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The study was concerned with verifying the possibility of calcu-
lating the liquidus diagrams of eutectic ternary silicate systems
containing anions with complex structures. The phase diagram
calculation is based on knowledge of phase diagrams of the basic
binary systems. The phase diagrams of binary systems serve for
calculating excess functions defined as a difference between the
actual and the ,ideal‘ ones. It is assumed that the excess functions
in a ternary system can be estimated in satisfuctory approximation
as a sun of contributions of the basic binary systems. The relations
employed in the calculation of phase diagrams meet the general
requirements holding for the courses of licquidus curves and surfaces.

INTRODUCTION

Experimental study of phase equilibria in multicomponent systems is
considerably time consuming. In addition to this one is mostly interested in
a certain part of the multicomponent phase diagram only, for instance the
eutectic point parameters. The present study is concerned with the possibility
of approximate determination of the liquidus surface in simple eutectic systems
comprising anions of complex structures.

In previous papers [1], [2] the present authors suggested a method for calcu-
lating the liquidus diagrams in three-component systems of molten salts
and multicomponent cryolite-based systems. The principle of calculation
was identical in all the studies.

1. With due respect to the system being studied a suitable reference state
is chosen in terms of which the excess functions are defined. Excess functions
are defined as a difference between the value of the given function in the real
system and the value of the function following from the choice of the reference
state. The basic requirement which each reference state must meet are the
general rules for the courses of curves and liquidus areas (thermodynamic
consistency criteria [3]). In the present case the concentration dependence of
the coefficients should comply with the Gibbs-Duhem equation [4], [5].

2. The excess functions in binary systems are determined on the basis of
known phase diagrams.

3. It is assumed that excess functions in a ternary system can be estimated
at satisfactory approximation as a sum of contributions of the individual
binary systems. (This assumption can be substantiated on the basis of the
conforming solutions theory [6].)

In the previous studies mentioned above [1], [2] an ideal mixture as defined
by Haase [7] was chosen as the reference state. This definition is suitable in
particular in the case of ionic melts free from neutral molecules and ionic
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complexes. The present study is concerned with verifying the suitability of
the formal approach to the calculation of liquidus diagrams in systems with
which no experimental data on melting enthalpy of pure components are
available and the liquid phase of which has a substantially complex structure
so that utilization of models suitable for simple ionic systems would not be
satisfactory.

THEORETICAL

The condition for an equilibrium of substance 4 in liquid and solid phase is
the equality of chemical potentials (.4 of the substance in both phases. Transi-
tion of substance 4 from solid to liquid phase can be regarded as a reaction,

A(s) = AQ). (1)
In a state of equilibrium,
a,(s) = pa,(a)-

The temperature dependence of the equilibrium constant of reaction (1)

(K = afas) is described by the van’t Hoff reaction isobar equation [8]:
22 AHl/s
In— = -dT

dln @ Y a7, (2)
which in this case is identical with the differential form of the Le Chatelier-
Shreder equation [9], [10].
a; is the activity of component A in liquid phase, a; is the activity of component
A in solid phase; when component A does not form solid solutions, ¢s = 1 and
AHy s is the standard change of enthalpy of reaction (1) at temperature 7'
(being identical with the melting enthalpy of component 4 at the given tempe-
rature).

When assuming that the difference in thermal capacities Ac, of component A
in solid and in liquid state is constant within the given temperature interval,
integration of equation (2) (integrating from the limit point of interval ¢; = 1,
T = Ty) yields the known form of the liquidus curve

AH; (1 1 Acy, (T T
1 — _L . I Byt |8 __f _] — i j,
na, B ( ) B ('T' 1—1In 7 ) , (3)

where AH; is the melting enthalpy of pure component A at temperature
T/ (as = I)

When the condition of thermodynamic consistency is to be met the following
should hold in the binary system in the boundary concentration regions:

y4 —1, when 2p—0
and at the same time
dya/dag =0, when ap - 0.
Let us therefore determine the slope of the tangent to the liquidus curve in

binary systems. The differential equation of the liquidus curve of a binary
system can be written in the form [4]

ar 7

(ap.A )
de L_ 6a:B T,p’ (4)
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where ap is the mol fraction of the other component in the system (va -+
+ ap = 1)and L is the differential heat of fusion, that is the difference between
partial molar enthalpy of component A4 in the melt and molar enthalpy of
pure solid component 4; L = H,4 — H°4, (also called final heat of dissolution).
When zp — 0, then L — AH;.

The slope of the tangent to the liquidus curve at the point of melting of pure
component 4 is defined as lim (zp — 0): d7'/dag. Having defined the chemical
potential of component 4 as pa4 = % + R7 In a4 and a4 = x4y, then from
equation (4) it follows that

. ~_ RT? dya =
N TEE T

and since dy4/dap must be equal to zero for xp — 0,

lim d7/dep = —RT}/AH;.
X5—0

However, as each molecule of substance B introduces into the melt of pure
component 4 a number of particles which differs from 1 (so that the actual
molar fraction of new-foreign-particles being introduced is not equal to the
formal mole fraction calculated on the basis of weighed—in amount of subst-
ance B), equation (5) will not be complied with.

It holds generally that [11]

lim d7/dxp = (—RT}AH;) &, (6)
Xa—0
where k is the number of new-foreing-particles introduced by each molecule of
substance B into the melt of substance 4.
The activity vs. concentration dependence should therefore be defined by
such an expression that the following equation would hold:

lim da,A/da:A =k. (7)
Xa—1

In the case of ionic melts this result is provided by the application of the
Temkin model [12] or by the procedure suggested by Haase [4, 11].

The calculation principle

In the case of systems comprising anions of complex structures the appli-
cation of the ideal ionic melt model [1], [2] would obviously be considerably
formal; at the same time, the mathematical expressions employed are compa-
ratively complex. A formal approach, which is mathematically simpler and
likewise meets the requirements of thermodynamic consistency, has therefore
been suggested for the description of liquidus curves and areas of systems
containing anions with complex structures.

Let us define the quantity

My = Afff/k : (8)
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For the integral form, of the liquidus equation one can then write an equation
analogous to equation (3),

M 1 1|8
waafs =5 (g, 7)) o)

The temperature dependence of M 4 is not considered (even if it actually arises
in practice, it is included in the numerical value of correction factor f4). The
reference state is defined by equation (9) and by the condition f4 = 1 holding
within the entire concentration range (and thus also the temperature range
since the relationship holds for the solidus-liquidus equilibrium only).

Let us define the supplementary characteristic p# so that

E
pE — ap (—«q)-—) = RTInf,. (10)
T,»

This characteristic is thus a formal analogy of the excess Gibbs energy, with
which it is identical when f is the activity coefficient. Let us assume that the
concentration dependence of ¢f can be expressed by the relation [1]:

Pf = xq2p[d, + A3(xp —24)] . (1)
The fellowing relations can be obtained by combining equations (10) and (11):

BT In fa = 234 + Ag(dap — 3)],
RT Infz = 2[4, + A(dwp — 1)] . (12)

For given temperature the values f4, fp may be determined from two branches
of the liquidus curve of the binary phase diagram using equation (9).

Then, it is possible to calculate the empirical constants 2., 4;, which are
functions of temperature only (and generally also functions of pressure),
using equation (12).

Calculation of the liquidus areas of a ternary system 4 — B — C is based
on the assumption that the supplementary function ¢f may be determined as
a sum of contributions of the supplementary functions of the binary systems:

pf = ¢fap + PPac + ¢Fpc =
= X42p[As, ap + Ap,aB(B — 24)] + ¥B¥c[Aa. Be + 45, Bc(¥c — ¥B)] +
+ 2a¥c[Aa, ac + Ap, ac(Te — 24)] . (13)

The correction factor f as a function of composition in the ternary system is
obtained by combining equations (10) and (13) (being located over the liquidus
area, tempervature is likewise a function of composition). For a chosen tempe-
rature 7' the equilibrium value of concentration of components 4, B, C was
then determined from equation (9). However, for this calculation it is first
necessary to define the value of quantity M 4 in the given section through the
ternary system (Fig. 1). Let us choose a first type section passing from pure
component A4 (dashed in the diagram). Throughout this section the ratio
of components apfac is constant. Quantity 81 4 can be estimated in first appro-
ximation as a linear combination of values M 45 and M 4¢, obtained from binary
phase diagrams A — B and A — C. (The M 4 values in the corresponding binary
systems are therefore designated M4z and M 4¢ respectively.)

My = (Mapxp + Macxc) | (xp + 2¢) (14)
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As regards the actual technique of calculating the liquidus surface it should
be noted that when considering the constant 2 as a function of temperature,
the equilibrium composition has to be determined by the iteration procedure.

Mg

Fig. 1. Designation of components and M characteristics in the ternary system.

THE RESULTS AND DISCUSSION

The suggested calculation method was applied in the calculation of liquidus
surface of the ternary system diopside—akermanite—leucite. The system
was chosen because the boundary binary systems are known. The literature
references to these binary systems as well as the temperature and composition
of eutectic points are listed in Table I. In the binary system diopside—akerma-

Table I
Composition and temperature of eutectic points of the basic binary systems
Eutectic point composition and temperature
System

% by wt. °C l[ Ref.

Leucite — akermanite 49.5, 50.0 1297 F 3 13
Diopside — akermanite 59.0, 41.0 1361 14
Diopside — leucite 61.5, 38.5 1302 F 2 13
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Fig. 2. Phase diagram of the system diopside—akermanite—leuctte, according to [13].
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I'ig. 3. Calculated phase diagram of the system diopside—akermanite—leucite.
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nite the diopside side contains a region of solid solutions up to about 5 wti 9,
of akermanite. The fusion points of pure components were taken from study
[13]. The calculations were carried out on the'CDC 3 300 computer (Research’
Computer Center, Bratislava). A phase diagram of the ternary system diop-
side—akermanite—leucite was determined expeumentally by Gupta [13]
(Fig: 2). The calculated phase diagram is shown in Fig. 3. As'indicated by the
graphic representation of the given system the agreement | between the expe-.
rimental sections of the phase diagram and the calculated ones is satisfactory.:
In the determination of composition and temperature of the ternary eutectic
the agreement is very satisfactory: .

yel'ilnentally determined '
alues 39 9% D, 29 % A, 32 %L, Te = 1281 4 4°C
calculated values 35 % D, 29 90 A, 36 9% L, T'e = 1280 °C.

The calculation described implies that the suggested fonnallsm employed
in the calculation of phase diagrams of ternary systems comprising anions of
complex structures provides a very satisfactory approximation for estimating
the eutectic point parameters and those of the fields of primary crystallization.
The procedure allows to reduce considerably the number of necessary expe-
rimental measurements in the study of three-component phase diagrams.
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VYPOCET FAZOVEHO DIAGRAMU TERNARNEJ SUSTAVY
DIOPSID—AKERMANIT—LEUCIT

Pavel IFellner, Marta Ch1'enkové—Paué_1’1'oYé' Ly

Ustav anorganickej chémie SAV, Bratislava

Zo znalosti fdzovych diagramov zdkladnych bindrnych sustav sa poéita fazovy
diagram ternarnej sustavy. Vypocet je zaloZzeny na predpoklade, Ze dodatkovi Gibbsovu
energiu terndrnej sustavy je mozné s dobrym priblizenim uréit ako sumu prispevkov
zdkladnych bindrnych sustav. V prédci sa rie$i problém vypoétu fézovych rovnovah
v sustavdach s komplikovanou $truktirou aniénov a navrhuje sa formdlny model,
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vzhladom lcu ktorému sa poéitajui dodatkové velidiny (rozdiel medzi skutoénou hod-
notou a hodnotou ziskanou na zaklade modelu). Vztahy pouzité pre vypoéet fazovych
fliagmmov spliiaji obecné termodynamické zélkony platné pre priebeh kriviek a ploch
ikvidus.

Pri vlastnom vypoéte rovnovéinej teploty sa pouZiva rovnica (9). Velidinu M4
v kazdej bindrnej sustave stanovime s vyuzitim vztahov (6) a (8). Na zdklade experi-
mentdlnych udajov uréime podla rovnice (9) v bindrnych sustavdach pre kazdua teplotu
a zloZenie hodnotu fa. RieSenim sustavy rovnic (12) stanovime konStanty A«, Ag,
ktoré su len funkciou teploty. Dodatkovi velidinu ¢¥ v terndrnej sistave ziskame pre
kazdu teplotu a zloZenie pouzitim rovnice (13). Korekény faktor f4 v terndrnej sustave
ziskame vyuzitim vztahov (10) a (13). Veli¢inu M, v terndrnej sustave uréime pouzitim
rovnice (14) (obr. 1). Ziskané ddaje umoZiiuju potom z rovnice (9) vypoéitat teplotu
primdrnej krystalizédcie zlozky A. Postup vypodtu sa overil pri uréeni pléch primarne;j
krystalizacie sustavy diopsid—akermanit—Ileucit (obr. 2, 3).

Obr. 1. Oznabente zloiek a velidin M v terndrnej sistave.
Obr. 2. IFazovy diagram sustavy diopsid—akermanit—Ilewcit podla [13].
Obr. 3. Vypotlitany fazovy diagram siustavy diopsid—akermanit—leucit.

PACUET ®A30BOI JINAIPAMMDBI TEPHAPHOH CHCTEMDI
MO HCHJI—AREPMAH UT— T E T ITIIT

Hasea Menanep, Mapra Xpeurosa-llayunposa

Huemwmym neopaanunecroli ausmuu CAIH, Bpamucaasa

3Hasg (pasoBLIC JUHA)IPAMMEL OCHOBHLIX OiHaPHLIX CUCTCM, MOMCHO PAacCUlTLIBATL (JasoBYIO
JuarpaMMy TCPHapPHOii ¢cHCTCMEI. PacueT ocHOBLIBACCTSI HA HPELIIOJIOMKCHHH, UTO ;(00aBOYHYIO
sHeprio 1'nddca TepHapioii clieTEMBI MOMKHO ¢ Xopouleii anporcuMajiefi onpe;e;nTh Kak
CYMMY aHCPIHil OTjlelbHBIX OnnapHuuix ciicreM. B padore peruaercd npodieMa pacuera (paso-
BLIX PaBHOBECIL1 B CHCTCMAaX CO CJIOKHOIl CTPYKTYPOI aHIOIOB I IIPEZIaraeTcs opMalbHasd
MOjie:Ih, Ha OCHOBaHHI KOTOPOIl PACCUITHIBAIOTCS N00ABOYNBIC BCIIUHHEI (Pa3HOCTL MEMLY
JICHCTBITE I bHOIT BEMITUMHOII 11 Benuioll, 1oiyuenoii ma ocHoBaHIH Mo;ie: ). OTHOMICHMSI,
HNPHMCHSICMBIE JIJI1sL paciueTa (PasoBLIX JUIAFPAMM COOTBETCTBYIOT OONIHM TCPMO;(IIHAMIUIUCCKHM
3aKOHaM, JICiICTBYIOIIM J{/I51 X0jia KPUBBIX I IIOBCPXHOCTEIT JUIKBITYC.

Tliast coGerTBenHOro pacyeTa PABHOBECHOI TeMIepaTypnl IpHMeHsiercsi ypaBuemue (9).
Benuunny M, B kamgioii dunapHOIl cicTeMe OnpefesisiioT, Heosb3ysa oTHoureHlst (6) i (8).
Ha ocioBaHul DKCHEPIMCHTAILHLIN JIAHHHX OMPEEsIsHOT coiviacHo ypasHewio (9) B Ou-
HapPHMX CHCTCMAaX jUIA Kaioll TeMICPATYPLL I cOCTaBa BEJINYNHY f4. PCINCHICM CHCTCMDI
ypaBHeuuii (12) onpexcisiior KOUCTAHTH Ax, Ag, ABISUOINICCH TOJBRO (PyHKIUE TeMiepa-
Typol. [[obaBounylo Besntunny @f B TCPHAPHOIT CHCTEMC 1OIYUAIOT Vs KaKI0Il TeMIepaTypht
m cocraBa 1pH oMol ypasseruist (13). 1lonpaBounstii Koa()uIMEHT f4 B TepirapHoil clicreMe
OIIpefeIsIoT IpiMeHenneM ypaBmeunst (14) (puc. 1). Ha ocHOBaHHII ITOJYUCHHBLIX JIAHHDIX
MO’KHO W3 ypaBHeHHsi (9) pacculiTaTi TEeMIEPAaTyPy MepPBHYHOI KPHCTAJIIBAIUNT KOMIIO-
HeHTa A. (11ocod pacuera IIPOBCPsIIIT PIL ONIPCACICHIN IIOBEPXHOCTeEll IIePBIHOIT KpHCTa-
JIMBAIUNT CHCTCMDI JUHONCH/{—aKepMatuT—reiiiprr (puc. 2,3).

Puc. 1. O6oznayerue Kosmnorermoc w geaunurs M ¢ meprapueii cucmente.
Puc. 2. daszosan duazpamma cucmens, duoncud—arepaarnum—aeidyun coeaacrio [13].
Puc. 3. Paccuumannaa gazogan duazpamma cucmestsl Ouoncud—arepsuaruim—.aeiyunt.
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