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 ABSTRACT 
 

 

We investigate the spatiotemporal characteristics of sea level change (SLC) in Japan's territories 
by analyzing tide gauge (TG) records and satellite altimetry (SA) data from 1993 to 2020. The 

analysis reveals that the relative sea level change (RSLC) rate in Japan is 2.20 ± 0.62 mm/a, while 

satellite altimetry (SA) data calculate an absolute sea level change rate (ASLC) of 3.13 ± 
1.66 mm/a. Additionally, some TG stations show significant sea level subsidence rates, primarily 

attributed to vertical land movement (VLM), particularly the land uplift effect in localized regions, 

leading to negative RSLC. After correcting for VLM, the recalculated SLC rate is 3.77 ±.26 mm/a, 
which is consistent with the value of 3.4 mm/a reported by the Japan Meteorological Agency. 

Through Empirical Orthogonal Function (EOF) analysis, the primary spatial patterns of change in 

both SA and TG data exhibit a high degree of consistency, with the first mode contributing 80.24 % 
and 82.95 % of the variance, respectively. The first mode of EOF for the coastal sea level 

represents a simultaneous (SLC) along the whole Japanese coast and the second mode is closely 
related to the Kuroshio Large Meander (LM). Further, extract the dominant components of sea 

level variation, and denoising was performed on the TG data. Compared to the Raw data, the 

denoised data showed a root mean square (RMS) error reduction of 6.98 mm on average, with 
uncertainty decreasing by 0.25 mm/a. These results provide important insights for more accurate 

SLC trend estimation. 
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1. INTRODUCTION 

During the satellite altimetry era (since 1993), 

independent estimate indicates global mean sea level 

(GMSL) rise of 3.2 ± 0.3 mm/a over 1993–2021 

(Dangendorf et al., 2024; He et al., 2024; Wang et al., 

2025), 3.3 ± 0.4 mm/a over 1993–2023 (Hamlington 

et al., 2024). According to the sixth assessment report 

of the Intergovernmental Panel on Climate, GMSL 

increased by 0.15–0.25 m over the period 1901 to 2018 

at an average rate of 1.3–2.2 mm/a, and the rate in the 

GMSL rise has accelerated since the 1960s to 3.2–

4.2 mm/a for the period 2006 to 2018 (IPCC 2021). 

The main factors contributing to the GMSL rise are 

ocean thermal expansion and inflow of water mass due 

to land ice melt and changes in land water storage 

(Clark et al., 2015; Palmer et al., 2020). However, the 
sea level rise is neither temporally nor spatially 

uniform because, in addition to the above factors, 

regional sea level is influenced by other factors such 

as changes in ocean circulation and atmospheric 

forcing (Qiu et al., 2015; Carson et al., 2017; 

Woodworth et al., 2019; Hamlington et al., 2020; Han 

et al., 2025). 

Japan is located on the western rim of the Pacific 

Ocean, and the mechanisms behind sea level change 

(SLC) in this region are complex. Given the unique 

seafloor topography along Japan's coastline and its 

heightened sensitivity to rising sea levels, it is 

particularly important to continuously monitor 

changes in sea level and their associated spatial and 

temporal characteristics. SLC has long been recorded 

by tide gauge (TG) stations. A TG station is a land-

attached device that integrates a set of monitoring 

sensors to observe and record the relative water-land 

movement. Specifically, it continuously measures the 

height of sea level relative to a vertical datum 

(Thompson et al., 2016; Kleinherenbrink et al., 2018; 

Adebisi et al., 2021), referred to as relative sea level 

change (RSLC). In coastal areas, RSLC collectively 

combines the effects of vertical land motion (VLM) 

and absolute sea level change (ASLC). VLM reflects 

elevation changes of land surface in the form of either 

subsidence or uplift (Wöppelmann and Marcos, 2016; 

Zhu et al., 2023; Zhu et al., 2024). VLM is a major 

issue in Japan and is now monitored in real time 

(Geospatial Information Authority of Japan, 2018a). 

They also provide “long-term” information on crustal 

movement, meaning up to 10 years. Different from 

RSLC, ASLC is not influenced by the local VLM and 

refers to the height variations of the ocean surface. 
Furthermore, Numerous studies (Senjyu et al., 1999; 

Sasaki et al., 2013; Uchida and Imawaki, 2008; Usui 

et al., 2017; Zhang and Church, 2012; Sasaki et al., 

2017; Wu et al., 2022; Sakamoto et al., 2005; Ito et al., 
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2004; Bessières et al., 2013; Boretti, 2024) have 

investigated interannual and decadal sea level 

variations associated with the Japanese coastline. In 

particular, the works of Sasaki et al. (2014), Yasuda 

and Sakurai (2006), and Nakano et al. (2023) have 

provided valuable insights into these changes, 

contributing significantly to the understanding of 

regional sea level dynamics over different time scales. 

The analysis of multi-decadal or century-long TG 

records presents numerous challenges in accurately 

estimating SLC and its associated uncertainty 

(Chepurin et al., 2014). A meticulous approach is 

essential, requiring careful modeling of diverse 

processes (e.g., seasonal variations) and considering 

the temporally correlated noises intrinsic to these 

measurements. These noises can impact the analysis 

of various time series, including geodetic time series 

(Burgette et al., 2013; He et al., 2017; He et al., 2022a; 

Montillet and Bos, 2019), particularly affecting 

observations recorded by TG. However, in order to 

accurately estimate the SLC, previous studies have 

primarily focused on denoising time series data, often 

treating the data without considering the underlying 

oceanic signal mechanism. 

This study employs the Empirical Orthogonal 

Function (EOF) method to analyze oceanic data, 

providing a more comprehensive approach by 

capturing the spatial and temporal patterns inherent in 

the signal. This method is a mathematical 

dimensionality reduction technique that can reflect the 

main characteristics of SLCs on the spatial scale. As 

a common technique for data analysis, the EOF 

method can analyze and extract the change of long-

term sea level variations, which is better for 

investigating the causes of SLCs. The advantage of 

this method is that a typical field is determined by the 

characteristics of time series of variables, instead of 

being determined artificially in advance, so it can 

better reflect the basic structure of the field (Wallace 

et al., 1972; Hannachi et al., 2004; Lian et al., 2012; 

Kim et al., 2015). It can decompose the irregularly 

distributed sites in a limited area, and the decomposed 

spatial structure has a clear physical significance. 

Compared with a fully data driven approach denoising 

method (e.g., Empirical Mode Decomposition (EMD), 

which adaptively decomposes the signal into multiple 

intrinsic mode functions (IMFs) without relying on 

prior physical models or mechanisms, but instead 

based on the local features of the data itself for 

decomposition and denoising) (Boudraa et al., 2004; 

Kabir and Shahnaz, 2012), the principal component 

(PC) decomposition can better extract the consistent 

changes of sea level in the study area. By conducting 

a comparative analysis of the meanings represented by 

each mode, this approach allows for a more accurate 

identification and removal of noise components from 

the TG data, followed by the estimation of the SLC. 

The method aims to mitigate the impact of noise on 

the estimation of SLC rates, thereby providing a more 

precise evaluation of SLC. 

 

The remainder of the paper is organized as 

follows. Section 2 provides brief descriptions on the 

SA, TG data and GNSS observations used in this 

study. In Section 3 we use these approaches to 

estimate the SLC and VLM in Japan based on the 

analysis of SA, TG, GNSS and we conduct the EOF 

analysis of the Japanese coastal sea level by using both 

the SA and TG. Its mechanism is discussed in Section 

3.3. Based on the analysis of physical mechanisms, the 

decomposed modes are used to denoise TG data and 

re-estimate RSLC, and compared with the EMD 

denoising results in Section 3.4. The findings from the 

present study are summarized in Conclusion. 

 
2. DATA AND METHODS 

2.1. TIDE GAUGE OBSERVATIONS  

The TG data are provided by the Permanent 

Service for Mean Sea Level (PSMSL) (Holgate et al., 

2013; https://psmsl.org), based on monthly average 

data in the RLR (Relative Long-term Records) format. 

The reference for this data is defined as approximately 

7000 mm below the mean sea level to avoid negative 

RLR monthly values. We selected data from 22 TG 

stations located along the Japanese coastline. Figure 1 

shows the spatial locations of these stations and such 

a selection is based on the following considerations. 

First, to obtain precise trends from continuous data, an 

observation period of 28 years (from 1993 to 2020) is 

used in this study. Second, TG stations exhibit a low 

missing data rate—approximately 1.45 % on average 

across the 22 sites used in our analysis. Third, most 

TG stations are co-located with GNSS reference 

stations within a 15 km radius (Bitharis et al., 2017). 

To analyze the spatiotemporal characteristics of the 

TG records, we applied EOF analysis, ensuring that 

the time series were continuous and consistent. For 

this purpose, we used monthly average sea level data 

from 1993 to 2020. After 1993, some TG station 

records were damaged, so we interpolated missing 

data. The RSL trend was first calculated using the TG 

data, and to explore the spatiotemporal characteristics 

of SLC, we performed data analysis on the detrended 

sea level records from the 22 TG stations. This 

approach allows for the investigation of both long-

term and interannual sea level trends. 

 
2.2. SEA SURFACE HEIGHT FROM SATELLITE 

ALTIMETRY  

We used the daily products of GLOB-

AL_MULTIYEAR_PHY_001_030 

(https://doi.org/10.48670/moi-00021) from the 

Copernicus Marine Environment Monitoring Service 

(CMEMS), covering the period from 1993 to 2020, 

which is defined on a standard regular grid at 1/12-

degree resolution and covering approximately 8 km 

(He et al., 2022b; Huang et al., 2024). To investigate 

the SLC in SSH from SA, and to facilitate the 

exploitation of altimetry data at the coast, we used the 

concept of virtual altimetry stations developed and 

used by Cazenave et al. (2022) for the computation of 
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sea level trends, a concept we implemented in our 

study. We determined the 22 virtual coastal stations 

around the coasts (also called virtual coastal stations 

with SA observations) based on the longitude and 

latitude of the TG from PSMSL, as illustrated in 

Figure 1.  

 
2.3. GNSS DATA 

The GNSS time series used in this study were 

acquired from Nevada Geodetic Laboratory (NGL, 

Blewitt et al., 2018; Hammond et al., 2021; 
http://geodesy.unr.edu). GNSS is a commonly used 

geodetic technique due to its high precision to monitor 

land motions (He et al, 2015; Ballu et al., 2019; Huang 

et al., 2025; Zhou et al., 2025). For comparison, we 

have analyzed the measurements from a total 22 of 

GNSS stations which are co-located at or close to a TG 

station along Japan (Fig. 1 and Table 1). There are two 

main issues involved in estimating VLM trends for 

TGs with GNSS time series. Firstly, many GNSS 

stations are not directly connected to TG stations. 

There is often a lack of regular leveling activities to 

monitor the relative VLM between the TG and GNSS 

stations. Therefore, to attenuate this effect, we use the 

GNSS stations neighboring the TG to estimate the 

VLM trend whose distances are shown in Table 1. 

Secondly, the VLM estimated from GNSS data should 

remain consistent throughout the entire period of the 

TG data. However, in practice, GNSS time series 

rarely satisfy this condition completely. We selected 

GNSS stations that are adjacent to the TG and have 

longer time series as correction data sources (see Table 

1). When both conditions are met, the VLM detected 

by GNSS can be considered representative of the 

VLM at the TG reference point, assuming that the 

VLM is uniform across adjacent regions. This data can 

be used to correct the trends in RSLC (Bruni et al., 

2022; Zhou et al., 2022). 

 
2.4. EOF ANALYSIS 

The EOFs, also known as a Principal Component 

Analysis (PCA), can be used to analyze the variance 

contribution of different components for extracting 

spatiotemporal features (Wallace et al., 1972; 

Halliwell et al., 1984; Hannachi, 2004; Wilks et al., 

2011; He et al., 2015). The orthogonal basis is derived 

by computing the eigenvectors of a spatially weighted 

anomaly covariance matrix and the corresponding 

eigenvalues provide a measure of the percent variance 

explained by each pattern. Therefore, EOFs a space-

time physical process can be represented mutually by 

orthogonal space patterns where the data variance is 

concentrated with the first pattern being responsible 

for the largest part of the variance, the second for the 

largest part of the remaining variance, and so on. We 

then write 
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                   (1.1) 

 

Where n is the number of TG stations, and m denotes 

the number of a time period. In addition, the 

covariance matrix B of time series is orthogonally 

decomposed as follows： 

1

1

TB X X
m

=
−

                                                      (1.2) 

Fig. 1 Spatial distribution of the analyzed 22 stations along the coast of Japan. 
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Table 1  Virtual coast station of satellite altimetry, tide gauge and co-located GNSS station used in this work. 

 
Tide Gauge 

(1993~2020) 

Lon Lat Data Gap (%） Co-located 

 GNSS 

Data Span Distance (km) TG&GNSS 

 Overlap (%) 

132  136.90  37.41  3.87  G111 2003.42-2023.19 0.04  46.25  

134 135.77  33.48  0.00  G208 2003.24-2023.19 0.02  48.73  

701  135.19  34.14  0.00  G117 2003.44-2023.19 0.05  49.66  

813  140.73  41.78  0.00  G204 2003.28-2023.19 0.05  51.40  

814  131.41  31.58  0.00  G211 2003.40-2023.19 0.03  46.85  

1027  140.86  43.21  0.00  G101 2003.42-2023.19 0.06  32.05  

1090  135.90  33.56  0.00  SMST 2004.27-2022.97 4.39  40.58  

1100  129.87  32.74  0.30  G210 2003.24-2022.62 0.02  49.64  

1103  141.69  45.41  0.00  G201 2003.24-2023.19 0.03  51.08  

1104  144.29  44.02  0.60  G202 2003.42-2023.19 0.05  51.39  

1148  134.32  35.59  0.30  G118 2003.45-2023.19 0.04  48.76  

1151  127.67  26.21  0.30  G212 2003.44-2023.19 0.04  49.28  

1264  139.71  39.94  1.49  G104 2003.41-2023.19 0.22  51.50  

1265  130.19  32.02  0.30  G123 2003.44-2023.19 0.07  32.63  

1318  129.85  33.47  8.04  G121 2003.44-2023.19 0.03  38.32  

1320  133.24  33.33  0.30  G120 2003.43-2023.19 0.07  50.22  

1343  139.13  34.90  4.46  G113 2003.44-2023.19 0.06  32.74  

1344  138.28  37.82  3.87  G109 2003.42-2023.19 0.03  52.86  

1388  127.82  26.18  4.17  G124 2003.44-2023.19 0.09  50.91  

1389  137.23  36.76  0.00  G207 2003.42-2023.19 0.04  50.05  

1438  138.33  34.87  3.87  G115 2003.44-2023.19 0.05  52.18  

1585  132.07  34.90  0.00  G209 2003.46-2023.19 0.04  46.44  
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                            (1.3) 

 

where λ1 > λ2 > ⋯ > λn. The orthogonal 

decomposition of the space domain can be computed 

as the feature vector of TX X  , and the EOF value can 

then be obtained by normalizing the decomposition. In 

addition, the PC can be calculated in the time series 

according to the following expressions: 

 

PC XE=   (1.4) 

3. SEA LEVEL VARIABILITY ALONG THE 

JAPANESE COAST 

3.1. SEA LEVEL CHANGE FROM SATELLITE 

ALTIMETRY 

In order to estimate the sea level trends, we select 

the most appropriate noise model for each site based 

on the BIC-tp criterion (Bos et al., 2014; Peng et al., 

2022). As indicated by the colored dots in Figure 2 and 

Table 2, the ASL along the coast of Japan generally 

shows an upward trend, although the rate of increase 

varies across different regions. Notably, the southeast 

coast experiences a higher rate of sea level rise 

compared with other regions. The ASLC along Japan's 

coastline ranges from 2.52 ± 0.45 mm/a to 4.61 ± 

1.88 mm/a. Particularly, the 1090 TG located on the 

southeast coast of Japan records a significantly higher 

rate of sea level rise compared with other stations. The 

average ASLC rate across the 22 stations along 

Japan's coastline is 3.13 ± 1.66 mm/a, with the 

uncertainty range spanning from 0.40 to 3.32 mm/a, 

with a mean uncertainty of 1.66 mm/a as shown in 

Figure 3 and Table 2. The left panel of Figure 3 

demonstrates a persistent increase in sea level 

along   the Japanese coast, which is comparable to the 

GMSL trend of 3.3±0.40 mm/a form 

(https://sealevel.colorado.edu/index.php/data/2020rel1-0). 

Additionally, the sea level rise along the southeast 

coastal belt of Japan is greater than in other regions, 

which is consistent with previous studies suggesting 

that the Kuroshio Current is a contributing factor 

(Uchida et al., 2008; Sasaki et al., 2013; Sasaki et al., 

2014). The schematic diagram from Sasaki et al. 

(2014, Fig. 11) illustrates the mechanism of sea level 

change (SLC) along the coast of Japan. The blue arrow 

indicates an incoming jet-trapped Rossby wave, while 

the gray arrow represents coastal waves generated in 

response to the incoming Rossby wave. The nature of 

the waves captured by the Kuroshio Current leads to 

significant SLC along the southeastern coast of 

Honshu. Moreover, as this region exhibits the highest 

population density in Japan, it remains particularly 

vulnerable to the impacts of sea-level rise. 
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Fig. 2 Absolute sea level trend from satellite altimetry (left) and uncertainty (right) for the period 1993-2020. 

 

Fig. 3 Sea level trends from satellite altimeters (https://sealevel.colorado.edu/index.php/data/2020rel1-0) (color 

contours) and virtual station from this study (colored dots).  

 
3.2. VLM IMPACT EVALUATION IN THE TIDE 

GAUGE OBSERVATION 

This study utilizes monthly mean sea level data 

from 22 TG stations located in Japan's coastline, 

spanning the period from 1993 to 2020. The SLC for 

each station were calculated, revealing that the highest 

and lowest rates of change occur along the 

southeastern and northern coasts of Japan (Fig. 4), 

respectively. The uncertainty range for the rates varied 

from 0.34 to 1.68 mm/a, with an average value of 

0.62 mm/a, as shown in Figure 4 (Bos et al., 2014; 

Huang et al., 2024). The range of RSLC along the 

Japanese coastline varied from -4.21 ± 0.56 mm/a to 

7.37 ± 1.04 mm/a. The average RSL rise rate for the 

22 stations along the coast of Japan was 2.20 ± 

0.62 mm/a. It is important to note that, unlike SA 

measurements, the TG data includes information not 

only on SLC but also on VLM. Therefore, the SLC 

reflected by the TG data differ from the ASL measured 

by SA. To convert RSLC to ASLC, we applied a VLM 

correction to the RSL from the TG (Zhou et al., 2022; 

Bruni et al., 2023). The uncertainty is estimated as the 

square root of the quadratic sum of the respective 

uncertainties of the VLM and RSL trend, as both 

observations are independent (Pfeffer and Allemand, 

2016). Specifically, VLM data from GNSS stations 
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Table 2 Sea level rise and vertical land motion at tide gauges (mm/a). 

 
TG TG ASL SA RSL TG VLM |VLM/SA| Corr 

SA-TG 

TG+GNSS (TG+GNSS)-

SA 

WAJIMA 132 3.22±2.03 2.34±0.58 0.92±0.60 0.29 0.92 3.26±1.24 0.04 

KUSHIMOTO 134 3.08±1.59 5.99±0.58 -3.11±0.75 1.01 0.79 2.88±1.28 -0.20 

KAINAN 701 3.63±2.26 -0.44±0.64 4.83±0.11 1.33 0.79 4.39±1.06 0.76 

HAKODATE I 813 2.78±0.87 -4.21±0.56 7.48±1.18 2.69 0.50 3.27±1.35 0.49 

ABURATSU 814 2.99±2.61 3.44±0.47 -1.63±0.57 0.55 0.77 1.81±1.20 -1.18 

OSHORO II 1027 2.82±1.44 0.58±0.34 3.18±1.07 1.13 0.75 3.76±1.27 0.94 

URAGAMI 1090 4.61±1.88 7.37±1.04 -1.44±2.59 0.31 0.82 5.93±1.62 1.32 

NAGASAKI 1100 2.63±0.41 4.18±0.62 -1.90±0.86 0.72 0.88 2.28±1.31 -0.35 

WAKKANAI 1103 2.79±1.55 2.70±0.43 1.87±0.11 0.67 0.83 4.57±0.99 1.78 

ABASHIRI 1104 2.84±1.47 0.69±0.50 4.35±0.49 1.53 0.72 5.04±1.19 2.20 

TAJIRI 1148 3.11±1.91 5.34±0.51 -2.04±0.21 0.66 0.92 3.30±1.08 0.19 

NAHA 1151 2.96±3.32 3.07±0.68 0.26±0.21 0.09 0.90 3.33±1.13 0.37 

OGA 1264 2.98±1.66 -1.26±0.58 5.07±1.47 1.70 0.83 3.81±1.40 0.83 

AKUNE 1265 2.52±0.45 3.16±0.45 0.15±2.04 0.06 0.86 3.31±1.45 0.79 

KARIYA 1318 2.61±0.40 3.05±0.93 0.35±0.23 0.13 0.90 3.40±1.20 0.79 

KURE I 1320 3.56±1.64 -0.91±0.69 5.62±0.57 1.58 0.77 4.71±1.26 1.15 

ITO II 1343 3.86±1.27 -2.76±0.43 6.11±1.91 1.58 0.63 3.35±1.43 -0.51 

OGI 1344 2.77±1.77 -1.84±0.59 6.50±1.52 2.35 0.76 4.66±1.41 1.89 

OKINAWA 1388 3.03±2.73 3.06±0.69 0.60±0.19 0.20 0.88 3.66±1.13 0.63 

TOYAMA 1389 3.13±2.08 3.70±0.37 0.98±0.56 0.31 0.93 4.68±1.16 1.55 

YAIZU 1438 4.33±2.81 5.94±1.68 -1.77±0.54 0.41 0.88 4.17±1.43 -0.16 

HAMADA II 1585 2.62±0.45 5.16±0.35 -1.89±0.20 0.72 0.90 3.27±1.02 0.65 

 

Fig. 4 Relative sea level trend from tide gauge data (left) and uncertainty (right) calculated for the period 1993-

2020. 

 
(provided by NGL) located near the TG stations were 

used to estimate the ASLC. GNSS stations with long-

term records and located TG were selected as the data 

sources for the correction, as detailed in Table 1. 

Table 2 summarizes the VLM rate near the Japanese 

TG stations. The highest rates of VLM were recorded 

at the HAKODATE I station (7.48 ± 1.18 mm/a) and 

the OGI station (6.50 ± 1.52 mm/a), while both the 

KUSHIMOTO and TAJIRI stations experienced 

subsidence rates greater than 2 mm/a. These stations 

are often located in tectonically active regions, where 

sea-level records are significantly influenced by 

crustal deformation associated with the subduction of 

oceanic plates (Okuno et al., 2014). Table 2 also 

presents the ASLC rates derived from the analysis of 

TG and GNSS, and compares these with 

corresponding estimates from SA. 

As illustrated in the figures, there are significant 

variations in the RSLC rates along the Japanese 

coastline. Eight stations (marked by the red lines in the 

left panel of Fig. 4) exhibit notably lower RSLC rates 

compared with the other stations, with six of these 
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Fig. 5 Ratio of vertical land motion to absolute sea level velocity (left), and the correlation coefficient between 

monthly averaged satellite altimetry data (SSH) from 22 virtual stations (same latitude and longitude as 

the tide gauges) and the tide gauge recorded water level data (right). 

 
Table 3 SA/TG variances, and accumulative total variances of different eigen structures. 

 
PCs (100%) TGEOF1 TGEOF2 SAEOF1 SAEOF2 

Variances  82.95 5.16 80.24 6.43 

Accumulative variances  82.95 88.11 80.24 86.67 

 

stations showing negative values in RSLC. The 

change rates at these stations range from -4.21 ± 

0.56 mm/a to 0.58 ± 0.34 mm/a. In order to investigate 

the cause of this phenomenon, we further analyzed the 

influence of VLM on these stations. The analysis 

revealed that these eight stations are strongly affected 

by VLM, with VLM intensities generally exceeding 

the ASL values by more than 1.1 times, as shown in 

the left panel of Figure 5 and Table 2. In ITO II station, 

the VLM values are even more than twice the 

magnitude of the ASL. The stronger VLM (uplift 

rates) has led to a reduction in the RSL change rates at 

these stations, with some even showing negative 

values. Additionally, the correlation coefficients 

between monthly mean SA and TG data, presented in 

the right panel of Figure 5 and Table 2, also support 

this finding. In regions with higher VLM, the 

correlation coefficients between the SA data and TG 

data are relatively lower. After applied VLM 

corrections to the RSL at these eight stations, the 

discrepancies with the ASLC derived from SA 

were reduced, further confirming the significant 

influence of VLM in these areas. Moreover, the 

corrected SLC rates for the TG stations were 

compared with the official data from the Japan 

Meteorological Agency (JMA). The corrected SLC 

rates ranged from 1.81 ± 1.20 mm/a to 5.93 ± 

1.62 mm/a, with an average RSL rise rate of 3.77 ± 

1.26 mm/a, which aligns with the JMA data with 

access of  

“https://www.data.jma.go.jp/kaiyou/english/sl_trend/sea_le

vel_around_japan.html” (showing an average MSL rise 

rate of 3.4 mm/a for the period 2006–2018).  

3.3. AN EOF ANALYSIS TO THE SEA LEVEL 

CHANGE 

Based on the TG, SA data from 1993 to 2020, the 

variance explained by the first two PCs accounts for 

88.81-86.67 % (see Table 3) of 22 eigenvectors. This 

can reflect the main changes in sea level trend at 22 TG 

stations in Japan. The spatial eigenvectors of 22 eigen 

structures and the corresponding time coefficients are 

show in Figures 6 and 7.  

The first mode of the EOF of the interannual 

variation represents the simultaneous of sea levels 

along the Japanese coast. Figure 7b and Figueres 6a 

and 6c) show the time series of the PC and the 

horizontal pattern for the first EOF mode. The first 

mode explains more than 80 % of the sea level 

variability along the Japanese coast. The PC time 

series and the horizontal pattern of EOF1 for SA 

compares well with those for TG observation, 

indicating that SA captures the observed sea level 

variability well. The first EOF mode has the same sign 

at the all-TG stations (Figs. 6a and 6c), indicating that 

the first mode represents a simultaneous SLC along 

the whole Japanese coast. The amplitude of EOF1 is 

large along the south coast of Japan between the Boso 

Peninsula and Kyushu, and is relatively small along 

the Hokkaido coast. The correlation coefficient of the 

corresponding time coefficients is 0.89. The spatial 

eigenvectors of 22 eigen structures are shown in 

Figure 7a. The corresponding time coefficients are 

shown in Figure 7b. which indicates that the overall 

trend of the temporal and spatial variations is positive, 

with the south coast stations having the largest positive 

values. In terms of time coefficients, there is an 

obvious upward trend from 1993 to 2020 (Fig. 3).  
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Fig. 6 Spatial distribution of eigenvectors of the first and second mode for the tide gauge (a, b) observation and 

satellite altimetry (c, d). Color indicates the amplitude of the EOF mode (no unit). 

 

The time series of the sea level difference 

between Kushimoto and Uragami is shown in 

Figure 8, which is an index of the Kuroshio flow path 

(Moriyasu, 1958, 1961; Kawabe, 1985). We can see 

a correlation (+0.56) between the sea level difference 

and the time coefficient of the second mode. This 

indicates that sea levels at the Southeast Coast station 

in Figures 6b and 6d become high when the Kuroshio 

flows in the large-meandering path. We can conclude 

that the second mode is associated with the Kuroshio 

Large Meander (LM). 
 

3.4. DENOISING OF TG OBSERVATION  

The number of EOFs used is crucial to the 

denoising: using too few EOFs could result in a lack 

of information regarding the original sea level 

variability, whereas using too many could induce 

additional noise. The RSL were obtained for the period 

1993-2020 using EOF decomposition. Then EOF was 

used for dimensionality reduction by expressing the 

sea level variability in the linear combination of all the 

reconstructed TG time series. The first PC explains 

82.95 % of the total variance and usually represents 

the dominant pattern of SLC. The second explains 

5.16 %, respectively, of the variance. The EOF 

decomposition has a fast convergence rate and the 

total contribution of the PCs is as much as 88.11 %; 

thus, using these PCs for TG reconstruction should 

express the characteristics of TG fully. The higher 

order eigenvectors contain smaller spatial scales and 

are increasingly affected by noise. In this section, we 

remain the first and second modes components as 

primary to minimize the impact of noise, and we 

designate this method as remain EOF (1+2). The 

denoised sequence is then re-estimated for velocity, 

and the results are compared with those obtained using 

the EMD decomposition denoising method. To ensure 

consistency with the original velocity, the same 

software, Hector, is used for velocity estimation (Bos 

et al., 2013). The results are as follows: 

Figures 9 (a, b, c) shows the time series before 

and after denoising for the TG station 134. Panel (d) 

displays the periodicity in the TG series obtained from 

the EMD method at TG station 134 and the EOF 

reconstruction method (retaining the first two main 

modes). In the signal power of the EOF reconstruction 
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Fig. 7 Eigenvectors of the first and second mode for the TG, SA at the 22 stations. b, PC1 analysis shows only 

relative intensity (non-dimension values normalized by standard deviations). 

Fig. 8 Principal component of the second modes for the modeled TGs at the 22 tide gauge stations (red). Black 

time series of the sea level difference of Kushimoto (ID134) minus Uragami (ID1090) in the period from 

January 1993 to December 2020. 

 
results was suppressed for frequencies less than six 

month, meaning that the EOF method tends to be less 

prone to high-frequency sea level variations after 

denoising the TG measurements. This effectively 

reduces the noise in the signals of TG records. 

Moreover, at lower periods, the effectiveness of the 

EMD method deviates significantly from the original 

signal. This may be due to the limitations of EMD 

decomposition, which is restricted to data driven 

approach denoising and cannot remove noise based on 

the underlying mechanisms influencing the data. As 

a result, it may inadvertently discard valuable 

information contained within the data. This is also 

evident in Figure 9b, where the time series after EMD 

noise reduction appears relatively smooth, indicating 

that a considerable amount of information has been 

lost from the data.  
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Fig. 9 (a) Raw time series (b) EMD noise reduction time series (c) TG remain EOF (1+2) noise reduction 

(d) power spectral density (PSD) of using EMD and remain EOF (1+2) at TG station 134. The green 

dashed lines correspond to the annual and semi-annual periodicity. 

 
In contrast to the geodetic measurements of 

crustal movement that have been the focus of much of 

the research into the effects of time-correlated noise in 

time series, there are well-known quasi-periodic 

cycles that affect sea level time series at interannual 

and decadal periods including El Nino-Southern 

Oscillation and the Pacific Decadal Oscillation (e.g. 

Hamlington et al., 2013; Wang et al. 2025). Longer-

term sea-level variations from these oceanic processes 

clearly impact the estimation of the underlying rate of 

sea level change beyond the impacts of variation in 

annual periodic signals (Zhang and Church, 2012). In 

fact, it is difficult to assess whether the natural 

variability has been completely separated from the 

forced, or anthropogenic, response. This is particularly 

problematic in the possible case that the forced pattern 

resembles patterns associated with natural variability 

(Hamlington et al., 2016; Hamlington et al., 2019). 

This study explores the significance of the first two 

modes based on EOF decomposition, performing 

denoising while preserving the useful components of 

the data. The results (see Fig. 10 and Table 4) 

demonstrate that for the 22 stations, the RMS 

decreased by an average of 6.98 mm compared with 

the original data when retaining the first two principal 

components, with the RSL uncertainty reduced by an 

average of 0.25 mm/a. This approach outperforms the 

results obtained from EMD decomposition, as detailed 

in Appendix Table A. These findings suggest that the 

proposed method effectively removes noise from TG 

data, thereby improving the accuracy of RSL trend 

estimates. Unlike the EMD method, EOF 

decomposition provides a physically interpretable 

basis for sea level variability, making it a more 

scientifically robust approach for denoising TG data. 
 

CONCLUSION 

In this paper, we utilized SA data and 22 TG 

stations along the coast of Japan from 1993 to 2020 to 

analyze sea level changes around the Sea of Japan. The 

corresponding RSL recorded at TG stations was 

corrected using GNSS measurements. To further 

investigate the spatiotemporal variability of sea level 

in this region, we applied EOF decomposition to both 

SA and TG data to extract the spatial and temporal 

modes. By testing the physical significance of each 

mode, high-frequency noise modes were removed to 

reduce the uncertainty in sea level trend estimation. 

The following conclusions can be drawn from the 

study. 

1. The estimated average RSLC rate along the 

Japanese coast is 2.20 ± 0.62  mm/a, while the 

ASLC rate derived from satellite altimetry is 

3.13 ± 1.66  mm/a, yielding a difference of 
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Fig. 10 Comparison of rate uncertainty at 22 TG stations before and after denoising. 

 

Table 4 Denoising performance of the two methods on the raw TG time series. 

 
             Method 

Index 

EMD Remain 

 EOF (1+2) 

RMS reduction (%) 100.00 100.00 

Average RMS reduction (mm) 6.95 6.98 

Average uncertainty reduction (mm/a) 0.05 0.25 

 
0.93 mm/a. The ASLC rate is notably higher 

along the southeastern coast compared to other 

regions. In this study, the SLC rates observed at 

eight TG stations were significantly lower than 

those at other stations, with six stations recording 

negative values. It was verified that the strong 

VLM uplift in these areas was the primary cause 

of the declining trend in RSL. After correcting the 

RSLC, the results showed an average difference 

of 0.64 mm/a compared to the ASLC calculated 

from SA.  

2. To further elucidate the spatial and temporal 

variability of sea level in the Sea of Japan, EOF 

was employed to perform dimensionality 

reduction on both TG and SA datasets. The TG 

and SA data exhibited similar spatial and 

temporal patterns, indicating a high degree of 

consistency and similarity in the primary sea level 

changes derived from both datasets. The variance 

contribution rates of the first two modes were 

80.24-82.95 % and 5.16-6.43 %, respectively. 

The first mode of the EOF for coastal sea level 

variation represents a simultaneous SLC along the 

entire Japanese coastline. The second mode is 

closely related to the LM and this pronounced 

spatial dependency of the coastal SLC around 

Japan is not influenced by VLM.  

3. We combined the previously discussed modal 

analysis to interpret the meaning of the modes, 

selecting the primary modes that reflect SLC. The 

results indicated that the method is less sensitive 

to high-frequency sea level variations after 

Denoising the TG measurements. This effectively 

reduces the noise in the signals of TG records. The 

RMS of the denoised sea level time series 

decreased by an average of 6.98 mm, while the 

uncertainty in the RSLC rate was reduced by an 

average of 0.25 mm/a. 
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APPENDIX TABLE A  

RSL Trends and RMS from Raw Data, Remain EOF (1+2), and EMD noise reduction 

 
TG TG RSL TG RSL 

Remain 

EOF (1+2) 

RSL EMD RMS(Raw)

mm 

RMS(EMD)

mm 

RMS Remain 

EOF (1+2) 

mm 

WAJIMA 132 2.34±0.58 2.50±0.55 2.66±0.53 136.57 126.82 129.11 

KUSHIMOTO 134 5.99±0.58 6.38±0.29 6.37±0.52 166.03 161.40 161.28 

KAINAN 701 -0.44±0.64 -0.09±0.32 -0.10±0.56 132.36 125.22 125.89 

HAKODATE I 813 -4.21±0.56 -4.28±0.15 -4.31±0.51 116.33 113.10 108.27 

ABURATSU 814 3.44±0.47 3.67±0.29 3.67±0.42 118.17 110.04 111.28 

OSHORO II 1027 0.58±0.34 0.66±0.20 0.67±0.30 115.01 110.24 109.97 

URAGAMI 1090 7.37±1.04 8.09±0.23 8.30±0.95 167.33 164.45 158.67 

NAGASAKI 1100 4.18±0.62 4.32±0.58 4.35±0.56 152.73 141.34 149.06 

WAKKANAI 1103 2.70±0.43 2.84±0.19 2.86±0.40 136.48 131.97 132.19 

ABASHIRI 1104 0.69±0.50 0.44±0.09 0.40±0.45 97.58 70.81 75.01 

TAJIRI 1148 5.34±0.51 5.70±0.46 5.72±0.45 175.55 166.51 172.93 

NAHA 1151 3.07±0.68 2.78±0.42 2.75±0.60 141.00 134.64 126.67 

OGA 1264 -1.26±0.58 -0.88±0.54 -0.92±0.53 170.82 167.28 165.18 

AKUNE 1265 3.16±0.45 3.32±0.41 3.33±0.40 152.08 144.01 148.60 

KARIYA 1318 3.05±0.93 3.55±1.03 3.61±1.06 141.27 134.66 137.78 

KURE I 1320 -0.91±0.69 -0.60±0.36 -0.62±0.61 200.33 193.69 194.74 

ITO II 1343 -2.76±0.43 -2.07±0.19 -1.98±0.38 573.54 572.29 571.64 

OGI 1344 -1.84±0.59 -1.79±0.32 -2.04±0.56 110.15 103.35 100.40 

OKINAWA 1388 3.06±0.69 2.59±0.56 2.65±0.62 123.34 118.17 108.64 

TOYAMA 1389 3.70±0.37 3.90±0.32 3.91±0.34 151.02 146.77 147.61 

YAIZU 1438 5.94±1.68 6.22±0.32 6.70±1.53 166.31 162.43 157.40 

HAMADA II 1585 5.16±0.35 5.46±0.37 5.46±0.32 161.71 153.70 159.77 
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