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ABSTRACT 
 

 

In this paper, horizontal velocities are calculated using Linear Regression (LR) and Least Squares 
Support Vector Machines (LS-SVM) machine learning approaches to evaluate crustal deformation 

and tectonic stress models with the help of data provided by 42 GNSS stations along the Baltic 

coasts. Strain analysis for regional tectonic dynamics was performed with the help of estimated 
velocities based on daily GNSS observations processed in GIPSY-X software. The obtained 

velocity values showed statistical agreement between LR and LS-SVM at 40 stations, with LR 

providing lower standard deviations (±0.03–0.43 mm/year) and higher reliability for linear trends. 
Strain analysis reveals extensional stresses near stations MUS2, SUR4, PYRK and HAN1 due to 

crustal stress, while compressional stresses are observed around OSKL, KUN0, WARN and SAS2, 

which are probably affected by the Leba Ridge-Riga-Pskov Fault Zone. Although the optimized 
LS-SVM method via grid search and radial basis function kernels is advantageous for nonlinear 

data, it is considered more appropriate to use LR since it requires more computational resources. 

This study proposes the use of hybrid models (LR+LS-SVM) to capture complex deformation 

patterns and proves the effectiveness of LR for velocity estimation in tectonically stable regions. 

The findings not only provide important information for seismic hazard assessment and coastal 
management but also contribute to the understanding of the Baltic Sea geodynamics. 
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INTRODUCTION 

Comprehension of the velocity fields present 

within coastal regions is necessary for the effective 

management of these areas, the environmental 

monitoring thereof, and the adaptation to climate 

change (Wöppelmann and Marcos, 2012; Jamil et al., 

2024). Coastal land movement is influenced by both 

natural and anthropogenic factors, leading to dynamic 

changes such as shoreline retreat, sediment deposition 

and changes in coastal landforms (Yulianto et al., 

2019; Erkoç et al., 2025). These processes are 

particularly pronounced in regions such as the Baltic 

Sea, where unique geographical and hydrological 

features contribute to complex coastal dynamics 

(Baltranaitė et al., 2018; Kapsi, 2023). Addressing 

these challenges necessitates the utilisation of 

advanced tools and methodologies to facilitate 

accurate analysis and interpretation of coastal land 

movements. 

GNSS is a crucial technology for measuring and 

analyzing crustal deformation and velocity fields, and 

its horizontal displacement accuracy is 2-3 times 

better than the vertical component (Wang et al., 2022; 

Erkoç and Doğan, 2023). This technology provides the 

necessary infrastructure for strain analysis needed to 

determine the temporal changes of crustal motions and 

to understand tectonic activities (Okazaki et al., 2021). 

Analyses of this nature are of particular importance in 

regions such as the Baltic Sea, where climate change 

and rising sea levels present a threat to coastal 

infrastructure and ecosystems (Kapsi, 2023; 

Ostrowski and Skaja, 2016).  

In order to enhance the reliability and precision 

of GNSS velocity estimates, this study employed both 

the classical linear approximation method and an 

advanced machine learning algorithm, Least Squares 

Support Vector Machines (LS-SVM). LS-SVM, 

a robust extension of traditional SVM, facilitates the 

identification of spatial patterns in crustal deformation 

without relying solely on complex physical models 

(Najder, 2020; Yáñez-Cuadra et al., 2023; Corell and 

Döös, 2013; Erkoç and Doğan, 2024). Furthermore, by 

integrating it into strain analysis, it provides 

information on stress distributions and deformation 

dynamics, which is critical for the protection of coastal 

zone risks and infrastructure integrity (Carstensen et 

al., 2019; Grosset et al., 2023). 

The Baltic Sea serves as a prime exemple for the 

study of these dynamics due to its vulnerability to the 

impacts of climate change, including relative sea-level 

rise and increased storm surges (Väli et al., 2013; 

Kotilainen et al., 2014). This research integrates 

GNSS measurements with strain analysis to provide 

a thorough examination of velocity fields and stress 
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distributions along the Baltic Sea coastline. 

Understanding these complex processes is of prime 

importance for the elaboration of sustainable coastal 

management strategies, supporting informed 

decisions, environmental monitoring, and climate 

adaptation efforts. 

Several studies have been conducted to 

determine horizontal velocities using GNSS along the 

Baltic Sea coastline (as discussed in the referenced 

articles in the discussion section). However, these 

studies did not employ machine learning algorithms 

for velocity estimation. Erkoç and Doğan (2024) 

proved in their research that machine learning 

algorithms showed good performance in 

trend/velocity estimation. Despite these 

developments, a direct comparison using classical 

methods and machine learning approaches in GNSS 

velocity estimation remained limited. Building upon 

this foundation, this study contributes to the literature 

by: (a) determining horizontal velocities at 42 GNSS 

stations along the Baltic Sea coastline using both 

classical linear methods and machine learning 

algorithms, and (b) performing strain analysis using 

the velocities obtained from these stations to 

determine the impact of regional tectonics on the 

stations.  

This study has two main research objectives: (1) 

to estimate horizontal velocities at 42 GNSS stations 

distributed along the Baltic Sea coastline using both 

classical linear methods and LS-SVM, and (2) to 

perform strain analysis based on the estimated 

velocities to assess the impact on the stations due to 

regional tectonics. The novelty of this study is its 

comparative approach to evaluate the effectiveness of 

traditional GNSS velocity estimation methods and 

machine learning techniques. The primary results of 

this study are the application of LS-SVM algorithm for 

regional-scale GNSS velocity estimation and the 

combined strain analysis. 
 

DATA AND EVALUATION 

STUDY AREA   

The Baltic Sea is a region in Northern Europe 

that is notable for its geology and geography. It is 

considered to be a semi-enclosed brackish sea, with a 

noticeable salinity gradient, where the salt 

concentration appears to decrease from west to east 

(Böckmann et al., 2018; Sjöqvist et al., 2015). It 

comprises about 377,000 square kilometers with 

a considerably indented shoreline. The region is 

formed through dynamic interaction of tectonic, 

climatic, and anthropogenic processes; hence, it forms 

a natural laboratory to study horizontal velocity fields 

and deformation patterns along the coasts. 

Understanding these horizontal velocity fields is 

essential for the evaluation of coastal dynamics, 

relative sea-level changes, and associated risks to 

infrastructure and ecosystems (Fig. 1). 

Fig. 1 Map illustrating the study area and the distribution of GNSS stations along the Baltic Sea coast. 
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METHODS 

The integration of GNSS-derived velocity data 

into strain analysis is important for the improvement 

of our knowledge on regional tectonic deformation 

and seismic hazard assessment. Long-term GNSS 

measurements allow the determination of strain zones 

by determining the accurate velocity fields of the 

Earth's crust. These strain zones often coincide with 

the highly earthquake-prone areas, since those regions 

that are developing at a high rate of strain build-up 

show more seismic vulnerability. Evidence provided 

by Hussain et al. (2018) and Ojo et al. (2021) suggests 

that the geodetic strain rate may act as proxies for 

seismic hazard potential and hence suggests that 

short- term observations are able to reflect the 

long- term deformation rates. This relationship points 

out the important contribution of the continuous 

monitoring GNSS does to effective seismic hazard 

evaluation. 

In the current research, the horizontal velocities 

of GNSS stations are examined by two basic 

approaches: Linear Regression (LR) and Least 

Squares Support Vector Machines (LS-SVM). 

Preliminary examinations began with data cleansing 

and preparation steps, by which raw GNSS data was 

pre-processed to be freed from all possible 

disturbances from data including possible outliers or 

noise. The LR approach establishes a linear model for 

the relationship between the temporal parameters and 

the positional changes, which will help in analyzing 

the horizontal velocities. The slope of the regression 

line gives the estimate of the velocity of the GNSS 

stations; besides, the predictions are checked with 

actual observations based on performance metrics like 

Mean Squared Error and R². Though Linear regression 

is characterized by computational ease and simple 

implementation, it has complications in clearly 

formulating the nonlinear relationships, which may 

exist in geophysical data. 

On the other hand, the LS-SVM method was 

utilized to address the complexities of nonlinear 

relationships in GNSS data. There are several key 

stages for the LS-SVM method: Preprocessing aims to 

make the data more reliable by removing noise and 

cleaning outliers to increase the reliability of the data. 

Then, a suitable kernel function is selected. For this 

analysis, the Radial Basis Function (RBF) kernel is 

chosen. Then, the parameters of the kernel and the 

regularization term are optimized by systematic grid 

search for cross-validation. This process is important 

for selecting appropriate values of the model 

parameters, especially the regularisation parameter (γ) 

and the kernel parameter (σ), which significantly 

affect model accuracy and performance (Van Gestel et 

al., 2001). It has been observed that the parameter σ 

can significantly affect the RMSE, suggesting that a 

precisely chosen σ can improve performance (Boscolo 

et al., 2022). In addition, the values of the LS-SVM 

parameters γ and σ (hyperparameters) have been 

optimised. These have been used in different areas of 

application with effective grid search methodologies 

(Syarif et al., 2016). This process involves tuning the 

parameters within a defined range, fitting LS-SVM on 

several subsamples of the data, and validating the 

model on the remaining dataset to check the parameter 

tuning that keeps the prediction error as minimum as 

possible. After establishing the parameters of the 

model, the LS-SVM model is trained with the entire 

dataset, and the model forecasts the horizontal 

velocities of the GNSS stations. The model accuracy 

can be checked by several criteria, for instance, MSE 

and RMSE.  

All the steps for both methodologies are provided 

in Table 1. 

Once the station velocities are determined, the 

next step is to perform strain analysis. It is often done 

by some mathematical techniques like least-square 

collocation and basis function expansion. Such 

approaches enable the translation of discrete velocity 

GNSS data to continuous strain rate fields (Okazaki et 

al., 2021; Shen et al., 2015). For example, the least 

squares fitting method has been applied to model 

strain rates in complex geological environments, and 

high-resolution crustal deformation has been obtained 

(Arnoso et al., 2022). In addition, the Gaussian 

weighting function applied during the calculation of 

strain rates corrects local errors in velocity 

measurements and provides more reliable results for 

the obtained strain rates (Grosset et al., 2023). The 

steps of the strain analysis process are outlined in 

Table 2. 

In tectonically active regions, analyses of strain 

ratios based on GNSS data can provide important 

information on the kinematics of plate movements and 

seismic hazards. Namely, studies have shown that 

strain rates can reveal regions critical for 

understanding fault dynamics and earthquake risks 

(Tretyak and Vovk, 2016; Haines and Wallace, 2020).  

Strain analysis is a fundamental method for 

understanding deformation processes and studying the 

mechanical behavior of the Earth's crust in 

combination with stress distribution. GNSS-based 

strain analysis is widely used to determine tectonic 

plate movements, fault activity and surface 

deformations. 

 
DATA ANALYSIS 

A network consisting of 42 GNSS stations 

distributed along the coasts of the Baltic Sea was 

selected. Priority in the selection criteria was given to 

stations with at least 10 years of data, except for station 

SAS2, and special attention was paid to selecting 

stations with a minimum data gap (<4 %) at the 

selected stations (Table 3). The primary objective of 

this study is to utilize long-term data for reliable 

estimation of GNSS station velocities. The 24-hour 

datasets from these stations were downloaded from the 

SONEL online platform.  

The GIPSY-X software, which implements the 

precise point positioning (PPP) strategy, was used to 
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Table 1 Methods used for GNSS velocity estimation and data processing strategy. 

 
Features Linear Regression (LR) 

Least Squares Support Vector 

Machines (LS-SVM) 

Mathematical Model 

X(t) = v. t + b  

𝑣 =
𝑁𝛴(𝑡𝑖 ⋅ 𝑋𝑖) − ∑𝑡𝑖∑𝑋𝑖

𝑁𝛴𝑡𝑖
2 − (∑𝑡ⅈ)2

 

𝑦𝑖 = ∑ 𝛼𝑗𝐾(𝑥𝑗 , 𝑥𝑖)

𝑁

𝐽=1

+ 𝑏 

Predictions are made using kernel 

functions (Duan, 2024). 

Data Relationship 
Assumes a linear relationship with time 

(Hazra and Gogtay, 2016). 

Can model both linear and nonlinear 

relationships (Sunil, 2021). 

Input Data Time-dependent position (t, X)  

Time-dependent position and more 

complex patterns (t, X), processed using 

kernel functions  

Advantages 

- Simple and quick calculations 

(Roustaei, 2024).  

- Simple and interpretable (Berger, 

2025). 

- Effectively models nonlinear 

relationships  

- Ability to cope with complex data (Si et 

al., 2014). 

Disadvantages 

- Insufficient for nonlinear data 

(Andrecut, 2017). 

- Sensitive to noise and outliers (Kallel 

and Ophir, 1997). 

- Requires more computational resources 

and time (Sunil, 2021).  

-The need for staff specialised in domain 

knowledge (Sunil, 2021). 

Suitability 
Suitable for linear tectonic motions over 

time 

Suitable for complex, nonlinear tectonic 

motions and deformation processes 

   

 

Table 2 Steps involved in the strain analysis process based on displacement data from GNSS. 

 

Step Mathematical Expression Description 

Displacement to 

Strain Tensor 
𝜖𝑖𝑗 =

1

2
(

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
)   

Converts displacement gradients into strain 

tensor elements. 

Strain Tensor 

Components  

(GNSS Data) 

𝜖𝑥𝑥 =
𝜕𝑢𝑥

𝜕𝑥𝑥
, 𝜖𝑥𝑥 =

𝜕𝑢𝑗

𝜕𝑥𝑖
 ,  

𝜖𝑥𝑦 =
1

2
(

𝜕𝑢𝑥

𝜕𝑦
+

𝜕𝑢𝑦

𝜕𝑥
)   

Calculating strain tensor components from 

GNSS displacement data. 

Volumetric Strain 

(Dilation) 
𝜖𝑣 =  𝜖𝑥𝑥 + 𝜖𝑦𝑦  

Calculates the change in volume of the 

region. 

Shear Strain 𝛾 = √(𝜖𝑥𝑥 − 𝜖𝑦𝑦) + 4𝜖𝑥𝑦
2  

Represents the change in shape of the region 

without volume change. 

Principal Strain  

Values 

𝜆1, 𝜆2 =
𝜖𝑥𝑥+𝜖𝑦𝑦

2
± √(

𝜖𝑥𝑥−𝜖𝑦𝑦

2
)

2
+ 𝜖𝑥𝑦

2   

𝜆1: Maximum principal strain. 

𝜆2: Minimum principal strain.  

Determines maximum and minimum strain 

directions. 

Principal Strain 

Directions 
Eigenvectors of the strain tensor 

Calculates the directions of principal strain 

corresponding to eigenvalues. 

Visualization of  

Strain Vectors 
Strain tensor eigenvalues and eigenvectors 

Creates visual representations of strain using 

geographic information systems (GIS) or 

other. 

Strain Mapping Derived strain components plotted spatially 

Produces maps showing tectonic faults, 

stress fields, or crustal deformation 

processes. 
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Table 3 Characteristics of the stations used in this study. 

 

Station Latitude Longtitude Time span Gaps (%) Data sources 

0HDG 59.2217 17.9341 2010 - 2024 0.19 SWEPOS-LMV 

0LOD 55.7669 12.9957 2002 - 2024 0.32 SWEPOS-LMV 

0NYB 65.7959 23.1700 2007 - 2024 0.23 SWEPOS-LMV 

0OKC 57.2519 16.4654 2013 - 2024 0.32 SWEPOS-LMV 

0OXE 58.6710 17.1070 2005 - 2024 0.22 SWEPOS-LMV 

0SKL 55.4749 14.2794 2005 - 2024 0.31 SWEPOS-LMV 

0SKN 55.4138 12.8579 2003 - 2024 1.13 SWEPOS-LMV 

0STR 58.9366 11.1813 2005 - 2024 0.14 SWEPOS-LMV 

0VAR 57.1013 12.2571 2011 - 2024 0.09 (OSO) - Onsala Space Observatory 

0VIB 62.3738 17.4277 2010 - 2024 0.21 SWEPOS-LMV 

0YST 55.4326 13.8364 2011 - 2024 0.18 SWEPOS-LMV 

1BAG 57.7209 12.0187 2013 - 2024 0.09 SWEPOS-LMV 

AUDR 58.4225 24.3137 2008 - 2024 3.71 Republic of Estonian Land Board (ELB) 

BUDP 55.7390 12.5000 2003 - 2024 0.82 Danish Geodata Agency 

FYHA 54.9936 9.9863 2013 - 2024 0.16 DTU 

GESR 54.5744 11.9229 2005 - 2024 0.45 DTU 

HAN1 58.6235 23.6328 2014 - 2024 0.33 Republic of Estonian Land Board (ELB) 

HIRS 57.5911 9.9675 2004 - 2024 0.41 DTU 

HOL2 54.3729 10.1568 2006 - 2024 0.78 BKG 

KUN0 56.1042 15.5890 2005 - 2024 0.85 SWEPOS-LMV 

KURE 58.2556 22.5101 2008 - 2024 1.48 Republic of Estonian Land Board (ELB) 

MAR6 60.5951 17.2585 1999 - 2024 0.24 SWEPOS-LMV 

MUJA 58.4632 22.2326 2015 - 2024 0.95 Republic of Estonian Land Board (ELB) 

MUS2 59.4211 24.6980 2012 - 2024 2.41 Republic of Estonian Land Board (ELB) 

OLK2 61.1910 21.5060 2014 - 2024 0.83   

ONSA 57.3953 11.9255 1996 - 2024 1.15 (OSO) - Onsala Space Observatory 

OSLS 59.7370 10.3680 2000 - 2024 1.06 Kartverket 

OUL2 65.0860 25.8930 2014 - 2024 2.95 NLS 

PYRK 59.0066 23.5213 2014 - 2024 0.64 Republic of Estonian Land Board (ELB) 

REDZ 54.4724 17.1175 2008 - 2024 3.02 ASG 

RUHN 57.7823 23.2688 2014 - 2024 1.13 Republic of Estonian Land Board (ELB) 

SAS2 54.5110 13.6431 2016 - 2024 0.97 BKG 

SKE8 64.8792 21.0481 2015 - 2024 0.11 SWEPOS-LMV 

SMO0 58.3535 11.2179 2002 - 2024 0.42 SWEPOS-LMV 

SUR4 59.4636 24.3803 2011 - 2024 1.01 Republic of Estonian Land Board (ELB) 

TEJH 55.2484 14.8393 2010 - 2024 2.42 DTU 

TGDE 58.0073 7.5561 2009 - 2024 1.24 Kartverket 

TUO2 60.4160 22.4430 2015 - 2024 0.22 NLS 

VAA2 62.9610 21.7710 2014 - 2024 1.25 NLS 

VERG 59.6015 26.1008 2015 - 2024 2.18 Republic of Estonian Land Board (ELB) 

VIS6 57.6539 18.3674 2011 - 2024 0.20 SWEPOS-LMV 

WARN 54.1698 12.1014 2004 - 2024 0.63 BKG 

 

process the GNSS raw data. This method allows 

precise estimation of the coordinates of the stations in 

the ITRF 2020 reference frame, with precise satellite 

orbit and clock products. Basic error sources, 

including atmospheric delays (ionospheric and 

tropospheric), Earth orientation parameters and 

antenna phase center offset, were meticulously 

considered. On the other hand, quality control 

procedures such as outlier detection were applied to 

increase the reliability of the results. 

Time series were created to analyze long-term 

station velocity trends with coordinated data obtained 

from daily solutions. Observation data covering at 

least nine years from each of the network stations were 

downloaded from the SONEL online database, which 

ensures consistency and high quality (see Fig. 2). 

This approach is in line with the methodology 

followed by Herring et al. (2016), who discusses the 

contribution of time series analysis to understanding 

geodynamic structure. Ren et al. (2021) noted that the 

trends derived from this research are one of the most 

important quantitative indicators of tectonic activity 

and, moreover, provide critical data for regional stress 

and seismic hazard assessment. 

In this study, horizontal velocity components 

derived from 42 GNSS stations were separated into 
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Fig. 2 Time series for the ONSA station. 

 

their northern and eastern components, and velocity 

estimations were performed through time series 

analysis. A strain analysis was carried out using the 

obtained horizontal velocity components. Velocity 

estimation was performed based on LR and LS-SVM. 

The obtained horizontal components gave the 

necessary data for the comprehension of the spatial 

distribution of the deformation in the region. 

The strain analysis involved computing the 

velocity gradient tensors, from which regional strain 

components were derived. These strain components 

are then further classified into three main types of 

strains: extensional strain, shear strain, and rotation. 

The extensional strain represents the amount of 

compression or extension in the area, while shear 

strain describes directional changes, and rotation 

explains the rotational movements within the area. 

Color scales and vector graphics have been used in this 

visualization of strain distribution in the whole 

visualization process, to get a good mapping of the 

compressive, extensive, and shear zones. 

In addition to this, the mapping of the Strain 

Vector Field was also done based on this strain 

analysis. A map like this will give more information 

about deformation patterns and directions and 

magnitudes of the strain vectors around the region. 

The value of the Strain Vector Field is special in the 

determination of regional geodynamic processes and 

seismic activities. 

This map, obtained because of strain analysis 

based on GNSS data, not only improves our 

understanding of tectonic movements in the region, 

but is also important in determining potential risk 

zones for seismic hazards. 

 

 

 

RESULTS AND DISCUSSION 

Monitoring horizontal velocity is important to 

understand the stability of the coast, which may be 

useful in land-use planning and mitigation strategies 

against coastal erosion and flooding hazards. The 

analyzed and predicted time series are handled using 

two different methods: LR and LS-SVM. 

Daily GNSS observations from the stations were 

processed using GPSY-X software to obtain 

coordinate time series. The velocities and associated 

standard deviations derived from both methods were 

statistically compared using a paired t-test. The results 

indicated that, for 40 out of the 42 stations, there were 

no significant differences between the two methods at 

a 95% confidence level (Table 4). Consequently, the 

LR method was chosen for strain analysis due to its 

computational efficiency and consistency across the 

majority of stations.  

The present analysis shows that the LR method 

is preferred for strain analysis because it provides 

better results for GNSS velocities along the Baltic Sea 

coast. In contrast, LS-SVM can be preferred in cases 

where nonlinear trends are more pronounced. 

Nevertheless, the choice of method directly affects the 

reliability of the results. 

Detailed statistical analysis of the data (Table 4) 

supports the development of regional deformation 

models. According to the t-test results, there is no 

significant difference between the velocity estimates 

obtained from LR and LS-SVM for most stations 

except WARN and MAR6. The eastern component 

shows a significant difference of 0.91 mm/year, which 

is thought to be a result of sensitivity to noise or 

environmental factors. For station MAR6, the 

differences are statistically significant in both the 



GNSS-BASED VELOCITY ESTIMATION USING LINEAR AND MACHINE LEARNING APPROACHES, … 

 

143 

 

 

Table 4 t-test results for station velocities. 

 

Station  
Trend North (mm) Trend East (mm) 

LR LS-SVM 𝒅𝒊𝒇𝒇𝑳𝑹−𝑺𝑽𝑴 LR LS-SVM 𝒅𝒊𝒇𝒇𝑳𝑹−𝑺𝑽𝑴 

0HDG 14.00 ± 0.12 13.76 ± 0.44 0.24 ± 0.46 18.42 ± 0.14 17.9 ± 0.59 0.52 ± 0.61 

0LOD 14.90 ± 0.04 14.06 ± 0.43 0.84 ± 0.43 17.81 ± 0.09 17.09 ± 0.5 0.72 ± 0.51 

0NYB 13.97 ± 0.03 13.43 ± 0.32 0.54 ± 0.32 17.40 ± 0.04 16.57 ± 0.49 0.83 ± 0.49 

0OKC 14.40 ± 0.03 14.47 ± 0.98 0.07 ± 0.98 18.73 ± 0.06 18.42 ± 1.51 0.31 ± 1.51 

0OXE 14.01 ± 0.14 13.47 ± 0.50 0.54 ± 0.52 18.23 ± 0.15 17.28 ± 0.72 0.95 ± 0.74 

0SKL 14.61 ± 0.20 14.02 ± 0.59 0.59 ± 0.62 18.29 ± 0.27 17.42 ± 0.99 0.87 ± 1.03 

0SKN 14.72 ± 0.10 14.09 ± 0.31 0.63 ± 0.33 17.93 ± 0.08 17.22 ± 0.42 0.71 ± 0.43 

0STR 14.67 ± 0.12 14.22 ± 0.29 0.45 ± 0.31 15.81 ± 0.12 15.47 ± 0.41 0.34 ± 0.43 

0VAR 14.99 ± 0.10 14.86 ± 0.48 0.13 ± 0.49 17.61 ± 0.11 17.54 ± 0.59 0.07 ± 0.60 

0VIB 14.52 ± 0.08 14.23 ± 0.52 0.29 ± 0.53 17.01 ± 0.08 16.46 ± 0.58 0.55 ± 0.59 

0YST 14.84 ± 0.04 14.89 ± 0.56 0.05 ± 0.56 18.29 ± 0.04 17.45 ± 0.80 0.84 ± 0.80 

1BAG 14.99 ± 0.19 14.87 ± 0.57 0.12 ± 0.60 16.75 ± 0.17 16.90 ± 0.82 0.15 ± 0.84 

AUDR 12.93 ± 0.07 12.89 ± 0.27 0.04 ± 0.28 20.15 ± 0.12 19.42 ± 0.58 0.73 ± 0.59 

BUDP 15.04 ± 0.06 14.53 ± 0.39 0.51 ± 0.39 17.99 ± 0.09 17.06 ± 0.46 0.93 ± 0.47 

FYHA 15.44 ± 0.25 15.10 ± 0.54 0.34 ± 0.60 17.67 ± 0.32 17.41 ± 0.85 0.26 ± 0.91 

GESR 15.19 ± 0.06 14.52 ± 0.39 0.67 ± 0.39 18.33 ± 0.09 17.45 ± 0.46 0.88 ± 0.47 

HAN1 13.12 ± 0.21 13.13 ± 0.63 0.01 ± 0.66 19.96 ± 0.36 20.15 ± 1.12 0.19 ± 1.18 

HIRS 15.13 ± 0.19 15.14 ± 0.57 0.01 ± 0.60 16.90 ± 0.30 16.99 ± 0.91 0.09 ± 0.96 

HOL2 15.34 ± 0.09 14.68 ± 0.33 0.66 ± 0.34 17.73 ± 0.08 16.97 ± 0.40 0.76 ± 0.41 

KUN0 14.88 ± 0.12 14.22 ± 0.53 0.66 ± 0.54 18.98 ± 0.11 18.00 ± 0.64 0.98 ± 0.65 

KURE 13.24 ± 0.07 13.32 ± 0.32 0.08 ± 0.33 20.02 ± 0.11 19.12 ± 0.52 0.90 ± 0.53 

MAR6 14.17 ± 0.04 13.53 ± 0.27 0.64 ± 0.27 17.64 ± 0.05 16.66 ± 0.36 0.98 ± 0.36 

MUJA 13.55 ± 0.20 13.58 ± 0.66 0.03 ± 0.69 19.66 ± 0.37 19.81 ± 1.59 0.15 ± 1.63 

MUS2 12.65 ± 0.18 12.70 ± 0.51 0.05 ± 0.54 19.69 ± 0.24 19.36 ± 0.83 0.33 ± 0.86 

OLK2 13.44 ± 0.06 13.54 ± 1.48 0.10 ± 1.48 19.01 ± 0.11 18.44 ± 3.09 0.57 ± 3.09 

ONSA 14.83 ± 0.05 14.92 ± 0.35 0.09 ± 0.35 17.21 ± 0.05 16.43 ± 0.41 0.78 ± 0.41 

OSLS 15.24 ± 0.11 15.32 ± 0.43 0.08 ± 0.44 15.83 ± 0.12 15.77 ± 0.44 0.06 ± 0.46 

OUL2 13.14 ± 0.18 13.18 ± 0.54 0.04 ± 0.57 18.92 ± 0.27 19.39 ± 0.87 0.47 ± 0.91 

PYRK 15.02 ± 0.20 15.16 ± 0.67 0.14 ± 0.70 18.44 ± 0.43 18.44 ± 1.07 0.00 ± 1.15 

REDZ 15.36 ± 0.22 15.62 ± 0.63 0.26 ± 0.67 19.19 ± 0.24 18.67 ± 1.01 0.52 ± 1.04 

RUHN 13.65 ± 0.25 13.56 ± 0.70 0.09 ± 0.74 20.46 ± 0.41 20.75 ± 1.23 0.29 ± 1.30 

SAS2 14.57 ± 0.34 15.40 ± 1.28 0.05 ± 1.32 19.31 ± 0.43 19.30 ± 2.86 0.01 ± 2.89 

SKE8 14.23 ± 0.09 14.27 ± 1.48 0.04 ± 1.48 17.18 ± 0.08 16.87 ± 2.19 0.31 ± 2.19 

SMO0 14.84 ± 0.10 14.28 ± 0.33 0.56 ± 0.34 16.46 ± 0.07 15.65 ± 0.41 0.81 ± 0.42 

SUR4 13.47 ± 0.20 13.68 ± 0.41 0.21 ± 0.46 20.02 ± 0.18 19.73 ± 0.74 0.29 ± 0.76 

TEJH 15.03 ± 0.51 15.07 ± 3.06 0.04 ± 3.10 18.38 ± 0.69 18.39 ± 4.18 0.01 ± 4.24 

TGDE 15.47 ± 0.07 15.13 ± 0.28 0.34 ± 0.29 16.04 ± 0.06 16.46 ± 0.30 0.42 ± 0.31 

TUO2 13.16 ± 0.16 13.21 ± 0.57 0.05 ± 0.59 19.52 ± 0.28 19.27 ± 0.90 0.25 ± 0.94 

VAA2 13.48 ± 0.19 13.47 ± 0.55 0.01 ± 0.58 18.42 ± 0.28 18.54 ± 0.87 0.12 ± 0.91 

VERG 12.93 ± 0.22 12.96 ± 0.67 0.03 ± 0.71 20.60 ± 0.32 20.74 ± 1.94 0.14 ± 1.97 

VIS6 13.92 ± 0.09 13.68 ± 0.55 0.24 ± 0.56 18.88 ± 0.12 18.02 ± 0.90 0.86 ± 0.91 

WARN 15.27 ± 0.06 14.58 ± 0.34 0.69 ± 0.35 18.66 ± 0.05 17.75 ± 0.46 0.91 ± 0.46 

 

northern (0.64 mm/year) and eastern (0.98 mm/year) 

components, and LS-SVM estimates lower velocities 

and larger uncertainties than LR.  

No significant difference was found for the 

remaining 40 stations, indicating that LR is sufficient 

for use in strain analysis. LR generally provided lower 

standard deviation values and consistent results. The 

simplicity and interpretability of the LR method made 

it an ideal choice for velocity estimation. Such models 

can then be improved using more advanced machine 

learning methods such as LS-SVM. Hybrid models 

allow LR to make fast predictions, while LS-SVM 

improves accuracy by compensating for nonlinear 

components (Ren and Gao, 2011). The results show 

that at 40 out of 42 stations, LR and LS-SVM give 

statistically consistent velocities, with LR showing 

lower standard deviations. In particular, the largest 

discrepancies are observed at WARN and MAR6 

stations, which is attributed to local deformation 

effects. 

Research shows that using LS-SVM gives better 

results in adverse environmental conditions. For 

example, Dou (2023) has shown that the integrated use 

of LS-SVM and filtering techniques increases GNSS 
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Table 5 Velocities calculated by Altamimi (2020) for stations common with those used in the current study. 

Station 
North velocity (mm) East velocity (mm) 

LR Published Data LR Published Data 

0SKL 14.61 ± 0.20 14.7±0.09 18.29 ± 0.27 18.56±0.07 

0SKN 14.72 ± 0.10 14.77±0.06 17.93 ± 0.08 18.08±0.05 

0YST 14.84 ± 0.04 14.68±0.1 18.29 ± 0.04 18.43±0.08 

BUDP 15.04 ± 0.06 14.94±0.03 17.99 ± 0.09 18.11±0.03 

FYHA 15.44 ± 0.25 15.28±0.11 17.67 ± 0.32 17.8±0.09 

HOL2 15.34 ± 0.09 15.25±0.09 17.73 ± 0.08 18.06±0.07 

SAS2 14.57 ± 0.34 14.71±0.03 19.31 ± 0.43 19.03±0.03 

TEJH 15.03 ± 0.51 14.84±0.28 18.38 ± 0.69 18.7±0.23 

TGDE 15.47 ± 0.07 15.5±0.06 16.04 ± 0.06 16.22±0.04 

WARN 15.27 ± 0.06 15.28±0.05 18.66 ± 0.05 18.64±0.04 

 

positioning accuracy. However, as shown by Dargahi 

et al. (2017), LR remains a good option for horizontal 

velocity determination, especially in the Baltic Sea. 

The t-test shows that there is no statistically significant 

difference between the velocity values obtained from 

LR and the published velocity values. 10 of the 

stations calculated by Altamimi (2023) also gave very 

good agreement between the calculated and estimated 

velocities in the present study. This confirmed the 

reliability of LR (Table 5). 

Kall et al. (2021) calculated the velocities of 

stations AUDR, KURE, and SUR4 using the Precise 

Point Positioning (PPP) method in a study conducted 

in Estonia. The results of the current study are 

consistent with the results of the aforementioned study 

and confirm the velocity estimate for these stations. 

Similarly, the velocities obtained by Lahtinen et al. 

(2021) in their studies in the Scandinavian and Baltic 

regions are also consistent with the findings of the 

current study (calculated radially). This compatibility 

has strengthened the reliability of the analyses to be 

made using these methods in regional tectonic studies. 

The reliability and simplicity of the LR method 

strengthens its position as a preferred approach for 

strain analysis based on velocities estimated from 

GNSS. On the other hand, LS-SVM is more successful 

in extracting nonlinear patterns. The integration of 

both methods will provide more reliable results. Thus, 

the use of LR and LS-SVM with a hybrid approach can 

increase the accuracy and reliability of stress estimates 

by capturing both linear and nonlinear patterns in 

GNSS velocity estimation. Strain analysis obtained 

from GNSS horizontal velocities is an important tool 

in the fields of geodesy and tectonics and can provide 

important information about crustal deformation and 

seismic hazard. The accuracy of estimating stress 

ratios plays a vital role in assessing seismic risks by 

understanding plate interactions. The colorized strain 

share map visually separates compression (negative 

values) and extension (positive values) zones. This 

map shows the spatial distribution of shear stress 

around the Baltic Sea. Zones of intense shear 

deformation can be associated with fault 

systems/geological structures (Fig. 3). A detailed 

analysis of these zones can identify potential zones of 

tectonic stress accumulation characterized by high 

shear stress values. 

The stress vector map indicates the direction and 

intensity of crustal deformation in the specified region. 

The direction of these vectors reflects the influence of 

the dominant tectonic forces; the Baltic region shows 

primarily north-south and east-west directional 

changes. The resulting pattern indicates active 

extensional or compressional tectonic movements in 

the region. Furthermore, the map highlights areas 

characterized by high stress vector magnitudes with 

localized stress accumulation and tectonic activity 

potential, and is associated with significant crustal 

deformation, especially evident along the coastal areas 

(see Fig. 4). 

The analysis of strain rates (Exy) across the 

region, especially in relation to the locations of GNSS 

stations, provides valuable information about the 

tectonic processes of the region. The areas 

surrounding the stations MUS2, SUR4, PYRK and 

HAN1 are characterized by strain. The causes of this 

extensional behavior may be related to regional 

tectonic extension associated with crustal processes 

that stretch the Earth's crust (Yadav et al., 2021; Nucci, 

2024). GNSS data from this station provide critical 

information for identifying current deformation 

mechanisms that highlight variability in the region's 

strain patterns and define tectonic forcing (Masson et 

al., 2019; Pina-Valdes et al., 2022). 

In contrast, the areas close to the OSKL, KUN0, 

WARN, and SAS2 stations and the area between 

PYRK and TUO2 exhibit dominant compressional 

strain characteristics. This compression may indicate 

crustal shortening caused by local stress transfer 

mechanisms prevalent in the region (Métois et al., 

2015; Morsut et al., 2017). The Leba Ridge-Riga-

Pskov Fault Zone is identified as an important 

geological structure whose historical activity 

contributes to regional stress dynamics and influences 
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Fig. 3 This map shows the strain rate of the study area. The warmer colors on the map show higher levels of 

strain, while cooler colors show lower levels. The map shows where the sea is expanding and 

compressing. 

 

stress distributions (Serpelloni et al., 2022; Melgar and 

Hayes, 2019).   

Such interactions between the fault zone and 

crustal material surrounding it yield complicated strain 

patterns, which form a necessary background in 

understanding tectonic behavior of the area concerned. 

Also, worth mentioning are the sharp changes of strain 

around such stations as MUS2, SUR4, and PYRK-

most probably an immediate reflection of stress 

accumulation-release processes related to activity in 

this fault zone. The GNSS data provides a means of 

quantifying these strain variations so that the 

associated implications for seismic hazard and 

tectonic stability can be estimated. Richter et al. 

(2014) examined the strain regimes in detail and 

focused on the effect of the Leba Ridge-Riga-Pskov 

Fault Zone in particular. This study makes 

a significant contribution to the full understanding of 

strain accumulation and transfer mechanisms. 

Integration of GNSS data with strain analysis has been 

shown to improve our understanding of tectonic 

processes as well as to help predict seismic events 

associated with these strain distributions (Li et al., 

2022). 

The Eastern Baltic region includes Saint 

Petersburg, Pskov, parts of the Novgorod and 

Kaliningrad regions of Russia, as well as Estonia, 

Latvia, Lithuania, and the southeastern parts of the 
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Fig. 4 Strain vector field map of the study area. Arrows show the direction and size of strain, with bigger arrows 

showing higher strain rates. 

 

Baltic Sea and the Gulf of Finland. Although this 

region has traditionally been considered an area of low 

seismic activity, the Osmussaar earthquake of 

magnitude 4.7 on 25 October 1976 challenged this 

perception (Nikulins and Assinovskaya, 2018). 

Subsequently, the Kaliningrad earthquakes of 

magnitudes 5.0 and 5.2 on 21 September 2004 

demonstrated that even moderate earthquakes can 

cause considerable damage (Nikulins and 

Assinovskaya, 2018). Large earthquakes in stable 

continental regions (SCRs) have shown that 

significant elastic stress can be released in geological 

structures located far from known fault zones. As 

a result, SCR earthquakes can also occur in areas with 

no previous seismicity and no visible surface 

expression of stress accumulation (Calais et al., 2016). 

Consequently, continuous monitoring and 

analysis of GNSS data is important to improve our 

knowledge of hazards caused by regional 

geodynamics. Many studies have shown the 

importance of strain rates based on GNSS data in 

seismic hazard assessment. For example, Gülal et al. 

(2014) derived a relationship between geodetic strain 

rates and seismicity that can be used to identify areas 
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with high seismic hazard. On the other hand, Hamling 

et al. (2022) provide a broad perspective on how 

crustal deformation adapts to tectonic forces through 

the analysis of long-term geological strain rates in 

New Zealand using GNSS data. 

Spatial distribution of the GNSS station is very 

important for an accurate strain rate calculation. As 

was pointed out by Araszkiewicz et al. (2016), the 

sensitivity of the pattern of strain rates to GNSS station 

distribution underlines the necessity of a dense 

network, especially in such a geologically complicated 

region as the Baltic Sea, for precise representation of 

deformation dynamics. Furthermore, Karabil et al. 

(2018) illustrated that GNSS velocities are able to 

express interannual and seasonal strain variability, 

relating regional strain patterns to sea-level changes 

between the Baltic and North Sea. 

These advanced GNSS horizontal velocity 

derivation methods, such as LS and LS-SVM 

techniques, produce strain analyses with important 

spatial variations of deformation characteristics. Such 

approaches have generated strain vector maps of 

extension and compression that are in good agreement 

with regional tectonic dynamics. High-strain zones, 

which might be related to subsidence or localized 

stress, are of particular interest in view of coastal 

hazards. 

The integration of the GNSS velocity data with 

the most progressive analytical methods increases the 

reliability of strain analyses. For instance, Delen et al., 

(2023) discussed the advantages of integrating GNSS 

measurements with InSAR data to get better ground 

deformation results. A multi-technique approach 

provides a better insight into the strain distribution and 

its implications for regional tectonics. 

 
CONCLUSIONS 

This paper performs an extensive strain analysis 

supported by the calculation of horizontal velocities 

based on data from 42 GNSS stations distributed along 

the coast of the Baltic Sea and presents some important 

findings that will contribute to a better understanding 

of geodynamic and tectonic processes in this area of 

research. 

It was found that both methods gave similar 

results for velocity estimation in 40 out of 42 stations, 

and LR provided more reliable results with lower 

standard deviations than LS-SVM in 2 stations. This 

finding shows that LR is sufficient for velocity 

estimation in the Baltic Sea region. 

Strain analysis revealed crustal deformation 

patterns in the study area. Significant extensional 

stress regions were detected near stations MUS2, 

SUR4, PYRK and HAN1, indicating active crustal 

tension in these regions. On the other hand, the 

presence of compressive stresses was detected near the 

stations OSKL, KUN0, WARN and SAS2 and in the 

region between PYRK and TUO2. It is considered that 

these stress distributions are affected by the Leba 

Ridge-Riga-Pskov Fault Zone and that this has an 

important role in regional tectonics. 

The stress vector field analysis shows dominant 

north-south and east-west oriented deformation 

patterns with significantly varying magnitudes 

throughout the region. Changes in the strain direction 

provide insight into stress accumulation processes and 

potential seismic hazard zones along the Baltic Sea 

coast. 

The obtained results are in good agreement with 

the velocity estimates of the studies conducted in the 

region and the velocity estimates of the current study 

at the common stations, confirming the reliability of 

our methodology. The consistency between the studies 

strengthens confidence in using strain analyses based 

on GNSS velocities to understand regional tectonic 

processes. 

 
THE RESULTS OF THIS STUDY 

1. The effectiveness of LR in velocity estimation in 

this region has been proven and shows that simple 

linear methods can be used for routine monitoring 

of crustal deformation, providing high accuracy 

and low-cost solutions with simpler calculations. 

2. Stress patterns determined around the Leba 

Ridge-Riga-Pskov Fault Zone indicate potential 

seismic activity in this region and are necessary to 

monitor for infrastructure risk assessment. 

3. In urban planning, a coastal management 

approach that considers the spatial distribution of 
stress rates and the impact of areas showing 
crustal deformation is important. 

 

Future research should focus on integrating 

GNSS horizontal velocity data with InSAR-derived 

surface deformation measurements to increase the 

resolution of stress analysis, thus facilitating better 

identification of local deformation patterns, especially 

in regions with limited GNSS station coverage. It is 

also proposed to develop models that take into account 

the relationship between glacial isostatic adjustment 

(GIA) and tectonic processes in the region. This will 

contribute to our understanding of regional 

geodynamics in the Baltic Sea and provide a basis for 

crustal deformation processes, seismic hazard 

assessment and sustainable coastal management 

strategies. 
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