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ABSTRACT 
 

 

The research on Global Navigation Satellite System (GNSS) time series prediction provides 
reliable data to support for the monitoring of crustal plate movements, and is of great significance 

for an in-depth understanding of the movement law and potential change trend of crustal plates. 

Addressing the issue that the Gate Recurrence Unit (GRU) model has a limited ability to learn the 
characteristics of complex time series and cannot effectively capture the spatial characteristics of 

GNSS time series, this paper presents a Multiple Gate Recurrence Unit (MGRU) and Temporal 

Convolutional Networks (TCN) parallel (MGRU+TCN) dual branch parallel prediction model. 
The MGRU branch consists of multiple GRU modules and multiple hidden layers. The temporal 

features and the spatial features extracted are fused by concatenate function, and the prediction 

results are obtained through full connection layer output. The validity of the model is verified by 
using the elevation time series of several GNSS reference stations. The experimental show some 

results that compared with the single model of Long Short-Term Memory (LSTM), Convolutional 

Neural Networks (CNN), MGRU and TCN, the Root Mean Square Error (RMSE) is on average 

reduced by 0.73 mm, the Mean Absolute Error (MAE) is on average reduced by 0.60 mm, and 
the R2 is on average increased by 0.11. Compared with the prediction model of MGRU-TCN and 

TCN-MGRU serial structure, RMSE decreased by 0.60 mm on average, MAE decreased by 

0.47 mm on average, and R2 increased by 0.08 on average. The results show that the parallel 
structure MGRU+TCN prediction model has higher prediction accuracy and good GNSS elevation 

time series prediction ability compared to the single prediction model and the serial structure 

prediction model. 
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1. INTRODUCTION 

Over the past 20 years, space observation 

technology has advanced rapidly. The International 

GNSS Service (IGS) reference stations have 

accumulated time series data. This data provides 

support for geodesy and Earth dynamics research 

(Fernandes et al., 2004; Serpelloni et al., 2013; 

Montillet et al., 2015; Shen et al., 2019). GNSS data 

can reflect long-term trends and exhibit nonlinear 

changes (Chen et al., 2013; Wang et al., 2021). As the 

key technology of modern positioning, navigation and 

timing, it plays an indispensable role in numerous 

fields. These data are used for research on crustal plate 

movement (Serpelloni et al., 2013; Ohta et al., 2012; 

Kong et al., 2023; Younes, 2023). Landslide detection 

(Cina et al., 2015; Shen et al., 2021; Shen et al., 2022). 

Deformation monitoring of bridges or dams (Xi et al., 

2018; Chen et al., 2018; Xin et al., 2018) and 

maintenance of regional or global coordinate 

frameworks (Lahtinen et al., 2019; Li et al., 2020; 

Chen et al., 2021) provide data. The changes in 

coordinate over continuous time points are forecasted 

using the time series of long-term observation data of 

GNSS reference stations, providing a basis for 

clarifying the movement trend (Li et al., 2023). 

With the continuous development of artificial 

intelligence, machine learning has been applied in 

various fields. As an important branch of machine 

learning, deep learning is based on the concept of 

artificial neural network. It processes data by 

constructing a multi-layer neural network structure. It 

has strong ability of feature extraction and pattern 

recognition, and can automatically learn complex 

feature representation from the original data. It has 

achieved great success in image recognition, speech 

recognition, natural language processing and other 

fields, and has greatly promoted the development of 

artificial intelligence (Li et al., 2023). Recurrent 

Neural Network (RNN) is a kind of neural network 

used to process sequence data. Its main feature is that 

it can remember and transfer the information in the 

sequence. Through the circular structure, the output of 

the current time is associated with the information of 

the previous time, so it is suitable for processing 

sequential and dependent data such as natural 

language and time series data. However, RNN may 
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have problems such as gradient disappearance or 

explosion (Li et al., 2018). In 1997, the Long 

Short- Term Memory (LSTM) was proposed by 

German computer scientists Hochreiter and 

Schmidhuber. Its main components include 

a forgetting gate, an input gate, and an output gate. Its 

core idea is to control the flow of information through 

these gates, avoiding the gradient disappearance or 

explosion of the RNN model. However, the more 

complex structure and too many parameters lead to 

a large amount of calculation (Yu et al., 2019; Chen et 

al., 2023a). Cho et al. (2014) proposed a variant of the 

LSTM known as the Gate Recurrence Unit (GRU), 

which has a simpler than the LSTM structure. It 

controls the flow of information through update and 

reset gates, thereby reducing the number of parameters 

(Li et al., 2022; Fu et al., 2016; Dey et al., 2017). Irie 

et al. (2016) used RNN, LSTM and GRU networks 

compare their prediction performance on voice data 

sets. It is found that GRU avoids the RNN gradient 

explosion problem and has the fastest prediction speed 

while ensuring the same high-precision prediction 

results as LSTM. Although GRU model has high 

prediction accuracy and fast prediction speed, its 

feature extraction ability is weak to process complex 

time series, and it cannot extract the spatial features of 

GNSS time series. Building on this, this paper 

proposes a model, MGRU, which incorporates 

multiple GRU modules and hidden layers, and 

integrates it with the Temporal Convolutional 

Networks (TCN) model proposed by Lea et al. in 

2016, to create a parallel structure prediction model, 

Multiple Gate Recurrence Unit and Temporal 

Convolutional Networks parallel (MGRU+TCN). On 

the basis of the advantages of GRU and TCN single 

prediction models, further improve the prediction 

accuracy. The method extracts the time characteristics 

of GNSS time series through MGRU branch, and the 

TCN branch extracts the spatial characteristics. The 

features extracted from the two branches are fused 

through concatenate function. Finally, the results are 

output through the full connection layer. Taking the 

elevation time series of multiple GNSS reference 

stations as an example, the effectiveness of the 

MGRU+TCN parallel structure prediction model is 

verified by analyzing the prediction results of 

mainstream single prediction models and combination 

models with different structures. 

The structure of this paper is as follows: Section 

2 introduces the principles of the GRU and TCN, 

details the working principle and prediction process of 

the MGRU+TCN model, and discusses the accuracy 

evaluation indices for the prediction results. Section 3 

introduces GNSS station data, data noise reduction 

and preprocessing; Determine the number of GRU 

modules and hidden layers in MGRU branch, and the 

number of residual blocks in TCN branch; The 

prediction results and accuracy of MGRU+TCN 

model and single model LSTM, CNN, MGRU and 

TCN, as well as the prediction results and accuracy of 

serial structure with TCN-MGRU and MGRU-TCN 

are compared and analyzed. Finally, Section 4 

presents the conclusion. 
 

2. PRINCIPLE AND METHOD 

2.1. GATED RECURRENT UNIT (GRU) 

The GRU, a variant of the LSTM network, 

operates on a similar principle. It controls the input, 

memory and other information through the gating 

mechanism, so as to make a prediction at the current 

time. Their main differences lie in the design of gating 

structure and cell state. GRU has only two gating 

structures, namely update gate and reset gate, while 

LSTM has three gates, namely input gate, forget gate 

and output gate. The update gate controls the degree to 

which the information from the previous time is 

transmitted to the current time, while the reset gate 

controls how much information from the previous 

memory comes from the current time. This design 

makes GRU more flexible in dealing with long-term 

dependencies, while reducing the number of model 

parameters and computational complexity. The 

structure is shown in Figure 1 (Fu et al., 2016; Dey et 

al., 2017). 

ht-1 ht

Xt

* +

Zt rt-1
ht-1tanh

∗1 -

∗

Sigmoid Splicing ∗ Multiplication + Additive

h: system state

z: update gate

r: reset gate

Fig. 1 GRU model structure. 
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2.2. TEMPORAL CONVOLUTIONAL NETWORK 

(TCN) 

TCN is mainly based on causal convolution, hole 

convolution of stored data and residual block, and its 

structure is shown in Figure 2. Causal convolution 

uses only past information for predictions, allowing 

for a step-by-step analysis of time series data and the 

extraction of inherent patterns. Meanwhile, hole 

convolution broadens the network's receptive field, 

enhancing its ability to detect long-term dependencies. 

Void convolution can cover a larger time span with a 

smaller number of layers by introducing an interval in 

the convolution core, so that the dynamic changes of 

time series can be understood more comprehensively 

(Hewage et al., 2020). Compared with traditional 

Convolutional Neural Networks (CNN), TCN 

demonstrates significant improvements in processing 

time series data. It breaks through the limitation of 

CNN in processing variable length sequences, and can 

better deal with time series of different lengths. It also 

solves the gradient explosion problem caused by the 

increase of network depth in the training process 

through residual blocks. The residual connection 

structure is shown in Figure 3 (Zhang et al., 2021). 

Input

d=1

d=2

Output

X1 X2 X3 X4 …… X13

Y1 Y2 Y3 Y4 …… Y13

Fig. 2 TCN model structure. 

 

Dilated Causal Conv

WeightNorm

Relu

Dropout

Dilated Causal Conv

WeightNorm

Relu

Dropout +

1X1 Conv

Xn-1=(x(n-1)1,x(n-1)2,...x(n-1)T)

Xn=(xn1,xn2,...xnT)

Residual dilated causal convolution unit(k,d)

Fig. 3 Residual connection structure. 
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2.3. MGRU+TCN PREDICTION MODEL 

This article uses GRU to extract temporal 

features of time series, and TCN to extract spatial 

features of time series. In order to enhance the ability 

of learning time features from complex time series, the 

MGRU branch adopts multiple GRU modules and 

multiple hidden layers, with each GRU module's 

hidden layer connected to a dropout layer to prevent 

overfitting. In addition, the concatenate function is 

used to fuse the features extracted from MGRU and 

TCN, and the output results are integrated through 

a fully connected layer. The structure of the 

MGRU+TCN parallel prediction model is shown in 

Figure 4. The specific prediction process is as follows. 

Step1: Firstly, CEEMDAN (Complete Ensemble 

Empirical Mode Decomposition with Adaptive Noise) 

algorithm is used to de-noise the data. Secondly, fixed 

length sliding window and step size are used to obtain 

more data samples for the denoised data. 

Step2: Split the data samples according to the 

ratio of 8:1:1 of the training set, validation set and test 

set, and normalize the split data. 

Step3: Input the training set data into the 

MGRU+TCN parallel network model for training. 

Every 10 times of training, the model will test the 

prediction results of the validation set data to 

determine whether the Root Mean Square Error 

(RMSE) has decreased. If it has not decreased for 1000 

consecutive times, stop training, otherwise continue 

training. 

Step4: Input the test set into MGRU+TCN 

parallel prediction model to get the prediction results, 

calculate RMSE, MAE and R2, and evaluate the 

prediction performance of the model. 

Input data

Hidden layer（1）

Relu

MGRU

Conv

Layer normalization

dropout

Residual

block(1)

Conv

Layer normalization

Relu

dropout

1D Conv

add

……

Flatten

Concatenate

TCN

Fc

Output data

dropout

Residual block(N)

Hidden layer（2）

Relu

dropout

Softmax

Fig. 4 MGRU+TCN parallel prediction model structure. 
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2.4. ACCURACY EVALUATION INDEX 

In order to evaluate the prediction accuracy of the 

prediction model, this paper uses RMSE, Mean 

Absolute Error (MAE), and coefficient of 

determination (R2) as evaluation indexes. 
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Where, 𝑦𝑖  is the real GNSS data value, 𝑦 ̅ is the 

average of real GNSS data values, 𝑦𝑖̂ is the forecast 

result, n is the number of GNSS data points. The 

smaller the value of RMSE and MAE, the higher the 

prediction accuracy of the model. On the contrary, the 

larger the value, the lower the prediction accuracy of 

the model. The closer the R2 value is to 1, the better 

the predictive model can explain the variability of 

dependent variables, and the closer it is to 0, the 

weaker the explanatory ability of the predictive model 

(Chen et al., 2023b). 
 

3.  DATA AND EXPERIMENTS 

3.1. DATA SELECTION 

The experimental data in this paper selects the 

daily elevation data from 50 GNSS reference stations 

within the extended solid earth science ESDR system 

(Es3). The data from the selected reference stations 

spans a period from 2010 to 2022, totaling 12 years. 

To ensure the reliability of model predictions, the data 

loss rate for the selected stations is maintained below 

10 %. The distribution of GNSS reference stations is 

shown in Figure 5. 

Fig. 5 Distribution of GNSS reference stations. 

 

3.2. DATA PREPROCESSING 

Select GNSS site experimental data use Hector 

software to remove outliers (Williams., 2008). For 

step discontinuities, use least squares fitting method 

for correction and Regularized Expectation 

Maximization (RegEM) algorithm for interpolation 

(Chen et al., 2023b). Affected by multipath effect, 

clock error and tropospheric delay, the complex noise 

in GNSS time series is not conducive to the feature 

learning of prediction model (Guo et al., 2022). To 

eliminate the noise’s impact, this paper uses 

CEEMDAN noise reduction algorithm to denoise the 

data. After dividing the time series into K Intrinsic 

Mode Functions (IMF), it calculates the correlation 

coefficient between each IMF and the original time 

series, and removes the noise by taking the first 

extreme point of the correlation coefficient as the 

boundary. The noise reduction results are shown in 

Figure 6. 

As can be seen from Figure 6, the GNSS time 

series become more stable and retain more useful 

signals after noise reduction using the CEEMDAN 

algorithm. Therefore, the denoised GNSS time will be 

used in subsequent experiments. In the process of 

sample data expansion, different sliding window 

lengths affect the prediction accuracy of the model 

(Guo et al., 2022). After trying different fixed window 

lengths, we finally selected the window length of 16 

and the step size of 1 to expand the data sample. 

Figure 7 shows the sample expansion process. The 
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Fig. 6 Noise reduction results of CEEMDAN algorithm. 

 

X1 X2 X3 …… X15 X16 X17

X2 X3 X4 …… X16 X17 X18

X3 X4 X5 …… X17 X18 X19

…… …… …… …… …… …… ……

Xt-16 Xt-15 Xt-14 …… Xt-2 Xt-1 Xt

Time series Predicted value

data is then segmented into a training set, a validation 

set, and a test set in an 8:1:1 ratio. We apply the 

Mapminmax normalization technique to enhance 

the model's convergence rate and overall performance. 

The data preprocessing flowchart is shown in 

Figure 8. 

 
3.3. PARAMETER SETTING OF PREDICTION 

MODEL 

In order to better extract the time characteristics 

of complex time series, we conducted experiments on 

branches with 1, 2 and 3 GRU modules combined as 

MGRU respectively. The hidden layer is uniformly set 

as 256 hidden units, followed by a 0.5 discard layer 

after each hidden layer. The number of GRU modules 

of MGRU branches is determined through the 

comparative analysis of RMSE and MAE accuracy 

results. Figure 9 shows the prediction accuracy results 

of the number of different GRU modules of MGRU 

branches. 

As can be seen from Figure 9, with the increase 

of GRU modules, the RMSE and MAE first become 

smaller and then larger, and the MGRU combined by 

two modules is 1.11 and 0.73 mm lower than the 

RMSE combined by one and three modules; MAE 

decreased by 1.31 and 0.56 mm. Therefore, we choose 

the MGRU branch with two GRU modules as the 

MGRU+TCN model. At the same time, in order to 

further improve the prediction accuracy of MGRU 

branches, we try to set the second module as 1, 2 and 

3 hidden layers on the basis of the two GRU modules. 

We also analyzed the prediction results by calculating 

the RMSE and MAE index values. Table 1 shows the 

number of hidden units in the hidden layer and the 

evaluation index results. 

Fig. 7 Sample expansion process with fixed window length of 16 steps as 1. 
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Fig. 8 GNSS station data preprocessing process. 
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Fig. 9 Prediction accuracy results of MGRU prediction branch under different number of modules. 

 

Table 1 Prediction accuracy results of MGRU prediction branches under different hidden layers. 

MGRU First hidden layer(unit) Second hidden 

layer(unit) 

Third hidden 

layer(unit) 

RMSE 

(mm) 

MAE (mm) 

1 256 - - 1.80 1.39 

2 128 256 - 1.48 1.25 

3 64 128 256 1.70 1.46 
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It can be seen from Table 1 that with the increase 

of the number of hidden layers, RMSE and MAE also 

decrease first and then increase. When two hidden 

layers are used in the second module, the accuracy 

values of RMSE and MAE are the lowest. Compared 

to one and three hidden layers, this configuration 

reduces the RMSE decreases by 0.32 and 0.22 mm 

respectively; and the MAE decreased by 0.14 and 

0.21 mm. Finally, we choose two GRU modules to be 

combined as MGRU branches, and set two hidden 

layers in the second GRU module. 

The more residual blocks in the TCN branch of 

MGRU+TCN prediction model, the more complex the 

model, and the greater the probability of over fitting. 

Therefore, in order to determine the number of 

residual blocks, we set N as 2, 3, 4, and 5 for 

experiments, and set the convolution kernel, channel 

number, and discard rate as 2, 32, and 0.5, 

respectively, to calculate the RMSE and MAE of the 

prediction results. Figure 10 displays the prediction 

accuracy results for the TCN branch with different 

number of residual blocks. 

As can be seen from Figure 10, when the residual 

block N is set to 2, the RMSE and MAE values reach 

the minimum; When N is 5, RMSE and MAE are the 

largest; At N =4, the RMSE and MAE values have 

little difference from those at N =2. In order to reduce 

the complexity of MGRU+TCN parallel prediction 

model and avoid over fitting problem, TCN branch 

sets residual block N as 2. The detailed parameters of 

the final MGRU+TCN parallel prediction model are 

shown in Table 2. 

In Table 2, unit in the MGRU branch represents 

the number of hidden units in the hidden layer, and the 

hidden units are lost at a deactivation rate of 0.5 after 

each GRU module hidden layer. In the TCN branch, 

the number of residual blocks is 2, and the convolution 

cores, channels and discard rates of residual block 1 

and residual block 2 are 2, 32 and 0.5. 

In order to verify the feasibility of the 

MGRU+TCN parallel prediction model proposed in 

this paper, LSTM, MGRU, CNN, TCN, TCN-MGRU 

and MGRU-TCN models are used for comparative 

analysis. In order to ensure the reliability of the 

experiment, the convolution kernel, channel number 

and discard rate of single prediction model CNN are 

also set to 2, 32 and 0.5. The parameters and structures 

of TCN, MGRU, TCN-MGRU and MGRU-TCN are 

the same as those of TCN and MGRU in 

MGRU+TCN. The number of LSTM hidden layer 

units is 256, followed by a lost layer with a parameter 

of 0.5. 

two three four five
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Fig. 10 Prediction accuracy results of different residual blocks N in TCN prediction branch. 

 

Table 2 Parameters of MGRU+TCN parallel prediction model. 

 
MGRU+TCN           Parameters 

MGRU 

Module 1 Unit (Hidden layer1) = 256, Dropout=0.5 

Module 2 
Unit (Hidden layer2) = 128, Unit (Hidden layer3) = 256, 

Dropout=0.5 

TCN  
Convolutional kernel size=2, Number of channels =32, Residual 

block N=2, Dropout=0.5 
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In the model training superparameters, Adam 

optimization algorithm is used for gradient 

optimization; Epochs is 50 times; The initial learning 

rate was 0.01. The input and output dimensions are 1. 

To avoid fitting problems during model training, we 

set L2 regularization coefficient as 0.001; In order to 

ensure that the model training is sufficient and there is 

overfitting, we evaluate the performance of the model 

by bringing in the validation set every 10 iterations. If 

the RMSE (loss value) between the predicted value 

and the real value does not decrease for 1000 

consecutive times, stop training to get the final 

prediction model. 

3.4. ANALYSIS OF EXPERIMENTAL RESULTS 

To verify the feasibility of the MGRU+TCN 

prediction model, we processed the GNSS reference 

station time series mentioned in Chapter 3.1 through 

CEEMDAN denoising, sample expansion, and 

normalization, using LSTM, CNN, MGRU, TCN, 

TCN-MGRU, MGRU-TCN and MGRU+TCN 

prediction models for prediction. Figure 11 shows the 

comparison between the predicted results and the true 

values of different validation and testing sets of 

prediction models for site av34. 

The LSTM model in Figure 11 (a) closely 

follows the real value’s, fluctuation trend, although the 

predictions are generally higher; The prediction 

accuracy of CNN and TCN models in Figure 11 (b) 

and (d) is improved compared with LSTM, but there 

is still a certain gap between the predicted value and 

the real value at the trough; In Figure 11 (c), the 

MGRU prediction model has good prediction result at 

the peak, but the error between the predicted value and 

the real value is large at the trough; The TCN-MGRU 

and MGRU-TCN models in Figure 11 (e) and 

Figure 11 (f) extract features from one model as input 

to another model, and their prediction results deviate 

greatly from the true values, even worse than the 

single TCN model; the MGRU+TCN model proposed 

in this paper has the best prediction result, which is 

very close to the real value at the trough, peak and 

continuous fluctuation of the waveform. In order to 

further verify the effectiveness and applicability of the 

MGRU+TCN prediction model, we calculated the 

accuracy index values of the prediction results of 

LSTM, CNN, MGRU, TCN, TCN-MGRU, MGRU-

TCN and MGRU+TCN models, and calculated the 

improvement I of the evaluation index of 

MGRU+TCN model compared with other models. 

Table 3 presents the prediction accuracy indices; while 

Figure 12 illustrates the absolute error as a box plot for 

each model's predictions against actual values. 

Table 3 shows that compared to LSTM, CNN, 

MGRU, TCN, TCN-MGRU and MGRU-TCN, the 

RMSE of the MGRU+TCN parallel prediction model 

proposed in this paper decreased by 1.05, 0.65, 1.12, 

0.30, 0.72 and 0.54 mm respectively; MAE decreased 

by 0.91, 0.58, 0.94, 0.11, 0.55, 0.43 mm respectively; 

R2 increased by 0.16, 0.07, 0.12, 0.01, 0.07, 0.03 

respectively. The prediction error of MGRU and TCN 

models with single branch is larger than that of 

MGRU+TCN parallel structure model, indicating that 

the prediction network with single branch structure 

has room for improvement. For TCN-MGRU and 

MGRU-TCN serial hybrid model, the accuracy is not 

significantly improved compared with that of single 

model structure, even compared with TCN model, 

RMSE increases by 26.35 %, 45.79 %, MAE increases 

by 44.78 %, 41.91 %, and R2 decreases by 6 %. In 

Fig. 11 Comparison of prediction results of single model LSTM, CNN, MGRU, TCN, TCN-MGRU, MGRU-

TCN and MGRU+TCN parallel prediction model (av34gnss reference station as an example) 
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Table 3 Prediction accuracy of different models 

 Site Model RMSE(mm) I/% MAE(mm) I% R^2 

ab43 

LSTM 1.53 59.48 1.28 60.94 0.94 

CNN 1.31 52.67 1.09 54.13 0.97 

MGRU 1.63 61.96 1.31 61.83 0.94 

TCN 1.09 43.12 0.81 38.27 0.97 

TCN-MGRU 1.65 62.42 1.28 60.94 0.93 

MGRU-TCN 1.21 48.76 0.98 48.98 0.98 

MGRU+TCN 0.62 / 0.50 / 0.99 

ab27 

LSTM 1.22 71.31 1.02 72.55 0.91 

CNN 0.85 58.82 0.69 59.42 0.96 

MGRU 1.56 77.56 1.28 78.13 0.82 

TCN 0.72 51.39 0.55 49.09 0.98 

TCN-MGRU 1.20 70.83 0.91 69.23 0.91 

MGRU-TCN 1.10 68.18 0.83 66.27 0.94 

MGRU+TCN 0.35 / 0.28 / 0.99 

ac03 

LSTM 1.15 60.00 1.00 64.00 0.88 

CNN 1.33 65.41 1.10 67.27 0.83 

MGRU 1.58 70.89 1.38 73.91 0.84 

TCN 0.52 11.54 0.41 12.20 0.98 

TCN-MGRU 0.76 39.47 0.61 40.98 0.96 

MGRU-TCN 0.80 42.50 0.65 44.62 0.96 

MGRU+TCN 0.46 / 0.36 / 0.99 

av06 

LSTM 1.73 83.82 1.64 85.98 0.72 

CNN 0.73 61.64 0.57 59.65 0.93 

MGRU 1.37 79.56 1.16 80.17 0.88 

TCN 0.54 48.15 0.29 20.69 0.99 

TCN-MGRU 0.88 68.18 0.70 67.14 0.93 

MGRU-TCN 0.61 54.10 0.50 54.00 0.97 

MGRU+TCN 0.28 / 0.23 / 0.99 

av34 

LSTM 1.54 87.01 1.15 86.09 0.72 

CNN 0.96 79.17 0.98 83.67 0.90 

MGRU 1.36 85.29 1.09 85.32 0.87 

TCN 0.54 62.96 0.41 60.98 0.98 

TCN-MGRU 1.04 80.77 0.80 80.00 0.90 

MGRU-TCN 0.91 78.02 0.72 77.78 0.94 

MGRU+TCN 0.20 / 0.16 / 1.00 

 

Fig. 12 Absolute error box diagram of different prediction algorithms (av34gnss reference station as an example). 
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Figure 12, the narrower the top and bottom width of 

the box chart is, the more convergent the prediction 

error is. The top and bottom width of the box chart of 

MGRU+TCN is the narrowest, and the minimum 

median value is 0.13, followed by the TCN model. It 

shows that the prediction network of MGRU+TCN 

parallel structure proposed in this paper is feasible. 

Compared with the model combination of TCN-

MGRU and MGRU-TCN serial structure, 

MGRU+TCN improves the low prediction accuracy 

result of single model, and the learning characteristics 

are more comprehensive. The difference between the 

prediction result and the real value is small, so 

MGRU+TCN has high prediction ability. 

 
4. CONCLUSION 

Addressing the limitations of single prediction 

models, which include low accuracy and incomplete 

feature extraction, this paper designs a model 

combination mode, and finally proposes a prediction 

model with MGRU+TCN parallel structure. 

Experiments utilizing the elevation time series data 

from 50 GNSS reference stations over 2010 to 2022 

have led to the following conclusions: 

1. The MGRU branch of MGRU+TCN model 

incorporates two GRU units and includes two 

hidden layers within the second GRU unit. This 

configuration enhances the RMSE and MAE 

accuracy by 48.85 % and 54.11 %, respectively, 

compared to a single GRU model, demonstrating 

that the MGRU's multi-module and multi-layer 

design more effectively captures temporal 

features of the time series. 

2. The MGRU+TCN prediction model leverages the 

MGRU branch to extract temporal features and 

the TCN branch to extract spatial features, fusing 

them using a concatenation function. Compared 

with the LSTM, CNN, MGRU, TCN single model 

and the TCN-MGRU, MGRU-TCN serial 

structure prediction model, the RMSE accuracy is 

improved by about 63.20 % on average, the MAE 

accuracy is improved by about 62.77 % on 

average, and the R2 can reach between 0.99-1.00. 

The model achieves the smallest overall absolute 

error between predictions and actual values, 

indicating more comprehensive learning 

capabilities and superior predictive performance. 
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