
3 

Acta Geodyn. Geomater., Vol. 22, No. 2 (218), 213–224, 2025 

DOI: 10.13168/AGG.2025.0014 
 

journal homepage: https://www.irsm.cas.cz/acta 
   
 

ORIGINAL PAPER 

 

 

 

 

 

 

 

 

 

 
 
 

 
 

 

 

 
 

 

EVALUATION OF THE RELATIONSHIP BETWEEN THE SURFACE HARDNESS OF 

MAGMATIC BUILDING BLOCKS AND UNIAXIAL COMPRESSIVE STRENGTH VALUES 

WITH REGRESSION ANALYSIS AND ARTIFICIAL NEURAL NETWORKS 

İsmail İNCE 1), Mehmet Can BALCI 2), *, Mücahid BARSTUĞAN 3),  

Mustafa FENER 4) and Ali BOZDAĞ 5) 

 

 

1) Department of Geological Engineering, Konya Technical University, Konya, Turkey 
2) Department of Civil Engineering, Batman University, Batman, Turkey 

3) Department of Electrical and Electronics Engineering, Konya Technical University, Konya, Turkey 
4) Department of Civil Engineering, Ankara University, Ankara, Turkey 

5) Department of Geological Engineering, Konya Technical University, Konya, Turkey 
 

 

*Corresponding author‘s e-mail: mehmetcan.balci@batman.edu.tr 
 

 

 

 
 

 
ABSTRACT 
 

 

Uniaxial compressive strength (UCS) values of rocks are the most important input parameter in 

rock mechanics and engineering applications. This parameter can be determined by laboratory 

tests and indirect methods. This study aimed to predict the UCS value with two different 
non- destructive testing techniques. To this end, the uniaxial compressive strength (UCS) and the 

values of Leeb hardness (HL) with low application energy and Schmidt hammer rebound hardness 

(SHR) with high application energy, which are among non-destructive testing techniques, of 
95 different magmatic rocks (plutonic, volcanic, and pyroclastic) were determined. Simple 

regression (SR), multiple regression (MR), and artificial neural network (ANN) methods were 

employed to predict the UCS value. The models obtained using these methods were compared 

with each other. It was revealed that the model developed by ANN had the highest correlation 

number. 
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1. INTRODUCTION 

Uniaxial compressive strength (UCS) of rocks is 

an important input parameter for rock mass 

classifications and intact rock failure criteria in 

engineering projects (slope stability, tunneling, 

excavation, etc.). The UCS values are determined by 

the uniaxial compressive strength test performed on 

core samples taken from rocks in the field and/or core 

and cube samples prepared in the laboratory. 

Furthermore, this parameter, which is used for many 

purposes, can be determined with the help of indirect 

(point load strength index, Schmidt hammer rebound 

value, etc.) and empirical approaches. Determining the 

UCS value in situ and in the laboratory using 

non- destructive techniques is advantageous in many 

ways (reduces the time and cost of sample preparation 

and laboratory testing). While the SHR value, one of 

the surface hardness tests, is commonly used for 

indirect determination of the UCS value (Kahraman, 

2001; Aydin and Basu, 2005; Sabatakakis et al., 2008; 

Wang and Wan, 2019), the Leeb hardness value has 

recently started to be used (Çelik et al., 2020; İnce and 

Bozdağ, 2021). The relationship between UCS and 

SHR has been investigated by many researchers using 

SR (Tugrul and Zarif, 1999; Katz et al., 2000; Aydin 

and Basu, 2005; Fener et al., 2005; Kılıç and Teymen, 

2008; Gupta, 2009; Hebib et al., 2017; Kong and 

Shang, 2018), MR (Hebib et al., 2017), and artificial 

intelligence applications (artificial neural network, 

adaptive-network-based Fuzzy inference system, gene 

expression programming, etc.) (Heidari et al., 2018; 

Barzegar et al., 2020; Teymen and Mengüç, 2020; Li 

et al., 2020; Le et al., 2022). In their study on granitic 

rocks, Tuğrul and Zarif (1999) indicated a linear 

relationship between UCS and SHR. In their study 

conducted using 19 different rock samples, Kılıç and 

Teymen (2008) found a high correlation coefficient 

(R2: 0.935) between the UCS and SHR values. Gupta 

(2009) investigated the relationships between the UCS 

values and SHR of the rocks (granite, gneiss, quartzite, 

and marble) in the Satluj Valley by SR analysis and 

found the correlation coefficient as 0.91 in granite 

rocks. In addition to the SHR value, other index 

(porosity, P-wave velocity) and strength parameters 

(point load strength index) were used as input 

parameters to predict the UCS value in MR analysis 

(Dehghan et al., 2010; Armaghani et al., 2016). Many 

researchers have used index-strength (dry unit weight, 

porosity, P-wave velocity, Brazilian tensile strength, 

point load strength index, slake durability index) 

values as input parameters to predict the UCS value 

and made predictions with a high correlation value 

through artificial intelligence applications (Gokceoglu 

and Zorlu, 2004; Yilmaz and Yuksek, 2008; Dehghan 
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et al., 2010; Jahanbakhshi et al., 2011; Yesiloglu et al., 

2013; Madhubabu et al., 2016; Jahed et al., 2018; 

Heidari et al., 2018; Barzegar et al., 2020; Ceryan and 

Samui, 2020; Li et al., 2020; Teymen and Mengüç, 

2020; Le et al., 2022; Yesiloglu and Gokceoglu, 

2022). 

There are more limited studies on predicting the 

UCS value using the Leeb hardness value. In these 

studies, the UCS value was predicted through SR 

(Verwaal and Mulder, 1993; Aoki and Matsukura, 

2008; Asiri et al., 2016; Su and Momayez, 2017; 

Corkum et al., 2018; Çelik and Çobanoğlu, 2019; 

Yilmaz Güneş and Goktan, 2019; Yuksek, 2019; 

Aldeeky et al., 2020; Çelik et al., 2020; İnce and 

Bozdağ, 2021), MR (Alvarez-Grima and Babuška, 

1999; Gomez-Heras et al., 2020; Benavente et al., 

2021) and artificial intelligence applications 

(Meulenkamp and Grima, 1999; Gomez-Heras et al., 

2020) According to Benavente et al. (2021), Leeb 

hardness is one of the most important variables of 

regressions, and they indicated that the correlation 

coefficient increased when it was added to multiple 

linear equations. In their study, Alvarez Grima and 

Babuška (1999) developed a fuzzy prediction model 

using HL, porosity, and density values as input 

parameters to predict the UCS value. Meulenkamp and 

Grima (1999) predicted the UCS value of rocks 

through multiple regression analysis and neural 

networks methods using rock properties (dry density, 

porosity, grain size, rock type, and Leeb hardness). 

In this study, the UCS values of rocks were 

predicted by SR, MR, and neural networks methods 

using the hardness values of magmatic rocks (95 

samples) obtained by high (SHR) and low energy (HL) 

hardness devices. 

 
2. MATERIALS AND METHODS 

For this study, 95 samples of magmatic rocks 

(plutonic, volcanic, and pyroclastic) were collected 

from the quarries operated in different locations in 

Anatolia. Table 1 contains the location and rock types 

of samples used in the study. Homogeneous rock 

blocks of 20 × 30 × 30 cm in size were collected from 

the quarries operated for experimental studies. The test 

samples were prepared in line with the relevant 

standards to determine the UCS and surface hardness 

(SHR and HL) properties (TS EN-1936, 2010). 

UCS tests were performed on 7x7x7 cm cubic 

samples in accordance with the standard 

recommended in TS EN-1926 (2007). The loading rate 

was applied as 1.0 ± 0.5 MPa/s during the test. This 

test was conducted five times for each rock, and the 

average of the obtained values was considered the 

UCS value of the sample.  

The Schmidt hammer hardness test of the 

samples was performed in line with the standard 

recommended by ASTM D5873 (2013). An L-type 

hammer with an impact energy of 0.735 Nm was used 

in this test. The hammer was applied at right angles to 

the rock block surface to avoid guiding corrections. 

Ten measurements were made on each rock sample 

and averaged to determine the SHR value. Then, the 

SHR value of the samples was determined by 

subtracting the rebound numbers, which deviated 

more than seven units from the average, and re-

averaging the values of the remaining ones. 

There is no universal standard of the Leeb 

hardness test for rock materials. This test was carried 

out on cube samples with a side length of 7 cm, as 

suggested by İnce and Bozdağ (2021). In the 

measurements, the D-probe of the Insize ISH-PHB 

device with an impact energy of 11 Nmm was applied 

perpendicular to the sample surface. First, the device 

was calibrated. Then, the measurements were made at 

20 different impact points evenly distributed on the 

sample’s surface. The arithmetic mean of the 

measured values was determined as the HL value for 

the sample. 

Volcanic rocks may present anisotropic 

properties in relation to flow textures and layering in 

lava flows, and pyroclastic rocks may show 

anisotropic characteristics in accordance with 

layering, the directional arrangement of fragments, 

and fiamme textures. In relation to these conditions, 

while performing the tests (SHR, HL, and UCS) on 

anisotropic rocks, measurements were carried out in 

the direction perpendicular to the anisotropy planes.  

In the present study, the Statistical Package for 

the Social Sciences version 21 (SPSS Inc.) program 

was used in the SR and MR analyses. The validity of 

the developed regression models (SR and MR) was 

checked by using T test and F-test. While the T test is 

used to check whether each independent variable is 

significant in the model, the F-test is used to determine 

whether the overall regression model is statistically 

significant. A high value of the F-test indicates that at 

least one independent variable affects the dependent 

variable. In the models obtained in both analyses, the 

p-value was first required to be less than 0.05 for 

a significance level of 5 % (α = 0.05). The statistical 

significance of the regression model increases when 

the F-test value is high, and the P-value is very low. 

Then, among the models meeting this condition, the 

model with the highest correlation coefficient (R2) was 

preferred.  

An artificial neural network (ANN) is a system 

that can learn by imitating the human brain and 

produce new results from what it has learned. ANN is 

a structure that is inspired by the brain cells and has an 

input layer, hidden layers, and an output layer. Studies 

in which ANNs are used most frequently are 

classification and prediction studies. Complex models 

can be developed using nonlinear data (input and 

output) in prediction studies. In this study, SHR and 

HL values were used as input data, and UCS was used 

as output data to develop prediction models. Figure 1 

shows the structure of the ANN model employed in 

the current study.  

The training algorithms (trainbr, trainbfg, 

trainscg, traincgb, traincgf) refer to different 



EVALUATION OF THE RELATIONSHIP BETWEEN THE SURFACE HARDNESS OF … 

 

209 

  

Table 1 The location and type of the rock samples. 

 
Sample Location Rock 

lithologies 

Sample Location Rock 

lithologies 

1 Erkilet-1/Kayseri Volcanic 49 Unknow 4 Plutonic 

2 Kayseri Volcanic 50 Unknow 5 Plutonic 

3 Sivrihisar-1/Eskişehir Volcanic 51 Unknow 6 Plutonic 

4 Isparta Volcanic 52 Aksaray Plutonic 

5 Sille 1/Konya Volcanic 53 Kırşehir Plutonic 

6 Adakale 1/Konya Volcanic 54 Unknow 7 Plutonic 

7 Adakale 2/Konya Volcanic 55 Unknow 8 Plutonic 

8 Madenşehri 1/Karaman Volcanic 56 Ulaş/Kırıkkale Plutonic 

9 Madenşehri 2/Karaman Volcanic 57 Kırşehir Plutonic 

10 Niğde Volcanic 58 Unknow 9 Plutonic 

11 Beyşehir/Konya Volcanic 59 Unknow 10 Plutonic 

12 Fasıllar/Konya Volcanic 60 Unknow 11 Plutonic 

13 Çankırı Volcanic 61 Kayseri-1 Pyroclastic 

14 Sille 2/Konya Volcanic 62 Karayazı-1/Nevşehir Pyroclastic 

15 Eskişehir Volcanic 63 Kayseri-1 Pyroclastic 

16 Kulu/Konya Volcanic 64 Kayseri-1 Pyroclastic 

17 Gölbaşı 1/Ankara Volcanic 65 Karayazı-2/Nevşehir Pyroclastic 

18 Gölbaşı 2/Ankara Volcanic 66 Demirciler/Aksaray Pyroclastic 

19 Kayseri Volcanic 67 Selime/Aksaray Pyroclastic 

20 İscehisar/Afyonkarahisar Volcanic 68 Gümüşler/Niğde Pyroclastic 

21 Sincan/Ankara Volcanic 69 Koçcağız/Kayseri Pyroclastic 

22 Sivrihisar 1/Eskişehir Volcanic 70 Kuruköprü/Konya Pyroclastic 

23 Sivrihisar 2/Eskişehir Volcanic 71 Emmiler/Kayseri Pyroclastic 

24 Kulu 1/Konya Volcanic 72 Tomarza/Kayseri Pyroclastic 

25 Kulu 2/Konya Volcanic 73 Karayazı/Nevşehir Pyroclastic 

26 Yunus Emre/Manisa Volcanic 74 Ahlat/Bitlis Pyroclastic 

27 Çayırlı/Ankara Volcanic 75 Karayazı/Nevşehir Pyroclastic 

28 Yunt/Manisa Volcanic 76 Karayazı/Nevşehir Pyroclastic 

29 İnsuyu/Kayseri Volcanic 77 Kayseri Pyroclastic 

30 Seydişehir/Konya Volcanic 78 Mimarsınan/Kayseri Pyroclastic 

31 Erzurum Volcanic 79 Turanlar/Kayseri Pyroclastic 

32 Gölbaşı 3/Ankara Volcanic 80 Gökyurt/Konya Pyroclastic 

33 Erkilet/Kayseri Volcanic 81 Kayseri Pyroclastic 

34 Akören 1/Konya Volcanic 82 Aksaray Pyroclastic 

35 Akören 2/Konya Volcanic 83 Kızılören/Konya Pyroclastic 

36 Yükselen/Konya Volcanic 84 Ardıçlı/Konya Pyroclastic 

37 Sağlık/Konya Volcanic 85 Afyon Pyroclastic 

38 Erzurum Volcanic 86 Sille/Konya Pyroclastic 

39 Kaman/Kırşehir Plutonic 87 Ardıçlı/Konya Pyroclastic 

40 Unknow 1 Plutonic 88 Küçükmuhsine/Konya Pyroclastic 

41 Ispir/Erzurum Plutonic 89 Gülşehir/Nevşehir Pyroclastic 

42 Unknow 2 Plutonic 90 Nevşehir Pyroclastic 

43 Bergama/İzmir Plutonic 91 Sadıklar/Konya Pyroclastic 

44 Unknow 3 Plutonic 92 Akören/Konya Pyroclastic 

45 Aksaray Plutonic 93 Kızılören/Konya Pyroclastic 

46 Çanakkale Plutonic 94 Kilistra/Konya Pyroclastic 

47 Kırıkkale Plutonic 95 Karayazı/Nevşehir Pyroclastic 

48 Yaylak/Aksaray Plutonic    

 
optimization algorithms used in training artificial 

neural networks. They are commonly utilized in 

MATLAB’s Neural Network Toolbox. Trainbr 

(Bayesian Regularization Backpropagation) uses 

Bayesian regularization to optimize the 

backpropagation algorithm. This method prevents 

overfitting by controlling the magnitude of weights, 

and performs well on small datasets and enhances 

generalization ability. Trainbfg (BFGS Quasi-Newton 

Backpropagation) is based on the Broyden-Fletcher-

Goldfarb-Shanno (BFGS) optimization method and 

uses an approximation of the Hessian matrix for faster 

convergence. Trainscg (Scaled Conjugate Gradient 

Backpropagation) implements the scaled conjugate 

gradient method for backpropagation. This method 

does not require second-order derivative information. 
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Fig. 1 The structure of the artificial neural network of the developed model. 

 

Table 2 Descriptive statistics of rocks used in the analysis. 

 
Variables Data Minimum Maximum Mean Std. deviation Variance   

UCS -MPa 95 6.25 194.60 74.02 48.87 2387.96 

SHR 95 12.09 65.30 42.67 12.09 146.28 

HL 95 220.00 895.40 666.60 194.66 37893.24 

 
It is more efficient for large datasets. Traincgb 

(Conjugate Gradient Backpropagation with 

Powell- Beale Restarts) uses the conjugate gradient 

method with Powell-Beale restarts. This method 

achieves faster convergence but may not be efficient 

for very large datasets. Traincgf (Fletcher-Reeves 

Conjugate Gradient Backpropagation) is based on the 

Fletcher-Reeves conjugate gradient method. It 

minimizes memory usage but may experience 

performance issues with large networks. 

In this study, poslin (Positive Linear Transfer 

Function - Similar to ReLU) and tansig (Hyperbolic 

Tangent Sigmoid Function - Tanh) were used as 

activation functions. Poslin returns zero for negative 

inputs and the same value for positive inputs. It works 

similarly to the ReLU activation function and is often 

used in deep neural networks. Tansig constrains the 

output to the [−1, 1] range. This method processes 

negative and positive values separately, making it 

useful for symmetric problems, and generally provides 

better generalization compared to the sigmoid 

function. 

 
3. RESULTS AND DISCUSSION 

3.1. STRENGTH AND SURFACE HARDNESS 

PROPERTIES OF STONE SAMPLES 

Table 2 contains the statistical data on the UCS, 

SHR, and HL properties obtained from the rocks used 

in the study. The mean and standard deviation values 

of SHR, HL, and UCS values of each rock are given 

in Table 3. In the surface hardness values of the 

samples, the SHR value was between 12.09 and 65.30, 

whereas the HL value was between 220.00 and 895.40 

(Figs. 2a-2b). The UCS value of rocks varied between 

6.25 MPa and 194.60 MPA (Fig. 2c). Among the 

igneous rocks used in the study, anisotropy was 

observed in samples number 28, 74, and 80. The 

measurements in these samples were carried out in the 

direction perpendicular to the anisotropy plane, and 

the data obtained were used in the modeling. In 

addition, the standard deviation values of UCS, SHR, 

and HL values in these samples were also determined 

to be higher than the general trend. It should be kept in 

mind that this situation may affect the success of the 

models predicting the UCS value of rocks showing the 

anisotropy characteristics. 

 
3.2. DETERMINATION OF EMPIRICAL EQUATIONS 

In this study, the relationships between the UCS 

values of rocks and their surface hardness (SHR and 

HL) were investigated by SR, MR, and ANN methods. 

3.2.1. SIMPLE REGRESSION ANALYSIS (SR) 

The correlations between the surface hardness 

properties (SHR and HL) and UCS values of rock 

samples were investigated by simple regression 

(linear, logarithmic, power, and exponential) analyses 

(Table 4). The best correlations between the UCS 

values and the surface hardness of samples are 

presented in Figure 3. The best correlation coefficient 

between UCS and SHR was acquired from the power 

function with 0.789. The correlation between UCS and 
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Table 3 UCS, SHR and HL values of rock samples (mean value ± standard deviation).  

 
Sample 

No 

SHR HL UCS 

MPa 

Sample 

No 

SHR HL UCS 

MPa 

1 60.24±3.5 781.53±20.1 140.38±5.3 49 54.75±2.2 887.33±9.3 176.00±10.2 

2 52.30±2.6 800.93±18.9 111.22±4.6 50 58.34±2.7 880.67±7.8 106.40±9.7 

3 48.70±1.9 713.93±15.3 116.33±3.8 51 44.38±1.7 895.40±10.2 96.25±8.9 

4 56.29±2.2 809.00±14.3 144.01±7.8 52 63.05±1.8 868.67±5.6 139.25±9.8 

5 34.87±1.8 651.67±12.7 63.24±4.6 53 57.15±1.5 871.75±7.9 85.75±7.6 

6 36.75±2.2 706.67±15.2 95.39±5.5 54 53.20±1.2 880.00±8.7 92.37±7.9 

7 39.28±2.4 772.33±10.2 66.69±3.8 55 57.20±1.8 873.75±6.9 140.31±10.2 

8 28.95±1.4 467.33±15.3 21.36±1.9 56 52.78±2.8 867.00±10.2 138.74±13.1 

9 31.05±1.5 553.33±12.7 30.79±2.3 57 56.40±1.9 824.50±7.9 154.32±10.2 

10 29.45±1.4 575.67±15.0 22.15±1.5 58 52.64±2.0 848.00±11.2 120.67±9.9 

11 47.89±1.7 714.00±22.1 100.56±9.3 59 54.31±1.9 889.67±9.6 132.13±10.3 

12 43.45±1.6 743.33±17.9 65.20±2.9 60 53.17±1.4 873.00±10.3 120.65±5.9 

13 46.84±1.3 759.67±14.6 98.40±4.6 61 30.05±1.4 451.93±14.3 15.09±4.6 

14 38.10±1.5 784.00±17.2 60.60±4.9 62 44.18±1.9 501.27±17.6 30.96±3.9 

15 36.78±1.2 769.00±19.2 78.20±3.8 63 44.39±2.2 610.33±15.3 40.32±8.6 

16 38.79±1.8 791.00±10.1 59.88±4.5 64 22.84±2.6 383.53±16.3 20.26±4.6 

17 34.28±2.2 680.33±12.3 67.59±5.6 65 20.56±1.2 300.33±17.6 9.90±1.8 

18 42.50±2.0 772.33±14.6 64.94±6.3 66 25.50±1.5 580.33±17.5 48.63±2.2 

19 38.75±1.7 768.33±18.3 61.30±5.6 67 22.10±1.6 363.67±13.5 10.55±1.5 

20 35.70±1.9 759.00±12.1 63.85±4.5 68 14.80±1.8 258.00±20.1 7.57±1.0 

21 41.50±1.8 755.67±10.3 50.68±5.2 69 42.80±2.4 399.67±19.3 31.57±2.9 

22 35.90±1.4 674.00±14.5 85.35±5.6 70 49.60±2.7 508.33±14.3 48.38±3.1 

23 38.60±1.8 735.67±16.3 71.16±7.1 71 48.80±2.5 488.67±17.6 36.64±2.8 

24 42.30±1.4 748.67±16.8 83.63±6.9 72 38.90±1.8 247.33±14.2 27.27±1.8 

25 46.30±1.9 799.00±17.6 83.11±4.6 73 30.50±1.3 311.67±15.7 16.86±1.0 

26 42.20±1.7 744.00±12.1 91.68±5.9 74 21.20±3.4 324.67±36.9 9.52±1.9 

27 34.20±1.4 673.33±19.2 48.13±3.9 75 29.20±1.6 311.67±20.1 24.51±1.5 

28 39.50±5.0 768.67±25.6 89.60±7.6 76 31.30±1.9 321.67±19.8 15.68±1.0 

29 45.20±1.4 823.00±19.2 78.60±4.6 77 46.25±2.2 720.00±11.4 48.76±2.2 

30 46.50±1.9 722.67±11.3 68.97±3.9 78 39.00±2.0 648.67±13.6 32.00±1.0 

31 65.30±2.7 892.33±14.6 129.39±7.5 79 47.26±2.1 745.00±14.3 59.71±1.5 

32 46.40±2.4 769.67±17.9 100.47±5.5 80 23.50±1.9 378.67±18.3 12.30±2.7 

33 61.50±2.2 820.00±14.3 112.79±3.9 81 42.30±3.7 703.33±27.3 42.13±1.5 

34 50.40±1.7 795.00±19.3 75.56±4.5 82 34.89±1.8 547.67±15.6 39.62±1.6 

35 52.70±1.3 810.00±17.4 80.20±6.6 83 16.70±1.4 220.00±14.3 11.02±0.9 

36 41.20±1.5 732.67±16.3 69.80±3.5 84 24.30±1.1 365.00±18.6 13.78±1.1 

37 49.60±1.4 693.33±14.5 60.60±2.9 85 32.10±1.8 516.00±18.2 18.95±1.4 

38 58.25±2.2 754.00±19.3 66.41±4.5 86 27.90±2.1 357.33±17.6 30.70±2.0 

39 54.00±2.6 802.27±7.9 135.4±5.5 87 36.30±1.3 552.67±17.6 32.21±1.8 

40 61.67±2.7 872.27±6.9 161.25±4.3 88 33.30±1.9 550.67±15.6 29.78±1.9 

41 56.00±1.4 889.4±10.2 167.17±3.9 89 54.30±2.0 800.00±11.6 96.70±7.4 

42 54.68±1.6 881.47±7.9 158.96±6.9 90 37.10±1.8 512.33±14.6 39.10±3.0 

43 52.24±1.4 825.13±8.3 167.05±8.9 91 33.81±1.4 460.33±19.3 17.78±1.2 

44 56.35±1.9 842.00±8.0 123.46±7.7 92 34.80±1.3 525.25±15.3 25.34±1.1 

45 62.42±1.7 870.00±7.5 153.80±4.9 93 36.25±1.9 540.75±17.3 30.18±1.0 

46 58.24±2.6 861.00±6.9 155.40±5.9 94 18.20±1.1 366.67±13.9 6.25±0.7 

47 61.70±2.7 874.60±7.9 194.60±9.8 95 31.60±1.7 298.33±22.9 12.36±0.8 

48 53.60±2.1 892.67±7.5 141.56±3.9     

 

Table 4 Simple regression analysis results between USC and surface hardness values. 

 
 R2 

Surface Hardness Linear Power Exponential Logarithmic 

SHR 0.717 0.789 0.771 0.646 

HL 0.711 0.816 0.858 0.622 
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Fig. 2 Histograms of UCS and surface hardness properties: a) SHR, b) HL, c) UCS. 

 

Fig. 3 Relationships between the UCS values of the samples and their surface hardness: a) SHR vs UCS,  

b) HL vs UCS, c) Estimated UCS from SHR value and measured UCS relationship,  

d) Estimated UCS from HL value and measured UCS relationship. 
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Table 5 ANOVA values between USC and surface hardness values. 

 
Surface Hardness R2 r T test F-test P<0.05 

SHR 0.789 0.888 18.648 347.737 0.000 

HL 0.858 0.926 23.663 559.928 0.000 

 

Table 6 Results of MR.  

 
Independent variables Equation R2 F-test P 

SHR, HL 1.908SHR + 0.114HL - 83.083 0.781 164.346 0.000 

 

Fig. 4 The relationship between the measured UCS and the UCS predicted from the MR analysis. 

 

HL was obtained with the exponential function, and 

the R2 value was found to be 0.858.  

The validity of the equations acquired from 

the simple regression analysis was checked by the 

analysis of variance, and the results are presented in 

Table 5. In the SR models that were developed, the 

highest F-test value and R2 value were determined in 

the relationship with HL. A high F value in SR 

analysis is an important sign that the model is 

appropriate and reliable. The relationship between the 

UCS value predicted from both HL and SHR simple 

regression models and the measured UCS values is 

presented in Figures 3c-3d. Upon examining these 

graphs, it was seen that the models developed moved 

away from the y=x line as the strength values of rocks 

increased, indicating that the success of the models 

decreased for rocks with high strength. 

 
3.2.2. MULTIPLE REGRESSION ANALYSIS (MR) 

A model predicting the UCS values of rocks 

through SHR and HL independent variables in the MR 

analysis was developed in the current study (Table 6). 

The correlation coefficient value of this model was 

0.781, while the F-test value of the model was 

(164.346). A high F-test value indicates the predictive 

success of the selected independent variables. 

However, the correlation coefficient of the model 

developed through MR was lower than the correlation 

coefficient of the models obtained from SR. The 

reason for this was associated with the low linear 

correlation between the UCS values of rocks and their 

surface hardness. Furthermore, the MR model 

negatively predicted the UCS values of rocks with low 

UCS values (Fig. 4). 

 
3.2.3. ARTIFICIAL NEURAL NETWORK (ANN) 

ANN is a method that has been commonly used 

to predict nonlinear data for a long time. There are 

many parameters (number of iterations, training and 

activation functions, learning rate, number of hidden 

nodes, number of hidden layers), which affect the 

training of prediction models created with ANN. 

This study attempted to yield the best results by 

changing some parameters to increase the model’s 

success in the training phase. The parameters used in 

the training phase of the model are presented in 

Table 7. 

The models were trained using the prepared 

dataset and tested with two different test sets. The first 

test set was created by setting aside 30 % of the 

prepared dataset, which consists of 95 samples, as the 

test set. The second test set was composed of 
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Table 7 Training phase parameters. 

 
Parameters Values  

Number of iterations 1000 

Training function Trainbr, trainbfg, trainscg, traincgb, traincgf 

Activation function Poslin, Tansig 

Number of hidden layers 1 

Number of hidden nodes 20,50,80 

 
Table 8 Best results for the training and test data. 

 

Model Number of hidden nodes Activation function Train R2 Test R2 

Model 1 20 poslin 0.808 0.931 

Model 2 20 tansig 0.786 0.553 

Model 3 50 poslin 0.716 0.724 

Model 4 50 tansig 0.770 0.479 

Model 5 80 poslin 0.719 0.743 

Model 6 80 tansig 0.924 0.102 

 

19 samples obtained from another study (Çelik and 

Çobanoğlu, 2019). During the training phase, different 

training and activation functions, as well as different 

numbers of hidden nodes, were tested, and the results 

were compared. The ANN model was trained using 

70 % of the prepared dataset with a 10-fold cross-

validation process. The results obtained from the 

training process are presented in Table 8. As a result 

of the tests, the best training function was found to be 

“trainbr.” The best activation function was determined 

to be “poslin.” “Trainbr” is based on its ability to 

prevent overfitting through Bayesian regularization, 

making it particularly suitable for small to 

medium- sized datasets. This method optimizes the 

trade-off between network complexity and 

generalization, leading to improved performance 

compared to other training algorithms. Similarly, 

“poslin” was determined to be the best activation 

function based on empirical results. As a piecewise 

linear function, it avoids issues such as vanishing 

gradients, making it effective in certain regression and 

classification tasks. 

As seen in Table 8, the best training result was 

found to be 0.924. However, considering the test result 

of the same structure, the test success was 0.102. 

While evaluating the results of ANN structures, the 

test results are required to be higher than the training 

results. The failure to meet this condition is known as 

overfitting and is undesirable. Considering this 

condition, the best result where the test result was 

higher than the training result was the first structure 

where the number of hidden nodes was 20 and the 

transfer function was poslin. In the first structure, the 

correlation coefficient for the training set was 0.808 

(R: 0.899), whereas the correlation coefficient for the 

test set was 0.931 (R: 0965).  

Figure 5 shows the graphs obtained from the 

model developed with the ANN approach. Upon 

examining the prediction success of the ANN model 

for the entire sample set, the R2 value was found to be 

0.847 (R: 0.920). The success of this model was based 

on the selected independent variables. Among the 

variables, the SHR test with high impact energy is 

more reliable in high-strength rocks, while the HL test 

using a low-energy probe is associated with yielding 

more sensitive results in low-strength rocks. With this 

feature, the developed ANN model may provide 

significant advantages in predicting the widely 

varying UCS value. 

The developed ANN prediction model was tested 

with a different data set and cross-validation to assess 

the generalizability of the results. As seen in Figure 5, 

the test results on the model trained with cross-

validation indicate that the ANN model predicts the 

UCS value with high accuracy. In this case, since the 

training and test data were derived from the same 

dataset, achieving high accuracy is an expected 

outcome. To evaluate the predictive performance of 

the model on a different dataset, a second test was 

conducted using data from 19 magmatic rocks 

obtained from another study (Çelik and Çobanoğlu, 

2019). The obtained result is presented in Figure 6. As 

a result of this test, the model’s prediction accuracy 

was found to be 0.9479. Here, the model demonstrated 

consistent performance across both test procedures, 

indicating its potential applicability to other datasets. 

As stated by many researchers, using ANN to 

predict the UCS value of rocks can provide higher 

prediction success and better generalization than 

statistical methods (Meulenkamp and Grima, 1999; 

Ceryan et al., 2013; Sharma et al., 2017; McElroy et 

al., 2021). However, ANN has some limitations. 

ANNs require a substantial amount of labeled data for 

effective training. This is because neural networks 

learn by adjusting their weights iteratively, and a small 

dataset can lead to overfitting, where the model 

memorizes training examples rather than generalizing 

patterns. In fields where data collection is expensive 



EVALUATION OF THE RELATIONSHIP BETWEEN THE SURFACE HARDNESS OF … 

 

215 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Square root of the coefficient of 

determination for the ANN model  

a) training set, b) testing set  

c) all samples sets. 

 

Fig. 6 Prediction performance of the developed model on the dataset (19 samples) obtained from Çelik and 

Çobanoğlu (2019). 
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or time-consuming (e.g., geological studies of 

magmatic rocks), this limitation becomes a significant 

challenge. Compared to traditional statistical methods 

or simpler machine learning models, ANNs demand 

high computational power and long training times, 

especially for deep architectures. This is due to the 

extensive number of parameters that need 

optimization, making training inefficient for 

large- scale problems without specialized hardware 

(such as GPUs). If the dataset is small or not diverse 

enough, ANNs tend to overfit, learning noise and 

irrelevant details instead of general patterns. 

Regularization techniques like dropout, weight decay, 

or Bayesian regularization (e.g., Trainbr) can help 

mitigate this, but they do not fully eliminate the need 

for large, high-quality datasets.   

In the prediction of UCS with ANN, physical, 

strength, mineralogical, and textural parameters of 

rocks are generally used as input parameters. The most 

important difference of this study from previous 

studies is its success in predicting the UCS value using 

SHR and HL parameters, which are non-destructive 

testing (NDT) parameters that can be obtained in situ 

and in the laboratory, as input parameters. Using this 

developed ANN model, the UCS values of igneous 

rocks can be estimated quickly, practically, and with 

high accuracy through non-destructive tests such as 

SHR and HL. 

 
4. CONCLUSIONS  

The results of this study can be summarized as 

follows: 

• The uniaxial compressive strength of rocks is one 

of the most important input parameters in 

geotechnical and rock mechanics studies. Hence, 

it is quite important to develop UCS value 

prediction models in rock mechanics and 

engineering studies. To this end, 95 building stone 

samples consisting of pyroclastic, volcanic, and 

plutonic rocks cropping out in different regions of 

Turkey were collected. Using the surface 

hardness (SHR and HL) of these samples, models 

obtained from SR, MR, and ANN approaches 

were developed to predict UCS values.  

• The highest correlation coefficient (R2: 0.858) 

was acquired between the HL value in predicting 

the UCS value by a simple regression method.  

• In predicting the UCS value with the MR model, 

the R2 value was 0.781, while the F-test value was 

164.346. It was revealed that this model failed to 

predict the UCS value of rocks with low strength.  

• In the ANN model, the R2 values for training, 

testing, and all samples were 0.808, 0.831, and 

0.847, respectively. Additionally, the prediction 

performance of the developed model was 

evaluated using a separate test set. The model's 

prediction accuracy was determined to be high 

(0.94). This is evidence that the developed model 

can be used for different sample sets. 

• The ANN model was observed to be quite 

successful in predicting the UCS value by using 

the surface hardness values of rocks. By using 

in- situ and laboratory-measured surface hardness 

values, the developed model can be used to 

rapidly, practically, and non-destructively 

determine the UCS values of rocks. 
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