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 ABSTRACT 
 

 

Geological mapping of exposed geologic units of Earth surface is a common and important activity 

for geologists. This process is the first step of geological prospecting. Remote sensing can provide 

useful driven data for further studies and also it reduces the time and cost of this process. 
Sometimes it is possible that some lithologies have similar spectral responses while they have 

different surficial texture properties. Geological units of the Earth surface are more separable by 

including their textural properties along with their spectral behaviour in remote sensing so authors 
used spectral-Radar data integration with novel idea which is named Radar data resultant vector 

in this study. In this paper, two different neural network methods (Neural Pattern Recognition and 

Neural Net Fitting) were implemented in Matlab environment for lithological classification using 
two different input datasets, namely (1) only multispectral data and (2) integrated Radar-

multispectral data. The reason was to evaluate the performance of Spectral-Radar fused data in 

lithological classification in comparison with the spectral data alone. The results show that 
integrated Radar-multispectral data results in better classification of lithological units due to the 

integration of surficial textural parameters and spectral responses of such surficial features. The 

results also showed that the Neural Pattern Recognition method (NPRTool) performed better than 
Neural Net Fitting (NFTool) method. The results further show that, among the three different 

algorithms of the Neural Net Fitting method (i.e., Levenberg-Marquardt, Bayesian Regularization, 

and Scaled Conjugate Gradient), the Levenberg-Marquardt performed best. 
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1. INTRODUCTION 

Mineral exploration is a complicated, multi-task 

process; however, this can be achieved through 

a series of sub-projects whereby every sub-project 

contributes somehow to the desired outcome (i.e., 

deposit discovery). Geological mapping is a major 

sub-project of mineral exploration. It is a time- and 

cost-consuming process, which needs up-to-date 

approaches and methods to enhance the quality of the 

lithological mapping process aside from reducing 

the cost and time of project implementation. Satellite 

images (as toolkits) and remote sensing techniques (as 

approaches) provide geologists up-to-date capability 

for lithological mapping to assist mineral exploration 

in reduced time and cost. 

Involving remote sensing and satellite images in 

geological investigations and the Earth exploration 

tasks entails significant fusion of multi-source data. 

This ensures improvement in spatial resolution to 

achieve better results with detailed information, 

though, this is not the only advantage we can expect 

from data fusion (Yuhendra et al., 2012). Fusion of 

spectral datasets with ancillary data, fusion of multi-

sensor images from Short-wave infrared (SWIR) and 

visible and near-infrared (VNIR) ranges, and data 

fusion in different levels are examples that can benefit 

lithological mapping and mineral exploration. 

Geological investigations using spectral images 

focus on different responses of index minerals because 

of their absorption and reflection properties depending 

on the spectral resolution of a sensor. Therefore, based 

on different mineralogical compositions, every 

lithologic unit has its own spectral response in satellite 

image bands. However, it is possible to have 

a re- formed lithology due to weathering and oxidation 

conditions that has transported from the source rock 

with similar responses as the in-situ lithology. In such 

problems, the key to distinguish the initial lithology 

from the weathered or transported lithology is to pay 

attention to their textural properties. Whereas, medium 

resolution multispectral images have no data about 

textural properties of the Earth's surface, RAdio 

Detection and Ranging (Radar) data contain useful 

textural properties because of their polarimetric data 

recording (Pour and Hashim, 2014). Therefore, fusion 

of Radar and multispectral data offers integration of 
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 surficial texture of lithologies with their spectral 

responses for enhanced lithologic discrimination (Pal 

et al., 2007).  

Fusion of Radar and multispectral data for 

remote sensing has been applied mostly for 

classification of land-use (e.g., Joshi et al., 2016; Yuan 

et al., 2020; Palaniyandi et al., 2021; del Valle et al., 

2023) and land cover (e.g., Kulkarni et al., 2019; 

Zhang et al., 2021; Montanaro et al., 2022; Righini et 

al., 2022), and for monitoring of crops (e.g., Cloutis et 

al., 1999; Upreti and Kumar, 2021; Mouret, 2022; 

Cheng et al., 2023) and forest (e.g., García et al., 2018; 

Vafaei et al., 2021; David et al., 2022; Movchan et al., 

2023).  

The number of studies about applications of 

Radar-multispectral data fusion for geological 

mapping is limited and continually is increasing by 

time (Thurmond et al., 2006; Grebby et al., 2011; 

Zoheir et al., 2019; Rahmani et al., 2020; Kamal 

El- Din et al., 2021; Hajaj et al., 2022; Zafaty et al., 

2023). Thurmond et al. (2006) used integrated 

Enhanced Thematic Mapper Plus (ETM+), Advanced 

Spaceborne Thermal Emission and Reflection 

Radiometer (ASTER), Spaceborne Imaging Radar 

(SIR), RADARSAT-1 and Digital Elevation Model 

(DEM) data for geologic mapping in arid regions. 

They used SIR-C/X-SAR L-Band (Synthetic Aperture 

Radar) data with HH (Horizontal-Horizontal) 

polarization for individual lava flows in Quaternary. 

RADARSAT C-band (with HH polarization) aside 

ETM+ VNIR data were used to visualize extensional 

imbrication fans and finally morphologically 

structures in rhyolite flows were mapped by 

RADARSAT C-band with HH polarization integrated 

with ASTER VNIR and SWIR data. Grebby et al. 

(2011) used airborne Light Detection and Ranging 

(LiDAR) data and Airborne Thematic Mapper images 

for Self-Organizing Map (SOM) classification for 

lithological mapping in a vegetated area of Troodos 

ophiolite in Cyprus. They showed that airborne SAR 

and multispectral data could help to map complex and 

vegetated lithologies with better results. Zoheir et al. 

(2019) used Advanced Land Observing Satellite 

(Alos) Phased Array L-band Synthetic Aperture Radar 

(PALSAR) and sentinel-1B data for visual and 

automatic line extraction and finally integrated these 

data with multispectral data (ASTER and Landsat8 

OLI) for interpretation of geological structures. 

Rahmani et al. (2020) used the Radar and multispectral 

data fusion by using intensity-hue-saturation and 

principal component analysis for lithology and 

structural mapping.  

In this study, we tried semi-unsupervised 

lithologic classification with shallow neural network 

algorithm applied to two different data types, namely: 

(I) only multispectral and (II) integrated multispectral 

and Radar data. The objectives of this study were (1) 

to evaluate the success of using neural networks and 

integrated Radar-multispectral data in lithological 

remote sensing, (2) to propose a suitable neural 

network method for lithological mapping by remote 

sensing and (3) to compare the performance of using 

integrated Radar-multispectral data with performance 

of using non-integrated data. The innovations of this 

study are (a) combining Radar data polarization 

components (HH and HV) with a simple mathematical 

method, (b) pattern recognition techniques for 

classification/mapping of lithologic units based on 

integration of polarized Radar and multispectral data, 

and (c) improving data content of combined Radar 

data polarizations which was generated by resultant 

vector. These concepts and techniques have been used 

before for remote sensing classification/mapping of 

lithologic units based on integrated Radar-

multispectral data but the novel combination method 

for HH and HV polarizations in this study is the 

creative core of this paper. 

• Geological setting 

Test site of this study is located in Kerman 

Copper Belt (KCB), which is a well-known area as far 

as its copper potential concern; therefore, this area is 

a good choice for assessing the remote sensing results. 

The KCB is located in the Kerman province, in 

southestern part of Iran (Fig. 1). The KCB arc 

magmatism formed two different complexes, one is 

the Bahr-Aseman complex (with Middle Eocene age) 

and the other is the Razak Complex (Upper Eocene) 

(Dimitrijevic, 1973a; Hassanzadeh, 1993). 

Calk- alkaline (basaltic to rhyolitic) lava flows and 

pyroclastic materials were the main products of the 

KCB arc magmatism. Some plutonic bodies (with 

batholith size and Eocene-Oligocene age) were 

intruded into Eocene volcano-sedimentary 

successions. Some plutonic bodies were mainly 

granites to diorites and locally gabbro (characterized 

by high- to Medium-K calk-alkaline affinity) with 

granular texture (Dimitrijevic, 1973a; Ghorashi-

Zadeh, 1978; McInnes et al., 2003; Atapour, 2007; 

Shafiei et al., 2009). 

Jebal-Barez type granitoids were named after 

a local mountain where they occur extensively 

(Dimitrijevic, 1973a) and many studies reported that 

they have no major metallic mineralization. The KCB 

arc magmatism continued into Middle Oligocene 

(Dimitrijevic, 1973a; Hassanzadeh, 1993) and 

magmatic reactivation happened to form numerous 

shallow intrusives (continued to Late Miocene and 

Pliocene) in a post-collisional tectonic setting 

(Atapour, 2007; Shafiei et al., 2009) with 

compositions ranging from diorites and quartz-diorites 

to granitoids (known as the Kuh-Panj type granitoids) 

and passing through the older volcanic and plutonic 

bodies (Ghorashi-Zadeh, 1978; Hassanzadeh, 1993; 

McInnes et al., 2003). The Kuh-Panj type granitoids 

(High-K calk-alkaline), which present typical features 

of I-type magmas (Atapour, 2007), are associated with 

major porphyry type mineralization (Dimitrijevic, 

1973a; Alirezaei and Hassanpour, 2011). The KCB arc 

magmatism also generated dacites during Neogene, 

and finally Dehaj type intrusions (varying from dacite 

to rhyolite and locally andesite) (Dimitrijevic, 1973a; 

Hassanzadeh, 1993). This last magmatic activity in the 
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Fig. 1 Simplified geological map of the KCB area (Dimitrijevic, 1973a; Alimohammadi et al., 2015; Sabzehei 

et al., 1994). 

 
KCB took place in Plio-Quaternary and is represented 

by olivine-alkali basalts, foidolites, and lamprophyres 

(Dimitrijevic, 1973a; Hassanzadeh, 1993; Atapour, 

2007). Sedimentation process during Miocene 

produced large amounts of sandstone, conglomerate 

and arenites especially in the southern parts of the 

area. Calk tufa represents sedimentary features formed 

in the Quaternary; because of activities of hot springs 

associated with volcanic rocks. 

In the study area, the oldest rocks are volcanic 

rocks of Eocene age. They are composed of mostly 

agglomerates, tuffs, andesite, trachyandesite, 

trachybasalt and basalt, which belong to the Razak 

Formation. These volcanic rocks were later intruded 

by intrusive bodies (diorite, quartz diorite, monzonite 

and granodiorite) of Oligocene age. These intrusive 

bodies caused the formation of several porphyry 

copper deposits in the area such as SarCheshmeh, 

Darreh Zar, Sereidun, Sarkuh, Hosein Abad, Bagh 

Khoshk and Kuh Panj (Fig. 2). Quaternary dacites 

mark the final stage of volcanic activities in this area. 

During the Miocene, conglomerates with pebbles of 

volcanic and intrusive rocks were deposited in the 

southern and northern parts of the area. The Calc-tufa, 

alluvial sediments and gravel fans are the Quaternary 

features in the area. 

2. DATA AND METHODOLOGY 

In this study, three datasets from Advanced 

Spaceborne Thermal Emission and Reflection 

Radiometer (ASTER), Landsat7 Enhanced Thematic 

Mapper Plus (ETM+), and ALOS Phased Array type 

L-band Synthetic Aperture Radar sensors were used in 

ENVI, ArcGIS, and Matlab environments. Landsat7 

ETM+ was used instead of Landsat8 data because of 

more similarity to other above-mentioned data based 

on time of imaging. The satellite images were 

integrated by using layer stacking after applying 
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Fig. 2 Geologic map of study area based on Pariz (Dimitrijevic et al., 1971a), Chahargonbad (Dimitrijevic, 

1971), Rafsanjan I (Dimitrijevic et al., 1973b) and Rafsanjan II (Dimitrijevic et al., 1971b) geologic maps. 

 

necessary preprocessing methods (FLAASH 

correction for ASTER data, applying log function and 

8-bit stretching on ALOS data). A computer was used 

for image processing and for running soft computing 

algorithms. Details of the computer processor were as 

follows: Intel(R) Core(TM) i7-2630QM CPU @ 

2.00   GHz; system type: 64-bit operating system; total 

hard disc space: 1 TB; and installed memory (RAM): 

8.0 GB 

In 1972, the Landsat earth observation program 

was introduced and since then a new era of global land 

cover and land-use monitoring started. The Landsat 

program is the longest-running mission and it has 

launched eight different satellites into space. The 

Landsat 7 was launched on April 15, 1999, to continue 

Earth observation with significant progress in precise 

numerical radiometry, spectral differentiation, and 

seasonally repetitive monitoring (Goward et al., 

2001). The Landsat-7 ETM+ Level-1 products consist 

of L-1TP, L-1GT, and L-1GS products (Miao et al., 

2019). In this paper, a L-1TP product 

(LE07_L1TP_160039_20000807_20170210_01_T1) 

covering area scene was used in this study (Table 1). 

L-1TP products are calibrated radiometrically and are 

orthorectified using ground control points (GCPs) and 

digital elevation model (DEM) data to correct the 

relief displacement (USGS, 2019). 

The Terra satellite was launched into space in 

December 1999 as part of NASA’s Earth Observing 

System program. It carried several remote sensing 
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Table 1 Landsat7 ETM+ scene details. 

 
Sun Elevation Sun Azimuth Cloud Cover (%) Acquisition Date Acquisition Time (GMT) 

62.59347914° 114.85462397° 0 2000/08/07 06:35:50 

 

Table 2   ASTER scene details. 

 
Sun Elevation Sun Azimuth Cloud Cover (%) Acquisition Date Acquisition Time (GMT) 

51.034772° 145.680211° 0 2004/03/11 07:02:56.338 

 
sensors, one of which is the Advanced Spaceborne 

Thermal Emission and Reflection Radiometer 

(ASTER) instrument. The ASTER sensor is a multi-

spatial, spectral, and radiometric resolution imager 

(Abrams and Hook, 2002; Abrams and Yamaguchi, 

2019; Yuan et al., 2020; Çolak and Sunar, 2023). It is 

the most widely used sensor for geological purposes 

and it offers great abilities for geologists to detect and 

enhance hydrothermal alteration mineral zones and 

lithological units (e.g., Pour et al., 2013; Pournamdari 

et al., 2014a, 2014b; Gabr et al., 2015; Amer et al., 

2016; Guha and Vinod Kumar, 2016; Salem et al., 

2016; Safari et al., 2018; Rani et al., 2019; Zhang et 

al., 2023; Nasab and Agah, 2023).  

An ASTER level L1T scene covering the study 

area was obtained from the U.S. Geological Survey 

Earth Resources Observation and Science Centre 

(EROS). Details of this ASTER scene 

(AST_L1T_00303112004070256_20150503143507_

69958) are presented in Table 2. 

The FLAASH (Fast Line-of-sight Atmospheric 

Analysis of Spectral Hypercube) atmospheric 

correction (Anderson et al., 2002; Cooley et al., 2002; 

Li et al., 2023) was applied to the ASTER scene (both 

VNIR and SWIR bands). The FLAASH algorithm was 

implemented using the Mid-Latitude Summer (MLS) 

atmospheric and the rural aerosol models (Research 

Systems, 2003). ASTER VNIR and SWIR bands were 

resampled to 30-m spatial resolution using the nearest 

neighbour resampling method to preserve the original 

pixel values in the resampled images.  

The ALOS satellite was launched into space on 

24 January 2006 by the Japan Aerospace Exploration 

Agency (JAXA). It has a traveling altitude of 691 km 

above the Earth’s surface. This satellite images the 

Earth's surface in 46 days repeating cycle. Three 

different remote sensing instruments are carried by 

ALOS satellite: The Panchromatic Remote-sensing 

Instrument for Stereo Mapping (PRISM), the 

Advanced Visible and Near-Infrared Radiometer type 

2 (AVNIR-2), and the PALSAR (Almeida-Filho et al., 

2009; Papale et al., 2023).   

The PALSAR is an L-band SAR (synthetic 

aperture Radar) with multi-polarization ability that 

records great responses from vegetated areas, and, 

thus, it is a good tool for discriminating between fully 

vegetated, sparse vegetated, and open land areas. All 

three instruments on board ALOS benefit from a 

systematic observation strategy as a foreground 

mission, which helps to have stable wall-to-wall 

recordings with fine spatial resolution in all 

instruments (Rosenqvist et al., 2014). Radiometrically 

Terrain Corrected (RTC) products are geometrically 

and radiometrically terrain corrected products and 

they are distributed at two resolutions (RT1 & RT2) 

(Logan et al., 2014; Li et al., 2020). RT1 products have 

a 12.5 m pixel size spatial resolution whereas RT2 

products are generated with 30 m pixel size 

(Rosenqvist et al., 2007). All ALOS PALSAR scenes 

that were used in this study (to fully cover the study 

frame) were RT1 products, and Table 3 shows detailed 

information about them. 

 
2.1. RADAR DATA PREPARATION AND 

PROCESSING 

RT1 data do not need further pre-processing 

steps. However, in this study, some changes were 

applied to ALOS PALSAR scenes as explained below.  

Radar data must be rescaled to 8-bit spectral data 

to have the same power in the fusion process. Initial 

RT1 products have great variance in DN values. To 

remove the unwanted variance, it is recommended to 

apply a logarithmic operation on DN values and then 

to stretch data into 8-bit integers (using Gaussian 

stretch) (Bashir and Gilani, 2011). 

Each polarization image contains useful data of 

the Earth's surface, and combining the data obtained 

from HH and HV polarizations helps to get 

a comprehensive idea of the study area. If we assume 

that every polarization image has a vectorized nature, 

it is possible to combine two perpendicular polarized 

images into one image by defining a resultant vector 

as is shown in Figure 3. In this research, the introduced 

resultant vector was used in all fusion steps and 

methods because of its information content as shown 

in Figure 4. 

The HH&HV resultant vector image has the 

combination effect of both polarizations that is useful 

for differentiating different rocks based on the Radar 

return. This is discussed in the Discussion section. 

Figure 5 shows the Landsat 7 false color composite 

(6- A) which is stretched by decorrelation method in 

comparison with the Radar HH&HV Resultant image 

(5-B).   
 

2.2. ARTIFICIAL NEURAL NETWORKS 

Artificial neural networks (ANNs) are a small-

scale scientific imitation of the human brain and 

nervous system; in other words, ANNs mimics the 

biological aspect of human neural network (Mehta et 
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Table 3  Metadata of ALOS PALSAR scenes. 

 
Name Path / Frame Polarization Acquisition Date Off-Nadir Angle Absolute Orbit 

ALPSRP183900580 565/580 HH+HV 
07/07/09, 

18:50:36 
34.3° 18390 

ALPSRP087480580 564/ 580 HH+HV 
09/15/07, 

18:46:55 
34.3° 8748 

ALPSRP123510590 565/590 HH+HV 
05/19/08, 

18:46:17 
34.3° 12351 

ALPSRP087480590 564/590 HH+HV 
09/15/07, 

18:47:03 
34.3° 8748 

 

A)   B)     C) 

Fig. 4 HH (A) and HV (B) polarized images in comparison with HH&HV Resultant Vector (C). 

 

Fig. 3 Resultant vector for HH and HV 

polarizations. 

information processing unit, transmitting signals to 

and from the brain. These neurons work together in 

intricate networks to enable the brain's remarkable 

capabilities. In contrast, artificial neural networks 

(ANNs) are computational models inspired by the 

structure and function of the human brain. While not 

as advanced as the biological brain, ANNs consist of 

interconnected artificial neurons or processing units. 

Typical ANNs have hundreds or thousands of these 

artificial neurons, far fewer than the billions found in 

the human brain. Despite the differences in scale and 

complexity, both biological and artificial neural 

networks share the common purpose of processing 

information. The human brain's neurons receive, 

process, and transmit electrochemical signals, while 

artificial neurons perform mathematical operations on 

input data. Both types of networks rely on the 

connections between their processing units to learn 

and adapt. 

The architecture of ANNs is divided into two 

types, single and multi-layer. ANN benefits from 

a problem-solving approach instead of following a set 

of instruction without any intelligence (Kose and 

Arslan, 2017). The main stage in ANN is learning or 

al., 2016; Prisciandaro et al., 2023). It is called 

a network because of its interconnections between 

nodes (neurons) like a web. The human brain is a 

complex organ composed of billions of specialized 

cells called neurons. Each neuron acts as an 
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Fig. 5 A-False Color Composite of bands 7-4-1 in red, green and blue with decorrelation stretch. B- HH&HV 

Resultant Vector. The numbers on these images are the index of photographs for Figures 11 and 12. 

 
training, and so the quality of output is directly 

dependent on network structure, number of inputs and 

train epochs. Despite all of the advantages of ANNs, 

the over-fitting problem and longtime duration of 

training are two weak aspects of ANNs (Tetko et al., 

1995). In simple (or shallow) neural networks, there is 

one single hidden layer. However, in deep learning 

neural networks, there are more than one hidden layer 

(Delalleau and Bengio, 2011) (Fig. 6). 

For better explanation of this study work, it is 

important to introduce some phrases and idioms. 

• Feedforward network: in this type of ANN, 

connections between nodes do not make a cycle. 

This means that an output of a node will not be an 

input of past node and it only goes forward (Bebis 

and Georgiopoulos, 1994). Feedforward networks 

are the simplest and mostly used networks. 

• Sigmoid neuron: perceptrons have binary outputs 

and, in non-linear classification problems, are not 

usable. In such problems, sigmoid neurons with 

output that vary between 0 and 1 are used. 

Sigmoid function has smoother results in 

comparison with step function (A function that 

increases or decreases rapidly from one constant 

value to another) (Neapolitan and Neapolitan, 

2018). 

• Softmax output layer: output of a softmax layer is 

a set of positive numbers, which sum up to 1. In 

other words, output of a softmax layer is 

a probability distribution (Neapolitan and 

Neapolitan, 2018).  
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Fig. 6 Shallow vs. deep neural networks. 

 

Some studies used ANNs to integrate different 

data types of remote sensing sources to gain better 

results (e. g., Bruzzone et al., 1999; Berberoglu et al., 

2000; Joshi et al., 2016) 

 
2.3. DATASET PREPARATION 

All the bands were converted to an M by N 

matrix based on DN values in next step every band 

matrix was converted to a vector format (with one by 

M*N values). All band vectors merged together to 

form a new matrix which every column is related to 

a unique band and every row is DNs of the pixel in all 

bands. This matrix includes all the data about study 

area. This matrix was used in Matlab environment. 

 
2.3.1. TRAINING DATASET 

For every unique lithology, some areas were 

enclosed based on a-priori information from field 

studies and reconnaissance. About 10 % of pixels 

covering the scene were selected as labelled pixels. 

Number of train pixels is a result-based problem and 

is related to neural network architecture, complexity 

of dataset, type and amount of inherent noise in 

dataset, etc. Some studies determine the number of 

train pixels based on degree of freedom (DoF) in 

neural network and apply the 10 times rule on DoF 

(Kohli et al., 2017). Some studies propose to use at 

least 50 train pixels for every class randomly 

(Bharatkar and Patel, 2013).  Pixels were addressed by 

row and column and their corresponding values of 

every band assigned to them. A vector dataset from 

training data was prepared and it was used as a target 

input for neural net tools in Matlab. Detailed 

information about training pixels is presented in 

Table 4. 

All pixels in Table 4 were divided into three 

random categories in every train epoch, 70 % for train 

set, 15 % for validate set, and 15% for test set. Datasets 

are usually partitioned into training, validation and 

testing subsets. Unfortunately, there is no clear rule 

about what proportions of the data to use. However, it 

is important that training data must have greater 

proportion compared to testing and validation data. 

Many studies used proportions of 70-15-15, some used 

80-10-10 and others used 60-20-20. Here, we chose 

70-15-15 proportions for splitting the data into 

training, validate validation and testing subsets (e. g., 

Awoyera et al., 2020; Liu et al., 2020; Edoho et al., 

2018). 

 
2.3.2. NEURAL NET PATTERN RECOGNITION 

In neural net pattern recognition, inputs are 

classified into a set of target categories. The NPRTool 

in Matlab environment is an app applied commonly to 

vectorized input data with a related target vector. The 

NPRTool benefits from a two-layer feed-forward 

network, with sigmoid hidden and softmax output 

neurons (Bansal and Chhikara, 2014). The NPRTool 

uses scaled conjugate gradient back-propagation to 

train input data (Azhar Omar et al., 2013). Samples are 

divided into three parts (training, testing, and 

validation). Samples for training are presented to 

a network for learning. After training (which depends 

on no changes in generalization), validation samples 

are used to evaluate system generalization. Testing 

samples have no effect on the training process and they 

are used to measure network performance during and 

after training (Bansal and Chhikara, 2014). Networks 

constructed by the NPRTool in this study have two 

layers, 10 neurons in hidden layer, and 18 neurons in 

output layer. The number of input neurons based on 

input data varies between 15 and 18 (Figs. 7 and 8). 

2.3.3. NEURAL NET FITTING 

This method was applied using the NFTool app, 

implemented in Matlab environment. The NFTool 

creates a 2-layer feed-forward network with sigmoid 

hidden neurons and linear output neurons (Ibáñez 

Civera et al., 2011). All tested networks have 

10 neurons in hidden layer. Three different training 

algorithms were used to evaluate the results (i.e., 

Levenberg-Marquardt, Bayesian Regularization, and 

Scaled Conjugate Gradient). 

The Levenberg-Marquardt algorithm typically 

needs more memory to solve problems, but solving 

time is reduced. In this algorithm, training stops when 

no significant improvement occurs in generalization 

(defined by the mean square error of the validation 
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Table 4 Number of learning pixels for every class. 

 
Class 

Number of 

train pixels 

Percentage in all pixels of 

dataset 

Mostly arenites with pebbles of volcanic rocks (2Ng) 24857 2.67 % 

Alluvial 1886 0.20 % 

Altered Granodiorites (Altered Gd) 2898 0.31 % 

Dacites (dc) 1767 0.19 % 

Dacitoide pyroclastics (dp) 487 0.05 % 

Alternation of dacitic tuff breccia and hyaloporphyritic dacite 

(Edv) 
3301 0.36 % 

Andesitic volcanic breccia, with lava flows (Eta) 4572 0.49 % 

Granodiote (Gd) 15016 1.61 % 

Breccia and conglomerate with interclations of red siltstone 

(Mbc) 
2074 0.22 % 

Dacitic tuff-breccia and lithic tuff, green (Mda) 1841 0.20 % 

Razak Volcanics 983 0.11 % 

Red Tuff 2412 0.26 % 

Travertine 4385 0.47 % 

Vegetation 311 0.03 % 

Water 85 0.01 % 

Eocene Volcanics 4472 0.48 % 

Clac-Terraces  3361 0.36 % 

Sum  74708 8.03 % 

 

Fig. 7 Neural Net structure for the multispectral data input. 

 

Fig. 8 Neural Net structure for integrated data input. 

 

data). The Bayesian Regularization algorithm is the 

best choice for difficult, small, or noisy datasets. It 

needs more time to solve problems and training stops 

by minimizing the adoptive weight (regularization). 

The Scaled Conjugate Gradient algorithm occupies 

less memory for training time and it is controlled by 

improvement in generalization (Kumar et al., 2016). 

2.4. ACCURACY ASSESSMENT 

It is imperative to evaluate the classification 

results and to determine the accuracy of the 

classification method by comparing the results with 

ground truth information. A confusion matrix is 

a good calculation method for this purpose (Research 

Systems, 2003). In the calculation of the confusion 

matrix, we compared classification results with 

ground truth data, and finally, the result is comparable 

by numerical scales (such as overall accuracy, 

producer and user accuracies, Kappa coefficient, and 

errors of commission and omission). 

The Kappa coefficient (k) is a measure of 

classification accuracy. It can be calculated as: 
 

𝐾 =  
𝑃o−𝑃𝑐

1−𝑃𝑐
                                                                 (1) 

 

where Po (observed proportion of agreement between 

the two raters) denotes “observed agreement" and Pc 

"chance agreement" (expected proportion of 

agreement due to chance) (Research Systems, 2003). 

The Kappa coefficient varies between 0 and 1. If 
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Fig. 9 Schematic view of the research methodology in this research (WR=With Radar, WOR=Without Radar). 

 

Kappa coefficient equals 0, it means that there is no 

agreement between the classified result and reference 

data (bad classification) and if it is equal to 1, it shows 

that classification is the same as the reference data 

(best classification).  

An error of commission represents pixels that belong 

to a class but classified into another class of interest. 

An error of omission represents pixels of ground truth 

data that were not classified into the correct class. The 

producer accuracy is a measure of omission error and 

it represents under-estimation, whereas user accuracy 

is a measure of commission error and it represents 

over-estimation (Research Systems, 2003). Schematic 

view of this research steps is presented in Figure 9. 

 

 

3. RESULTS 

In this study, four different methods 

(implemented in Matlab environment) were used to 

evaluate the results of each method using integrated 

multispectral-Radar data and multispectral data alone. 

The NPRTool and NFTool applications in Matlab 

were used to apply the methods to these input datasets. 

All neural nets were structured with 10 hidden 

neurons. Table 5 presents the basic information about 

each method. Figure 10 shows the results of the 

methods mentioned in Table 5. 

About 3 % of the pixels covering the scene 

(about 30000 pixels) were used as ground control 

points to evaluate the results of each method by using 

the confusion matrix. We checked the ground control 

points in the field, collected samples, and studied the 

lithologies under the optical microscope. Tables 6 and 

7 present the related results. 
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Fig. 10 Results of image classification based on different methods. The methods are listed in Table 5. The 

location of Figures 12-G and H is shown by dashed circle (10-A). 
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Table 5 Basic information about the applied methods. 

 
 Input Data Method Train epochs Train Error 

Train Run 

Time 
Output name 

1 

18 Inputs 

(ETM, 

ASTER, 

ALOS) 

Neural Pattern 

Recognition 
3 6.18 % < 1′:00″ 

NPRWRResult 

(Figure 10-A) 

2 

15 Inputs 

(ETM, 

ASTER) 

Neural Pattern 

Recognition 
6 7.5 % < 1′:00″ 

NPRWORResult 

(Figure 10-B) 

3 

18 Inputs 

(ETM, 

ASTER, 

ALOS) 

Neural Net Fitting 

(SCG) 
1 R=0.77 < 1′:00″ 

NNFWRSCGResult 

(Figure 10-C) 

4 

15 Inputs 

(ETM, 

ASTER) 

Neural Net Fitting 

(SCG) 
1 R=0.76 < 1′:00″ 

NNFWORSCGResult 

(Figure 10-D) 

5 

18 Inputs 

(ETM, 

ASTER, 

ALOS) 

Neural Net Fitting 

(Levenberg) 
1 R=0.84 < 1′:00″ 

NNFWRLevenResult 

(Figure 10-E) 

6 

15 Inputs 

(ETM, 

ASTER) 

Neural Net Fitting 

(Levenberg) 
2 R=0.83 2′:18″ 

NNFWORLevenResult 

(Figure 10-F) 

7 

18 Inputs 

(ETM, 

ASTER, 

ALOS) 

Neural Net Fitting 

(Bayesian) 
1 R=0.81 6′:41″ 

NNFWRBayesianResult 

(Figure 10-G) 

8 

15 Inputs 

(ETM, 

ASTER) 

Neural Net Fitting 

(Bayesian) 
1 R=0.82 8′:35″ 

NNFWORBayesianResult 

(Figure 10-H) 

 

Table 6 The main information about the classification result of each method (red texts represent dataset of only 

multispectral and blue ones represent integrated Radar and multispectral dataset). 
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Overall Accuracy 80.09 % 79.36 % 72.89 % 70.54 % 73.45 % 67.97 % 61.88 % 60.34 % 

Kappa Coefficient 0.7773 0.7697 0.6948 0.6677 0.6983 0.6393 0.5682 0.5509 

Train Epochs 6 3 1 2 1 1 1 1 

Train Error 7.50 % 6.18 % R = 0.84 R = 0.83 R = 0.81 R = 0.82 R = 0.77 R = 0.76 

Train Run Time < 1′:00″ < 1′:00″ < 1′:00″ 02′:18″ 06′:41″ 08′:35″ < 1′:00″ < 1′:00″ 

 
As it is shown in Figure 9, the top row in Table 6 

represents the classification methods. A simple 

naming code was used to make it easier to understand. 

First three characters in every phrase indicate the 

classification method (NNF= Neural Net Fitting or 

NPR=Neural Pattern Recognition), the next phrase 

(WR or WOR) shows that the used dataset is 

integrated with Radar data or not (WR=With Radar 

and WOR=Without Radar). The probable next phrase 

is related to the type of used algorithm in NNF method 

(i.e., Levenberg-Marquardt, Bayesian Regularization, 

and Scaled Conjugate Gradient). 

Maximum overall accuracy is for NPR 

classification method (79.36 % and 80.09 %). In 

comparison between the two conditions of 

Radar- Spectral and only Spectral dataset for 

classification by NPR method, it was found that 

doubling the train epochs for pure spectral dataset, 

only result in improving the overall accuracy less than 

1 % and in equal condition (similar train epochs) the 
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Table 7 Commission and omission values for each class by different methods (red texts represent dataset of only 

multispectral and blue ones represent integrated Radar and multispectral dataset). 

 

  

N
P

R
W

O
R

 

N
P

R
W

R
 

N
N

F
W

R
B

a
y

esia
n

 

N
N

F
W

R
L

ev
en

 

N
N

F
W

O
R

L
ev

en
 

N
N

F
W

O
R

B
a

y
esia

n
 

N
N

F
W

R
S

C
G

 

N
N

F
W

O
R

S
C

G
 

Commission 

(%) 

2Ng 2.63 4.3 10.7 13.64 16.89 21.21 22.24 26.35 

Alluvial 17.6 9.11 0 0 0 0 0 0 

Altered Gd 2.68 0 0 0 0.69 0.59 0 0 

dc 4.44 24.21 0 0 0 0 0 0 

dp 30.77 32.2 0 0 0 0 0 0 

Edv 51.08 59.19 0 54.19 51.55 61.76 54.62 61.22 

Eta 5 7.45 31.79 9.91 7.1 9.33 5.51 18.57 

Gd 40.79 39.21 39.14 37.69 46.26 39.86 56.52 62.92 

Mbc 37.9 7.78 28.04 44.4 43.17 28.04 40.08 40.08 

Mda 6.87 0 0 2.17 2.88 50.55 12.95 23.93 

Razak Volcanics 54.46 27.27 0 0 0 0 0 0 

Red Tuff 19.85 23.65 42.94 27.43 46.13 52.06 0 44.23 

Travertine 3.14 11.83 44.02 50.25 45.31 47.57 52.28 30.12 

Vegetation 0 0 0 0 0 0 0 0 

Water 0 0 0 0 0 0 0 0 

Eocene Volcanics 2.77 5.32 26.57 4.54 10.86 10.41 5.49 2.27 

Clac-Terraces 16.28 14.25 36.43 37.8 19.13 52.31 64.66 0 

Omission (%) 

2Ng 8.4 4.24 2.12 1.62 5.16 6.36 0.49 1.48 

Alluvial 11.16 15.4 100 100 100 100 100 100 

Altered Gd 40.25 52.36 33.16 31.62 40.55 30.29 79.98 69.82 

dc 66.67 44.19 100 100 100 100 100 100 

dp 10 0 100 100 100 100 100 100 

Edv 5.01 4.74 100 2.51 4.18 3.06 8.36 0.84 

Eta 5.52 3.87 6.35 14.64 13.26 14.09 29.01 15.19 

Gd 3.62 3 0 0.31 7.24 8.89 2.48 14.79 

Mbc 0 0 0 0 0 0 0 0 

Mda 3.94 0 9.63 0 0 0 10.37 8.15 

Razak Volcanics 51.58 41.05 100 100 100 100 100 100 

Red Tuff 40.06 13.17 42.3 51.82 45.38 54.34 88.52 59.38 

Travertine 3.14 8.21 3.86 3.86 2.9 3.62 11.59 14.25 

Vegetation 57.25 43.48 100 100 100 100 100 51.45 

Water 0 0 100 100 100 100 100 100 

Eocene Volcanics 35.89 49.59 8.4 40.46 35.53 41.83 38.63 56.71 

Clac-Terraces 20.88 15.66 32.42 34.89 48.9 91.48 66.21 100 
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result is more desirable for integrated Radar-Spectral 

dataset.  

SCG algorithm for NNF method represented 

a poor classification result among all compared 

methods (with overall accuracies of 60.34 % and 

61.88 %). As you can see, overall accuracy for 

integrated Radar-Spectral dataset is bigger than the 

only Spectral dataset in completely similar conditions.  

The Bayesian Regularization algorithm for NNF 

method takes a long time to become fully trained and 

find a way to classify the data (in comparison with all 

other NNF algorithms). Classification of integrated 

Radar-Spectral dataset by this algorithm has the 

highest value of overall accuracy in all NNF 

classification results and in the next place, integrated 

dataset by Levenberg-Marquardt algorithm has the 

highest value for overall accuracy.  

By subtracting the User’s Accuracy from 100 %, 

the Commission error is measured and in a similar way 

by subtracting the Producer’s Accuracy from 100 %, 

the omission error is calculated. Omission error is 

absolutely lower than Commission error value for Gd 

and Mbc classes, which means that misclassification 

is completely caused by classifying pixels from other 

classes to these classes (2Ng, Edv, Mda and Travertine 

classes have similar condition in most cases). Mbc 

class Omission error value is exactly equal to zero for 

all classification methods. Unlike those classes, 

Altered Gd, dc, Vegetation and Water classes have 

higher Omission error than Commission error values. 

This means that some pixels of these classes are 

classified into other classes in a wrong way. 

Misclassification of Water pixels is mainly concerned 

with high Omission error values (equal to 100 %) and 

only in NPR method results (either Radar-Spectral or 

only Spectral data) this value is equal to zero (note that 

Commission error is zero for both NPR results). In 

a similar condition, Mda class represents zero error 

value of Omission and Commission only in NPR 

classification method on integrated Radar-Spectral 

dataset. In addition, Razak volcanics and dp classes in 

most cases have higher Omission error values than 

Commission error. 
 

3.1. FIELD CHECKS  

After classification of the rocks by remote 

sensing, several points in the field were selected for 

checking. The rocks were examined in the field as well 

as in the laboratory for lithology and hydrothermal 

alteration style. Laboratory work included thin section 

studies under the optical microscope. Figures 11 and 

12 demonstrate the selected lithologies and geological 

features that are discussed in the discussion section.  

The locations of the photographs in Figures 11 and 12 

are shown in Figure 5. 

 
4. DISCUSSION 

Distinguishing rock types (lithological mapping) 

using optical remote sensing can be difficult, 

particularly for rocks with complex mineral 

compositions and those affected by hydrothermal 

alteration. While spectral properties are crucial, 

textural characteristics also play a significant role. 

These textures are related to the surface roughness, 

drainage patterns, and morphological roughness. To 

achieve the most accurate results, combining optical 

and radar imagery is often necessary. 

Radar images have a high return on vegetated 

areas because of the cardinal effect. This has 

applications in structural interpretation such as fault 

location, as the linear features are better enhanced in 

the Radar images (Fig. 5-B). As the satellite images 

are acquired in a dry season, vegetation cover, except 

in the valleys, is poor and so there are good outcrops 

in the field. In some areas with higher elevation that 

receive snowfall in winter, vegetation and soil cover 

mask the lithology; however, mapping the lithologies 

is possible by remote sensing (Figs. 11-B and F). In 

some areas, volcanic rocks are hydrothermally altered, 

especially, in the vicinity of intrusive bodies 

(Figs. 11- E, 12-D and 12-E). In such cases, 

hydrothermal alteration does not allow the recognition 

of the original lithology by remote sensing. Argillic, 

phyllic and propyltic are the main types of 

hydrothermal alteration.  The altered areas within the 

volcanic and the intrusive rocks show a low Radar 

return (Figs. 11-E, 12-C and D). It can be attributed to 

the smoother surface due to the weathering processes. 

Most of the unaltered volcanic rocks show higher 

Radar return because of their rough surfaces 

(Fig. 11- E). 

The intrusive bodies have good rock exposures 

in the area, except in some locations with higher 

elevations, which are covered by soil and vegetation 

(Fig. 11-B). Many of the intrusive bodies in the area 

are hydrothermally altered. This causes a smoother 

topographic surface (Figs. 12-C and D).  High Radar 

return is observed from the unaltered intrusives and 

also the dacitic rocks (Figs. 11-A, B, E and 

12- A, E, F). The surfaces of these rocks are texturally 

coarse that cause the high Radar return. An intrusive 

body exists in the northwest of Sar Cheshmeh mine 

that has a subtle indication in the processed satellite 

images (VNIR+SWIR) but it is shown well in the 

integrated images (Figs. 10-A and 12-G and H). This 

intrusive body has not been reported in the previous 

geological maps and is highly altered, but the 

vegetation cover on top of this body doesn’t allow it to 

be detected by satellite images in the optical region. 

This also can be detected by using airborne 

geophysical data as reported by Ranjbar and 

Honarmand (2004).  

The sedimentary rocks in the area are mainly the 

conglomerate (Fig. 11-C), calcareous terraces 

(Fig. 12- F), calc tufa (Travertine) (Figs. 11-D and F), 

alluvial fans and Recent alluvial deposits. The 

conglomerates are composed of pebbles from the 

volcanic, intrusive or altered rocks. This will have 

a serious effect on lithological discrimination as they 

may show the same spectral signature as their source 
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A) B) 

  

C) D) 

  

E) F) 

 
Fig. 11 A-General view of the altered volcanic rocks and the intrusive rocks (looking northwest), B- Quaternary 

dacite (D) which overlies the Eocene volcanic rocks (EV) (Looking south), C- Thick Layers of Neogene 

conglomerate in the southern part of the area (Looking north), D-Quaternary calc tuffa overlies the 

Eocene volcanic rocks, E- A general view of the altered volcanic and plutonic rocks in Darrrehzar area, 

in vicinity of the unaltered volcanic rocks, F- calcareous terraces and calc tuffa that overlie the Eocene 

red tuffs. 

 
rocks; but they differ from their source rocks in terms 

of surface texture. Low Radar return is observed on the 

calc tufas, because of their smooth surface and the 

bedding is almost horizontal (Fig. 11-D). Although the 

calcareous terraces have a horizontal bedding, but they 

show higher Radar return than the calc tufas due to 

their rough surfaces (Fig. 11-F). The sedimentary 

rocks show different responses in the Radar images. In 

places where the rocks are inclined and show a rough 

surface, high Radar return is observed (Fig. 11-C), but 

in cases that the alluvial sediments have smooth 

texture, the Radar return is low. The alluvial fans show 

low Radar return due to their smoother surface as 

compared to the sedimentary rocks in the south of the 

area (Figs. 5-A and B). These subtle differences are 

demonstrated by the lithologies in the Radar images 

combined with the multispectral data, which can help 

in differentiating the lithologies within this area.  

Results show that the lithologic units 2Ng, Mda, 

Ev and Altered Gd represent better overall 

classification in all methods and datasets. In contrast, 

the Razak volcanics, dacites (dc), dacitoid pyroclastics 

(dp) and alluvial units have the weakest overall 

enhancement response in classification. The Gd, 
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A) B) 

  

C) D) 

  

E) F) 

 

 

G) H) 

 

Fig. 12 The intrusive bodies in the study area. A- Dehsiahan altered monzonite, B- Baghkhoshk altered quartz 

monzonite, C- SarCheshmeh altered granodiorite (Looking northeast), D- Darrehzar altered granodiorite 

(Looking east), E- Now Chun altered granodiorite in contact with the altered volcanic rocks, F- Kuh Panj 

intrusive body (Looking north). G and H-The intrusive body in the northwest of SarCheshmeh mine. 

This is highly altered. 
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 altered Gd and Mda units showed better enhancement 

using the integrated dataset in all methods but the Edv 

and travertine (calc tufa) units were poorly enhanced 

by using the integrated dataset (except in Bayesian 

Regularization for travertine and in Scaled Conjugate 

Gradient for Edv). The 2Ng units represent better 

enhancement using the integrated dataset except in the 

pattern recognition neural net fitting method (with all 

of its algorithms), which was also not a good choice 

for enhancement of alluvial sediments, dc, dp, Ev, and 

Water pixels. In addition, the neural net fitting method 

was not successful in classification of vegetated areas 

(except Scaled Conjugate Gradient method by using 

only the spectral dataset). Only the pattern recognition 

method recognized water pixels while all of other 

methods have poorly recognized water pixels. Surface 

water is better enhanced by using optical images. The 

altered Gd units represent better classification by the 

neural net fitting compared to the pattern recognition 

method. 

The Bayesian Regularization algorithm spent 

more training time with only multispectral data than 

with integrated Radar-multispectral data; this shows 

the advantage of using the integrated data to improve 

the training process. It is good and considerable that 

integrating Radar and spectral data reduces the 

training time for this algorithm. In other words, by 

adding Radar dataset, the algorithm finds a faster and 

better way to learn the patterns. In the application of 

neural pattern recognition method to integrated data, 

there was less error (with fewer epochs) compared 

with its application to only spectral data; thus, the 

combination of Radar and multispectral data gave 

better results. With the neural net fitting method 

(based on Levenberg-Marquardt training algorithm), 

less training time was spent on integrated data than on 

only multispectral data although with almost similar 

training percentage error; this case similarly occurs 

with the use of the Bayesian regularization training 

algorithm.  
 

5. CONCLUSIONS 

• Training an ANN with combined Radar and 

multispectral data proved more efficient than 

using just multispectral data in most cases. This 

resulted in: 

o Less training time (especially with Bayesian 

regularization and Levenberg-Marquardt 

algorithms). 

o Lower error rates (except for the Neural 

Pattern Recognition method). 

• Overall classification accuracy was generally 

higher with combined data, except for the Neural 

Pattern Recognition method which showed 

similar performance with both integrated Radar-

multispectral data and only multispectral data 

(overall accuracy 80.09 % vs. 79.36 %). 

• The Neural Pattern Recognition method achieved 

the best results in terms of training time, but 

required more training iterations. 

• Other training algorithms like Bayesian 

Regularization, Levenberg-Marquardt, and 

Scaled Conjugate Gradient showed better 

performance compared to the Neural Net Fitting 

method under similar conditions. 

• This study confirms the effectiveness of ANNs 

for geological mapping, particularly when using 

combined data sources like radar and 

multispectral imagery. 

• Integrating radar data with other remote sensing 

sources offers a promising approach for improved 

results in geological mapping. 
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