniformly distributed are selected as 

nodes in constructing China crustal horizontal 

movement velocity field model (Liu et al., 2002). 

All observations are selected as nodes when using 

Tikhonov regularization to improve the hardy 

function fitting performance (Peng, 2019). In 

elevation anomalies modeling, the number of 

nodes should be determined (Huang et al., 1993). 

On one side, if the number n of Kernel function is 

greater than the number m of station, the solution 

could not be found. On the other side, the number 

of nodes is too insufficient to represent the 

detailed pattern of the elevation anomalies. In this 

paper, two node selection strategies were 

determined, randomly and evenly distributed 

nodes. 
 

4. SIMULATION 

Sakamoto's simplified model was used to 

represent the real model and generate simulated data 

in this paper (Burnham and Anderson, 2002; Xu et 

al., 2018). The Sakamoto model is as follows: 

𝑦 = 𝑒𝑥𝑝[(𝑥 − 0.3)2] − 1 + 𝜀                                   (7)

In the equation, 𝑥 ~ 𝑈 (0,1) represents a random 

variable following a uniform distribution on the 

interval (0,1), and 𝜀 represents the observation error of 

y, following a normal distribution with a mean of 𝜇 

and a standard deviation of  𝛿, i.e.𝜀 ~ 𝑁 (𝜇, 𝛿2). The 

elevation anomaly 𝜉(𝑋, 𝑌) is assumed to be a function 

of coordinates X and Y. This function captures 

the relationship between the elevation anomaly and 

the coordinates in the Sakamoto model. 

𝜉 = 𝑒𝑥𝑝[(𝑥 − 0.3)2 + (𝑦 − 0.5)2] − 1 + 𝜀             (8)

80 elevation anomaly values for the training set 

are generated by the model described above. 

Additionally, 20 elevation anomaly values are 

generated for prediction validation. These 100 

generated data points are randomly distributed within 

a 100 km × 100 km area. The observation error 𝜀 

follows a normal distribution with a mean 0 and 

a standard deviation 0.01, and the coordinates range 

from 0 to 1, with a unit of 10^5 meters. The prediction 

abilities of the classical Hardy function and the 

improved Hardy function are compared under two 

node selection strategies. The data and node 

distribution of two strategies is shown in Figure 1. 

The experiment suggests that the Kernel function 

of positive hyperbolic sine-shaped form performs 

better in prediction compared to the in the forms of 

inverse hyperbolic sine and cubic surface-shaped. The 

choice of the smoothing factor in the range of 0.01 to 

1 has a minimal impact on the results. Therefore, this 

paper presents a comparison between the two types of 

hardy functions with respects to different node 

distribution, both based on the positive hyperbolic 

sine-shaped form with a smoothing factor of 0.1. 

In experiment 1, 50 randomly distributed nodes 

in scheme 1 were selected, 80 elevation anomaly data 

generated by Sakamoto model were used to establish 

models using classical hardy function and hardy 

function improved by Tikhonov regularization, and 

then the calculating 20 values at checking points. 

Under this scheme, the prediction results of the two 

models are shown in Figure 2. 

 

Fig. 1 Distribution of stations and nodes. 
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Fig. 2 Prediction results of Hardy functions before and after of Tikhonov regularization improvement. 

 

Fig. 3 Prediction results of Hardy functions before and after Tikhonov regularization improvement. 

 

Classical Hardy function (50 Nodes) 

Tikhonov regularization improved Hardy function (50 Nodes) 

Classical Hardy function (225 Nodes) 

 

Tikhonov regularization improved Hardy function (225 Nodes) 
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 In experiment 2,225 uniformly distributed nodes 

in scheme 2 were selected, and the same 80 abnormal 

elevation data in scheme 1 were used to establish 

models using classical Hardy function and the 

improved hardy function respectively, and then 

the values at 20 points were predicted. Under this 

scheme, the prediction results of the two models are 

shown in Figure 3. 

After the calculation and comparison of the two 

groups of experiments, we can get the following 

results. In the strategy of 50 randomly distributed 

nodes, the root means square error (RMSE) of the 

predicted value of the classical hardy function is 

0.3774, while the RMSE of Hardy function improved 

by Tikhonov regularization is significantly decreased, 

which is 0.1264. After adding nodes, the RMSE of 

classical hardy function is 0.3596, and the RMSE of 

the improved hardy function is 0.0242. 

 
5. CONCLUSION 

In the simulation experiments, it can be clearly 

found that under the 50 randomly distributed node 

strategies, the improved Hardy function by Tikhonov 

regularization has better prediction performance, and 

its accuracy is 66.5 % higher than that of the classical 

one Similarly, when selecting the uniformly 

distributed node strategies, the improved model has 

better prediction accuracy of 93 %. In addition, it can 

be intuitively seen that when the nodes number 

increases, the prediction accuracy of the classical 

Hardy function increases by 4.7 %, while the accuracy 

of the improved Hardy function increases by 80.8 %. 

Therefore, it can be concluded that under the condition 

that with the same number of nodes, the improved 

Hardy function has better prediction performances 

than the classical one with higher prediction accuracy 

of 79.75 % on average under the two node selection 

strategies. When the number of nodes increases, the 

improved Hardy function ensures better performance, 

which is of great significance for predicting elevation 

anomalies.  the application of Hardy function in 

elevation anomalies is explored preliminary in this 

paper, providing insights for improving engineering 

design and construction accuracy. 
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