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ABSTRACT 
 

 

Sea-level rise directly caused by climate change is impacting coasts around the world and low-

lying islands, requiring a continuous accurate monitoring. We analyze the sea-level data observed 
by 20 tide gauges located in the east coast of the United States of America (USA) over the period 

January 1972 to December 2021 by using an open-source toolbox SLR_APP. After mitigating 

noise using Principal Component Analysis (PCA) and Independent Component Analysis (ICA) 
method, we estimate the trend change and its uncertainty of sea-level considering the stochastic 

noise properties of the observations. The sea-level estimates and associated uncertainty are smaller 

than the raw observations after the noise reduction. Our results show that: the average values of 
the absolute trend change are 1.51 % and 0.82 %, and the mean trend uncertainty are reduced by 

44.78 % and 21.26 % after PCA and ICA noise reduction, respectively. We conclude that PCA 

method performs better than ICA especially in reducing the associated trend uncertainty of the sea 

level change. Improving the sea-level rise estimation and prediction contribute globally to enhance 

public safety, in particular for the coastal communities.  
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1. INTRODUCTION 

One of the primary consequences of climate 

change is the rise in global mean sea-level (GMSL). 

This natural phenomenon results from the melting of 

glaciers, land-based ice caps, and the expansion of 

seawater due to the increase of sea surface 

temperatures. The scientific community has monitored 

the sea-level rise (SLR) since 1992. The GMSL has 

already reached nearly 10.1 centimeters and 

projections suggest an anticipated rise vary from 0.3 

to 0.9 meters by the end of this century (Church and 

White, 2011; Oppenheimer et al., 2019; Wouters and 

van de Wal, 2018). Cities located along coastlines 

worldwide are now facing the impending risks 

associated with the SLR, including the tidal flooding 

and the storm-surges (Wahl and Dangendorf, 2022). In 

response to the escalating threat of climate change, 

governments and local authorities have developed 

strategic plans aimed at fortifying climate resilience 

and adaptation for coastal communities and businesses 

vulnerable to environmental hazards. These proactive 

measures are crucial in preparing for potential natural 

disasters, mitigating associated economic and human 

costs (Walkden, 2022). 

Geodetic observations play a pivotal role in 

estimating relative sea level rise (RSLR) through tide 

gauges (TG) (Hannah and Bell, 2012; Raj et al., 2022), 

which present the sea surface height relative to the 

crustal reference. However, due to local geodynamic 

factors such as tectonic activity and subsidence, the 

observations may encompass various movements, 

exhibiting linear or non-linear behaviors over 

extended periods（e.g., glacial isostatic adjustment, 

inter-seismic strain accumulation), （Camargo et al., 

2022; Montillet et al., 2018; Santamaría-Gómez et al., 

2012; Wang et al., 2021).  

The analysis of multi-decadal or century-long 

TG records presents numerous challenges in 

accurately estimating SLR and its associated 

uncertainty. A meticulous approach is essential, 

requiring careful modeling of diverse processes (e.g., 

seasonal variations) and considering the temporally 

correlated noises intrinsic to these measurements. 

These noises can impact the analysis of various time 

series, including geodetic time series (Burgette et al., 

2013; He et al., 2017; He et al., 2022a; Montillet and 

Bos, 2019), particularly affecting observations 

recorded by TG. 

The Principal Component Analysis (PCA) and 

Independent Component Analysis (ICA) method was 

used for various signal processing. Therefore, we 

perform the PCA and ICA method to reduce the 

coloured and white noises (i.e. temporally correlated 

noises). This paper is organized as follows: Section 2 
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Fig. 1 Spatial distribution of the 20 TG around the east coast of the USA. 

 
mainly describes our TG data and the stochastic noise 

models, and PCA/ICA method for noise reduction, 

and open-source toolbox SLR_APP. Section 3 

analyzes the trend of sea level changes based on 

optimal noise model and compares the effects of 

applying the PCA and ICA algorithms. Section 4 

presents the conclusions of our research. 

 
2. DATA AND METHODS 

2.1. TIDE GAUGE DATA 

The TG data utilized in this study are obtained 

from the Permanent Service for Mean Sea Level 

(PSMSL), a global repository for long-term sea-level 

change information derived from various TG sites 

(Holgate et al., 2013).  

The sea-level estimated from TG is influenced by 

the vertical land movement (VLM), which can 

potentially bias SLR values. The VLM is caused by 

various solid-earth processes, which can be either 

regional or localized to the tide gauge reference point. 

These phenomena may originate from either natural or 

human-induced causes and can manifest as 

steady- state (linear) or transient (nonlinear) signals 

over time. Regional processes that exhibit effective 

linearity over the century-scale duration of the longest 

instrumental TG records encompass glacial isostatic 

adjustment and inter-seismic tectonic strain 

accumulation in the absence of local earthquakes 

(Wöppelmann and Marcos, 2016). 

We specifically select 20 tide gauges located 

along the east coast of the USA, which smaller than 

a previous study from Dangendorf et al. (2023), 

covering a time span from 1972 to 2021. The spatial 

distribution of these TG is illustrated in Figure 1. To 

obtain an RSLR, we do not correct the observations 

from the VLM (Montillet et al., 2018).  

2.2. SELECTING OPTIMALLY THE STOCHASTIC 

NOISE MODEL  

2.2.1. STOCHASTIC NOISE MODEL 

Within geodetic time series, such as the TG 

observations, geodynamical processes can pose 

challenges in terms of accurate modeling and 

estimation using appropriate functional and stochastic 

noise models (Dong et al., 2006; Li et al., 2015; 

Tiampo et al., 2012). Bos et al. (2014) addressed this 

issue by modeling the stochastic noise properties of 

TG data, incorporating a trend representing the SLR, 

and accounting for seasonal variations. 

We employ the Auto-Regressive Moving 

Average (ARMA), the Auto-Regressive Fractionally 

Integrated Moving Average (ARFIMA), and the 

Generalized Gauss Markov (GGM) stochastic noise 

models to analyze the TG data in this paper. These 

models, as suggested by Bos et al. (2013) and further 

supported by He et al. (2019) and He et al. (2022b), 

contribute to a comprehensive understanding of the 

stochastic noise components within the geodetic time 

series, enhancing our ability to model and interpret the 

underlying processes. 

 
2.2.2. OPTIMAL NOISE MODEL SELECTION 

The optimal noise model is selected via the 

information criteria. We employ the BIC_tp criteria 

(or modified bayesian information criteria) developed 

by He et al. (2019) to model the noise properties. It 

was applied to estimate SLR on the west coast of the 

USA in He et al. (2022b). The optimal noise selection 

is conducted using the Hector and the additional 

routines within the software package (Bos et al., 2014; 

He et al., 2019; He et al., 2021). 
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 2.3. DATA PROCESSING AND STATISTICAL 

ANALYSIS 

We remove outliers from the raw observations 

with the (3 sigma) Inter Quartile Range (3IQR) 

method (Bos et al., 2013). 3IQR is a measure of 

statistical dispersion, which is a useful method to 

detect outliers in raw TG time series. When using 

3IQR, the raw TG time series is split into quartiles. 

The distances between the upper and lower quartiles 

are used to determine the IQR (Wan et al., 2014). Bos 

et al. (2013) and He et al. (2019) have emphasized the 

positive impact of outlier removal on data quality 

using various geodetic datasets (TGs and daily 

position GNSS time series). This process not only 

diminishes noise scatter, but also holds the potential to 

yield a more precise and accurate analysis of 

geodynamical phenomena. Furthermore, we use the 

so-called “R” coefficient to quantify the impact of 

noise reduction on the correlation of TG time series. 

This coefficient can express the correlation before and 

after the denoising procedure, offering insight into the 

effectiveness of the outlier removal process in 

improving the overall coherence of the time series 

data. The coefficient is defined as: 

𝑅 =
∑ (𝑥𝑖−𝑥̄)(𝑦𝑖−𝑦̄)𝑛

𝑖=1

√∑ (𝑥𝑖−𝑥̄)2𝑛
𝑖=1 ∑ (𝑦𝑖−𝑦̄)2𝑛

𝑖=1

                                        (1) 

Where 𝑥𝑖, 𝑦𝑖  represents the TG time series before and 

after noise reduction, respectively. 𝑛 is the number of 

the TG time series. 𝑥̄, 𝑦̄ represents the mean values 

of TG time series 𝑥𝑖, 𝑦𝑖 , respectively.  

 
2.4. NOISE REDUCTION METHODS WITH PCA AND 

ICA 

We used PCA and ICA method to mitigating 

noise on TG data.  

Definition of the PCA: 

Assume that there are n TG sites, and the number 

of time observations is m, a matrix 𝑋 can be defined 

as: 

𝑋 = (
𝑥1(𝑡1) … 𝑥1(𝑡𝑚)

⋮ ⋱ ⋮
𝑥𝑛(𝑡1) ⋯ 𝑥𝑛(𝑡𝑚)

)                                      (2) 

The covariance matrix 𝐶𝑋 = 𝑋𝑇𝑋 . 𝑣̄𝑖  (m*1 

column vector) is the eigenvector of the covariance 

matrix, 𝜆𝑖  is the corresponding eigenvalue, the 

positive singular value 𝜎𝑖 = √𝜆𝑖, 𝑖 = 1,2, ⋯ , 𝑟. 𝑋 can 

be calculated by orthogonal function using the 

following equation: 

(𝑋𝑇𝑋)𝑢𝑖 = 𝜆𝑖𝑣̄𝑖                                                         (3) 

𝑋(𝑡𝑖 , 𝑥𝑗) = ∑ 𝑎𝑘(𝑡𝑖)
𝑛
𝑘=1 𝑣𝑘(𝑥𝑗)                                 (4) 

𝑎𝑘(𝑡𝑖) can be calculated using the following equation: 

𝑎𝑘(𝑡𝑖) = ∑ 𝑋(𝑡𝑖, 𝑥𝑗)𝑛
𝑗=1 𝑣𝑘(𝑥𝑗)                                  (5)

Where 𝑎𝑘(𝑡) is the k-th principal component, 𝑣𝑘(𝑥) 

represents the spatial response characteristic matrix 

corresponding to the principal component (He et al., 

2015; Dong et al., 2006; Shlens, 2014; Zhu et al., 

2024). 

Definition of the ICA: 

ICA model can be expressed as follows: 

𝑦 = 𝐴𝑆 + 𝑒                                                                (6) 

Where 𝑦 is the observation time series of each TG site, 

𝐴 is the mixing matrix, 𝑆 is the independent source, 

and 𝑒 is the random error. The ICA model estimates 

the unmixing matrix 𝑊 = 𝐴−1  for maximizing the 

non-Gaussianity of each source (Hyvarinen, 1999, 

Hyvärinen, 2013). 

 
2.5. SOFTWARE DEVELOPMENT  

The noise analysis within the time series in data 

preprocessing is essential for accurate estimation of 

trend. However, there is a limited availability of tools 

specifically designed for this purpose. To address this 

shortfall, we redevelop our previous GNSS Time 

Series Noise Reduction Software (GNSS-TS-NRS 

(He et al., 2020)) with a new module for sea-level rise 

application (SLR_APP). 

 
2.5.1. MAIN FEATURES OF THE SLR_APP MODULE 

SLR_APP is developed in MATLAB 

(MATLAB, 2022) and it features a graphical user 

interface (Hunt et al., 2014). SLR_APP serves as an 

extension module of the GNSS-TS-NRS software (He 

et al., 2020). Users can access this tool by utilizing the 

dedicated "SLR application" button within GNSS-TS-

NRS or by running “SLR_Application.m” within the 

generic MATLAB interface. 

 
2.5.2. DATA DOWNLOAD AND DISPLAY 

The SLR_APP main interface is shown in 

Figure 2a. “TG Data Download” relies on the 

MATLAB functions to connect the PSMSL website, 

and we acquire the compressed package containing 

TG time series data, and subsequently unpack it into a 

folder. “TS Display” reads TG data in the folder 

selected by the user, and we can draw the TG time 

series (see Fig. 2b). 

 
3. RESULTS AND DISCUSSION 

3.1. FILTERING THE TG TIME SERIES TO REDUCE 

THE NOISE 

TG time series noise reduction includes the 

interpolation, detrending, and the ICA/PCA noise 

reduction. It is inevitable that missing data exist in 

TG time series. Besides, it is required to ensure the 

TG time series with consistent length and complete 

dataset as discussed by Dong et al., (2006) and 

Burgette et al., (2013). The Regulated EM algorithm 

(RegEM) was used to interpolate the missing data 

before the noise reduction, available at 

“https://github.com/tapios/RegEM.git”. This method was 

proposed by Schneider (2001), which perform ridge 

regression to achieve regression regularization and 
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Fig. 2 Overview SLR_APP toolbox (a. main interface, b. drawing TG data, c. time series interpolation, 

d. detrending TG time series, e. ICA noise reduction, f. PCA noise reduction). 

 

parameter estimation. An example of interpolation is 

shown in Figure 2c. The goal of noise reduction is to 

remove noise from residual time series (i.e. time series 

without the linear trends). To obtain the residuals time 

series, we perform least squares method to detrend the 

TG time series, as shown in Figure 2d. Then, we apply 

the ICA (or PCA) method to mitigate noise. Figure 2e 

and Figure 2f show some examples of filtered time 

series with PCA and ICA. The procedure of reducing 

noise is summarized as follows: 

Step 1: Using the 3IQR method remove the outliers 

from the raw TG time series and time series 

interpolation. 

Step 2: Using the least-squares method detrend the 

time series for obtaining the residual time 

series. 

Step 3: Performing the PCA/ICA on the residual time 

series to obtain the residual time series with 

less noise (also called the denoise time 

series). Then add the linear trend estimation 

in step 2 to obtain the filtered time series. 

Step 4: Estimating the trend from the filtered time 

series using the Hector software to obtain 

SLR trend.  
 

Figure 3 shows the flowchart of the whole 

process described.  

Raw TS
Outlier remove

(3*IQR)
Interpolation Complete TS

Detrend

(least squares)

Residual TS

Linear trend

Denoise

(PCA/ICA)

Denoised residual TS

(PCA) 
Filtered TS (PCA)

Filtered TS (ICA)
Denoised residual TS

(ICA) 

Estimate trend

(Hector)
Sea level rise trend 

Noise

Fig. 3 PCA and ICA applied to the TG observations and SLR trend estimation. 
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Table 1 Trend and its uncertainty of TGs on optimal models.  

 
Site Trend (mm/yr) Site Trend (mm/yr) 

0180 5.41±0.48 0519 5.25±0.40 

0234 3.98±0.50 0526 8.06±0.49 

0246 3.59±0.44 0636 4.40±0.39 

0299 5.55±0.46 1068 3.48±0.44 

0311 4.79±0.37 1107 3.56±0.53 

0351 3.51±0.32 1111 4.38±0.28 

0367 3.94±0.33 1153 5.22±0.36 

0395 4.21±0.47 1193 2.83±0.50 

0412 5.15±0.51 1295 4.45±0.50 

0428 3.91±0.50 2324 5.96±0.43 

 

90˚W

90˚W

80˚W

80˚W

70˚W

70˚W

30˚N 30˚N

40˚N 40˚N

4 ± 0.3 mm/yr

Fig. 4 Estimated SLR (arrow) and associated uncertainty (ellipse) for each TG.  

 
3.2. SEA-LEVEL RATE  

We use the BIC_tp criterion to select the optimal 

model as discussed in the previous section to estimate 

the RSLR trend and its uncertainty for each TG time 

series. Table 1 shows the RSLR estimate and 

associated uncertainty based on the optimal noise 

models explained in the previous sections. Figure 4 

shows the spatial distribution of the RSLR around the 

east cost of the USA. From the Figure 4 and Table 1, 

we can see that the mean values of RSLR trend is 

4.58±1.16 mm/yr during the last 50 years.  
 

3.3. PERFORMANCE ANALYSIS OF TREND WITH 

ICA AND PCA 

The root mean square (RMS) value of the TG 

time series is computed with our in-house software 

discussed in Section 2. Note that the trends and its 

uncertainty, are computed by the selected optimal 

model.  

Figure 5 shows the RMS value after applying the 

PCA and ICA algorithm. The RMS of the TG time 

series has decreased compared with raw TG time 

series. Table 2 displays the RMS values for each TG. 

We used two indexes “Diff” and “Percentage” to 

analyze the result after noise reduction by ICA and 

PCA method. “Diff” is the difference between the 

RMS value of the TG raw time series and the RMS 

value of the denoised time series. “Percentage” 

represent the“Diff” divided by the RMS value of the 

raw time series. After the noise reduction with PCA or 

ICA, the “Diff” mean values are 23.88±10.99 mm and 

8.49±5.88 mm, while “Percentage” mean values are 

approximately 17.36 % and 5.80 %, respectively. 
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Fig. 5 RMS values for each TG before and after noise reduction. 

 

Table 2 Results of “Diff” and “Percentage”. 

 

Values 
Diff Percentage 

PCA ICA PCA ICA 

MAX 39.89 21.47 33.79 % 19.43 % 

MIN 7.65 2.38 5.87 % 1.15 % 

MEAN 23.88 8.49 17.36 % 5.80 % 

 

Fig. 6 Trend change percentage (red PCA, blue ICA) for each TG before and after noise reduction. 
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Fig. 7 Trend uncertainty variation before and after noise reduction with PCA (red)/ICA (blue). 

 

0
1

8
0

0
2

3
4

0
2

4
6

0
2

9
9

0
3

1
1

0
3

5
1

0
3

6
7

0
3

9
5

0
4

1
2

0
4

2
8

0
5

1
9

0
5

2
6

0
6

3
6

1
0

6
8

1
1

0
7

1
1

1
1

1
1

5
3

1
1

9
3

1
2

9
5

2
3

2
4

0.6

0.7

0.8

0.9

1.0

0.89

0.70

R

 PCA  ICA 

Fig. 8 The R Coefficient between raw and filtered TG time series with PCA (blue) /ICA (red).  

 

To obtain the percentage of trend change, we 

calculated the absolute difference between the trend of 

the raw TG time series and the trend after denoising. 

Then, we divided this difference by the trend of the 

raw TG time series. The results as shown in Figure 6. 

After applying the PCA, the largest percentage of 

trend change is 6.26 %, correspond for the site no 

2324, and the mean value is 1.51 %. For ICA, the mean 

value of trend change percentage is 0.82 %, and the 

trend change percentage for all sites is less than 3 %. 

Figure 7 shows the difference in trend 

uncertainty before and after noise reduction (after 

noise reduction minus before noise reduction). 

Figure 7 shows that the trend uncertainty difference 

after reducing the noise using either the PCA or the 

ICA method are less than 0, indicating that the trend 

uncertainty is reduced. The mean value of difference 

after PCA and ICA noise reduction is -0.20 mm/yr and 

-0.09 mm/yr, respectively, and their percentage 

reductions relative to the raw values is 44.78 % and 

21.26 %, respectively. 

Figure 8 shows the R coefficient between raw 

and filtered TG time series with PCA and ICA. The 

blue curve is the R coefficient between the raw time 

series and time series after the PCA denoising. The red 

line corresponds to ICA denoising. The dotted line 
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represents the average correlation coefficient of the 

TG. It can be seen from Figure 8 that the correlation 

value of PCA denoising at all TG sites are greater than 

ICA denoising. the average correlation value between 

raw and filtered TG time series with PCA is 0.70, 

while average correlation value between raw TG time 

series and denoising time series by ICA is 0.89. 

Combined with the previous results, the result of PCA 

denoising have a larger numerical change and better 

noise reduction effect compared to ICA denoising. 

ICA may only reduce a smaller percentage of the 

noise, resulting in a higher correlation with the raw 

time series. 

 
4. CONCLUSIONS 

This study focuses on providing an improved 

estimation of the RSLR with TG observations, we 

investigated 20 TGs along the east coast of the USA 

over past 50 years from 1972 to 2021. Three stochastic 

models (ARFIMA, ARMA, and GGM) are employed 

to estimate the trend in the TG observations. 

A comparative analysis was performed by PCA and 

ICA denoising. Our main results are: 

1. We designed an open-source SLR_APP toolbox 

to analyze TG data, which takes advantage of the 

interactive GUI interface in MATLAB. The PCA 

and ICA denoising algorithms are implemented. 

The toolbox also includes functions for data 

downloading, drawing time series, and accuracy 

evaluation, which together form a complete TG 

time series denoising analysis tool with good 

interactivity. 

2. The average values of the absolute trend change 

are 1.51 % and 0.82 %, the mean trend uncertainty 

is reduced by 44.78 % and 21.26 %, and the mean 

values of “R” correlation coefficient value are 

0.70 and 0.89 after PCA and ICA denoising, 

respectively. ICA may retain more noise, 

resulting in a higher correlation with the raw TG 

time series. The PCA noise reduction have 

a better result than the ICA noise reduction in our 

study. 

3. The results based on our selected TG time series 

show that the sea-level on the USA coast is rising 

over the past 50 years. The mean annual increase 

in sea level is around 4.58 ± 1.16 mm. 

Furthermore, regional sea level may greatly vary 

from one location to the other due to various 

processes (e.g., local geodynamic, GIA, ocean 

dynamic). In our study, the RSLR is not corrected 

from the VLM. Characterizing the spatial 

variability surrounding the location of each TG is 

crucial to understanding how coastal sea level 

varies on interannual to multidecadal time scales. 

Yet, this remains a key scientific challenge due to 

the lack of systematic coastal observations 

(Cazenave et al., 2022). This study is another step 

to improve the estimation of RSLR applying the 

PCA and ICA algorithms to reduce the noise on 

the TG measurements and the estimated SLR. 

However, some work is required to adapt our 

methodology to the global network of TGs and 

also to satellite altimetry observations. We should 

analyze the difference in the future when 

correcting the RSLR with VLM, and compared 

with the satellite altimetry datasets. 
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