THE EFFECT OF NaPO₃ ON PHASE COMPOSITION IN THE SYSTEM MgO—CaO—SiO₂—·Fe₂O₃—Al₂O₃—Na₂O.P₂O₅ IN RELATION TO BASIC REFRACTORIES

IVAN KAPRÁLIK, MIROSLAV POTANČOK

Institute of Inorganic Chemistry, Slovak Academy of Sciences 809 34 Bratislava, Dúbravská cesta 5 Slovak Technical University, Department of Chemical Technology of Silicates 880 37 Bratislava, Jánská 1

Received 22. 12. 1976

The concentration part of the system MgO—CaO—SiO₂—Fe₂O₃— —Al₂O₃—Na₂O. P₂O₅, which always contains the MgO phase, was found to contain 3 phosphate compounds, namely MgNaPO₄, MgCaNa₂ (PO₄)₂ and CaNaPO₄ in co-existence with the adjacent phases at subsolidus temperatures. NaPO₃ reacts preferentially with CaO, either free or bound to low-melting Ca-phases and in the system there arises high-melting CaNaPO₄ which forms solid solution Ca_{2-x}Na_x(PO₄)_x (SiO₄)_{1-x}.

In terms of rising NaPO₃ concentration the system was found to contain 14 independent 6-phase combinations of univariant equilibria, the MgO phase of which is still thermodynamically stable with the phosphate phases mentioned above. The subsystem MgO—2CaO. SiO₂—MgO. Al₂O₃—MgO. Fe₂O₃—2CaO. Na₂O. P₂O₅ represents a limiting cross section through the optimum NaPO₃ concentrations in the main system MgO—CaO—SiO₂—Fe₂O₃—Al₂O₃—Na₂O. P₂O₅ which is significant from the point of view of phosphate bond in basic refractories.

Introduction

The study of phosphate phases in the oxide system $MgO-CaO-SiO_2-Al_2O_3-Fe_2O_3-Na_2O$. P_2O_5 is motivated by the use of $NaPO_3$ as an addition to sintered magnesite (containing CaO, Fe_2O_3 , Al_2O_3 , SiO_2) for the purpose of improving the thermomechanical properties of basic refractories.

Sintered magnesite can be simulated by means of the five-component oxide system $MgO-CaO-SiO_2-Fe_xO_y-Al_2O_3$. After adding NaPO₃ to the given system the former reacts with the components of the latter at high temperatures, producing phosphate phases. The presence of phosphate phases brings about changes in the initial phase composition and thus affects the physico-chemical properties of the system.

The present paper is concerned with determining the co-existence of the phases, namely in such a concentration volume of the system MgO—CaO—SiO₂— —Fe₂O₃—Al₂O₃—Na₂O . P₂O₅ in which MgO co-exists with the respective phases at subsolidus temperatures. A problem formulated in this manner would require investigation of a considerably large number of samples in the 6-component system. For this reason, on the basis of available literature data on the systems MgO—CaO—SiO₂—Fe₂O₃—Al₂O₃ [1], Mg—CaO—Na₂O . P₂O₅ [2] and MgO—CaO—SiO₂—Na₂O . P₂O₅ [3] it was suggested to study the co-existence of phases in its four 4-component subsystems MgO—CaO— —SiO₂—Na₂O . P₂O₅, MgO—CaO—Al₂O₃—Na₂O . P₂O₅, MgO—CaO—Fe₂O₃— —Na₂O . P₂O₅ and CaO—Al₂O₃—Fe₂O₃—Na₂O . P₂O₅ using the simplified thermodynamic assumption of phase stability on the basis of change in standard free enthalpy ΔG_T° for reaction between the phases in the subsystems in question.

When assuming that ΔC_p for the reactions is equal to zero, then $\Delta H_T^{\circ} \doteq \Delta H_{298K}^{\circ}$ and similarly $\Delta S_T^{\circ} \doteq \Delta S_{298K}^{\circ}$. Then

$$\Delta G_{\mathcal{I}}^{\circ} \doteq \Delta H_{298\mathrm{K}}^{\circ} - T \Delta S_{298\mathrm{K}}^{\circ}.$$

The change in entropy ΔS_{298K}° in reactions between solid phases only is relatively small so that $T\Delta S_{298}^{\circ} \rightarrow 0$, and then $\Delta G_T^{\circ} \doteq \Delta H_{298K}^{\circ}$, and spontaneous courses are exhibited only by exothermic reactions for which $\Delta H_{298K}^{\circ} < 0$ (the Jandera rule).

The stability of the compounds in the four-component subsystems was assessed by means of the heats of formation ΔH_f° from oxides [1], [4], [5]. Since the values of heats of formation ΔH_f° for the phosphate compounds M_2NP (2MgO. Na₂O. P₂O₅) and CMNP (CaO. MgO. Na₂O. P₂O₅) are unknown, their approximate values were derived on the assumption of the analogy

$$rac{\Delta H_{\mathbf{f}}^{\circ}(\mathrm{M_{2}NP})}{\Delta H_{\mathbf{f}}^{\circ}(\mathrm{C_{2}NP})} \doteq rac{\Delta H_{\mathbf{f}}^{\circ}(\mathrm{M_{2}S})}{\Delta H_{\mathbf{f}}^{\circ}(\mathrm{C_{2}S})};$$

then

 $\Delta H_{\mathbf{f}}^{\circ}(\mathbf{M}_{2}\mathbf{NP}) \doteq -413.6 \text{ kJ/mol}$.

Similarly,

$$\frac{\Delta H_{\mathbf{f}}^{\circ}(\mathrm{CMNP})}{\Delta H_{\mathbf{f}}^{\circ}(\mathrm{C}_{2}\mathrm{NP})} \doteq \frac{\Delta H_{\mathbf{f}}^{\circ}(\mathrm{CMS})}{\Delta H_{\mathbf{f}}^{\circ}(\mathrm{C}_{2}\mathrm{S})}$$

and thus

$$\Delta H^{\circ}_{\mathbf{f}}(\text{CMNP}) = -755.3 \text{ kJ/mol}$$

Then, for example for the reaction

$$3 \text{ MgO} + \text{SiO}_2 + 1/2 [\text{Na}_2\text{O} + \text{P}_2\text{O}_5] = \text{M}_2\text{S} + 1/2 \text{ M}_2\text{NP}$$

 ΔH_{298K}° (from the left to the right) = $\Delta H_{f}^{\circ}(M_{2}S) + 1/2\Delta H_{f}^{\circ}(M_{2}NP)$

$$\Delta H^{\circ}_{298\mathrm{K}} = -269.9 \mathrm{kJ}.$$

The negative value of $\Delta H^{\circ}_{298\text{K}}$ implies stability of both compounds on the right-hand side of the equation.

Using the possible reaction courses chosen for the individual subsystems it was possible to estimate the most probable phases assumed to be stable for a given oxidic composition (zero approximation). This assumption of phase stability was then verified experimentally in each particular case. The procedure has been proved highly effective.

EXPERIMENTAL

The samples of the required compositions were prepared by evaporation from solutions of $Ca(NO_3)_2$, $Mg(NO_3)_2$, $Al(NO_3)_3$, $Fe(NO_3)_3$, NaH_2PO_4 . H_2O and SiO_2 sol (all of AR purity) which were mixed in the corresponding propor-

^{*} The following abbreviations were used in the present paper: M = MgO, $S = SiO_2$, C = CaO, $F = Fe_2O_3$, $A = Al_2O_3$, $N = Na_2O$, $P = P_2O_5$.

tions by volume. The solutions were evaporated dry and the resulting intermediate products were heated at 700 °C for the purpose of eliminating all the volatile components and decomposing the nitrates. The final heating of the samples was carried out in air at 1200 °C for a period of 10 hours (both temperature and time of heating were found satisfactory for the reactions to proceed completely).

The crystalline phases in the slowly cooled samples were identified by means of diffraction patterns of powdered samples, obtained at room temperature on the Philips 1540 diffractometer (CuK α radiation, scanning rate $\frac{1}{2}$ ° 2 ϑ /min. The system MgO—CaO—SiO₂—Na₂O . P₂O₅.

The co-existence of the phsophate phases in the system MgO—CaO—SiO₂— —NP was investigated in studies [2], [3]. The results have shown that in the given system MgO co-exists with three phosphate phases, M₂NP, CMNP and C₂NP. On the basis of thermodynamic calculations the authors of the present paper derived the probable existence of connecting lines C₃S—C₂NP, C₂S— —C₂NP, C₃MS₂—C₂NP, CMS—C₂NP, M₂S—C₂NP, M₂S—CMNP, M₂S—M₂NP, MgO—M₂NP, MgO—CMNP, MgO—C₂NP and CaO—C₂NP using a comparison of the ΔH°_{298K} values for all the reactions considered in the system, and proving experimentally the thermodynamic stability of the compounds at the connecting lines. The experimental-results were used in the construction of a diagram of the co-existing phases in the region of the system MgO—CaO—SiO₂—NP characteristic by the presence of MgO at subsolidus temperatures (Fig. 1). The diagram does not concern solid solutions which are formed in the system by substitution of the PO₄²⁻ anions [3], [6], [7].

The diagram in Fig. 1 implies the existence of 7 possible 4-phase combina-

Fig. 1. Phase co-existence diagram for the concentration region of the system MgO—CaO— SiO_2 —Na₂O · P₂O₅ adjacent to the MgO peak.

tions including the MgP phase and arising in the system $MgO-CaO-SiO_2-$ -NP in dependence on the increasing NaPO₃ addition to the system MgO--CaO-SiO₂:

Initial phase composition

$$MgO + CaO + C_3S$$

$$I. MgO + CaO + C_3S + C_2NP$$

$$II. MgO + C_3S + C_2S + C_2NP$$

$$III. MgO + C_2S + C_3MS_2 + C_2NP$$

$$IV. MgO + C_3MS_2^{\downarrow} + CMS + C_2NP$$

$$V. MgO + CMS + M_2S + C_2NP$$

$$VI. MgO + M_2S + C_2NP + CMNP$$

$$VII. MgO + M_2S + CMNP + M_2NP$$

Among the discrete compositions in the MgO—CaO—SiO₂—NP system there arise, apart from the 4-phase combinations, also 3-phase ones of univariant equilibria; of these, the concentration triangle MgO—C₂S—C₂NP is significant with respect to the system NaPO₃ — magnesite (containing CaO and SiO₂). The concentration triangle MgO—C₂S—C₂NP already includes the "critical" concentrations of NaPO₃ in the system MgO—CaO—SiO₂—NP, beyond which there is the region of co-existence of low-melting phosphate phases CMNP (approx. 1185 °C) and M₂NP (approx. 1050 °C) [2], [3].

Up to the "critical" concentration NaPO₃ reacts solely with CaO either free or bound to C_3S , producing the refractory phase C_2NP (m.p. 1830 °C) beside C_2S , or a type (Ca, Na)₂ (PO_4 , SiO₄) solid solution [6], [7]. The solid solution $(Ca, Na)_2$ (PO₄, SiO₄) exists throughout the ternary system MgO—C₂S—C₂NP as a homogeneous phase, so that each composition in the ternary system is reduced to a co-existence of two phases represented by the system MgO--(Ca, Na)₂ (PO₄, SiO₄). Having exceeded the "critical" concentration, NaPO₃ reacts likewise with MgO and in the system there already arise low-melting phosphate phases CMNP, M_2NP and the silicate phases C_3MS_2 and CMS. The phase combinations containing low-melting phosphate and silicate phases are undesirable with respect to the NaPO₃—magnesite system as the phases form equilibrium regions of low eutectic temperatures. The subsystem MgO- $-C_2S-C_2NP$ is a boundary section through the effective concentrations of $NaPO_3$ in the concentration volume of the system $MgO-CaO-SiO_2-NP$ and represents the sole suitable phase composition, comprising only the refractory phases MgO, C₂S, C₂NP as the final ones. The system MgO-CaO-Al₂O₃- $-Na_2O$. P_2O_5 .

Rankin and Merwin [8] constructed the first phase diagram of the system $MgO-CaO-Al_2O_3$ in which the existence of ternary compounds was not yet specified. More recently, Welch [9], using hot stage microscopy, determined in the system two new ternary compounds having the compositions $Ca_7MgAl_{10}O_{23}$ and $Ca_{25}Mg_8Al_{34}O_{84}$ (or $Ca_3MgAl_4O_{10}$). However, Majumdar [10]

has not proved the existence of $Ca_7MgAl_{10}O_{23}$ and in his phase diagram specifies only the ternary compound $Ca_3MgAl_4O_{10}$ (C_3A_2M) with an incongruent point. Glasser and Marr [11] found that the ternary phase C_3A_2M does not co-exist in the system $CaO-MgO-SiO_2-Al_2O_3$ with C_2S and MA, so that the phase C_3A_2M cannot arise in phase composition in the magnesite system containing CaO and SiO₂.

A survey of studies [3], [8], [9], [10], [11] showed that in the system MgO— —CaO—Al₂O₃—NP the phase relationships along the connecting lines MA— —M₂NP, MA—CMNP, MA—C₂NP, CA—C₂NP, C₁₂A₇—C₂NP and C₃A—C₂NP

Table I X-ray phase analysis of samples examined in the system MgO-CaO-Al₂O₃-Na₂O.P₂O₅.

Connecting	Sample composition mol %				Temperature regime	Phases	
	MgO	CaO	F02O3	NP	°C/hr	Freedom	
$\begin{array}{l} MF - M_2 NP \\ MF - CMNP \\ MF - C_2 NP \\ C_2 F - C_2 NP \\ CF - C_2 NP \\ CF_2 - C_2 NP \\ F \circ_2 O_3 - C_2 NP \\ F \circ_2 O_3 - C_2 NP \end{array}$	60.0 40.0 20.0 — — — —	20.00 40.00 66.66 60.00 49.99 50.00	$\begin{array}{c} 20.00\\ 20.00\\ 20.00\\ 16.66\\ 20.00\\ 33.33\\ 25.00 \end{array}$	$\begin{array}{c} 20.00\\ 20.00\\ 20.00\\ 16.66\\ 20.00\\ 16.66\\ 25.00 \end{array}$	850/10 1200/10 1200/10 1200/10 1200/10 1200/10 1200/10	MF, M ₂ NP MF, CMNP MF, β C ₂ NP C ₂ F, β C ₂ NP CF, β C ₂ NP CF, β C ₂ NP F ₀₂ O ₃ , β C ₂ NP	

Fig. 2. Phase co-existence diagram for the concentration region of the system MgO—CaO— Al₂O₃—Na₂O . P₂O₅ adjacent to the MgO peak.

were not known. The initial composition, temperature exposure and the phases present in the investigated samples from the binary parts of the system $MgO-CaO-Al_2O_3-NP$ are listed in Tab. I. A diagram of the system of co-existing phases including the existence region of phase MgO is shown in Fig. 2.

The phase co-existence diagram in Fig. 2 allows to derive 6 possible 4-phase combinations of univariant equilibria, in all cases including the MgO phase, in terms of the increasing amount of NaPO₃ addition to the system MgO— $-CaO-Al_2O_3$:

Initial phase composition

$$MgO + CaO + C_3A$$
I. MgO + CaO + C₃A + C₂NP
II. MgO + C₃A + C₁₂A₇ + C₂NP
III. MgO + C₁₂A₇ + CA + C₂NP
IV. MgO + CA + MA + C₂NP
V. MgO + MA + C₂NP + CMNP
VI. MgO + MA + CMNP + M₂NP

The change in the resulting phase composition in the system MgO—CaO— —Al₂O₃—NP indicates that NaPO₃ within the concentration region MgO— —CaO—CA—MA of the system MgO—CaO—Al₂O₃ reacts preferentially with CaO either free or bound to calcium aluminate phases CA, C₁₂A₇, C₃A, producing the stable phosphate phase C₂NP. The Al₂O₃ liberated by the reaction from the calciumaluminate phases further reacts with the MgO phase and the resulting spinel MA phase co-exists with the MgO and C₂NP ones. When this "critical" concentration of NaPO₃ in the system MgO—CaO— —Al₂O₃—NP is exceeded the reaction begins already with the MgO phase, yielding low-melting phoshate phases CMNP and M₂NP. From the point of view of melting point of compoundsMA (2105°C), C₂NP (1830°C), CA (1600°C), C₃A (1535°C) and C₁₂A₇ (1395°C), the subsystem MgO—MA—C₂NP of the system MgO—CaO—Al₂O₃—NP appears very favourable with respect to eutectic temperatures in the system NaPO₃ —magnesite (containing CaO and Al₂O₃).

Berezhnoy [1], using his own and literature data [12]—[15], constructed a phase co-existence diagram for the system MgO—CaO—Fe₂O₃ in which the MgO co-exists with CaO, C₂F and MF. Co-existence of MgO with the phosphate phases in the system MgO—CaO—NP is likewise known [2]. An analysis of these studies has shown that the phase relations along the connecting lines $MF-M_2NP$, MF-CMNP, $MF-C_2NP$ and C_2F-C_2NP in the system MgO— —CaO—Fe₂O₃—NP are not known. The initial composition, the temperature exposure and the phases present in samples examined by X-ray phase analysis are listed in Table II. The diagram of phases co-existing at subsolidus temperatures in the system MgO—CaO—Fe₂O₃—NP is shown in Fig. 3.

Connecting	8	Sample c mo	ompositio ol %	on	Temperature regime °C/hr	Phases present	
inio	MgO	CaO	Al ₂ O ₃	NP			
MA—M2NP	60.0	<u></u>	20.00	20.00	850/10	MA, M₂NP	

20.00

20.00

20.00

4.55

14.28

1200/10

1200/10

1200/10

1200/10

1200/10

MA, CMNP

MA, βC₂NP

CA, βC₂NP

 $C_{12}A_7$, αC_2NP

 C_3A , βC_2NP

20.00

20.00

20.00

31.82

14.28

Table II

X-ray phase analysis of samples examined in the system MgO—CaO—Fe₂O₃—Na₂O P_2O_5

The diagram of phase co-existence in the system MgO—CaO—Fe₂O₃—NP allows to derive 4 independent 4-phase combinations of univariant equilibria, always including the MgO phase in relation to the increasing 'amount of NaPO₃ addition to the system MgO—CaO—Fe₂O₃: The initial phase composition

 $MgO + CaO + C_2F$ I. MgO + CaO + C_2F + C_2NP II. MgO + C_2F + MF + C_2NP III. MgO + C_2F + MF + C_2NP III. MgO + MF + C_2NP + CMNP IV. MgO + MF + CMNP + M_2NP

The phase co-existence diagram in Fig. 3 also includes experimentally obtained results of phase co-existence along the connecting lines $CF-C_2NP$, CF_2-C_2NP and $Fe_2O_3-C_2NP$ which in the system MgO-CaO-Fe₂O₃-NP delimitate the existence regions of the 4-phase combinations MF-C₂F-CF--C₂NP, MF--CF--CF₂-C₂NP and MF--CF₂-Fe₂O₃--C₂NP, but already without the MgO phase.

The change in the resulting phase composition in the system MgO—CaO— —Fe₂O₃—NP implies that NaPO₃ reacts preferentially with CaO either free or bound to the calcium ferrite phase C₂F arising in the magnesite system (containing CaO and Fe₂O₃) as a low-melting undesirable phase. By reaction of NaPO₃ with the C₂F the latter is eliminated, liberating Fe₂O₃ which further reacts with the MgO phase yielding the spinel phase MF and C₂NP in coexistence with MgO. When this "critical" concentration of NaPO₃ in the system MgO—CaO—Fe₂O₃—NP is exceeded, NaPO₃ starts to react with the MgO phase only, yielding the low-melting phosphate phases CMNP and M₂NP. On the basis of the melting points of the compounds MgO (2,825 °C), C₂NP (1.830 °C), MF (1,713°C) and C₂F (1.449 °C) the concentrations of NaPO₃ situated in the subsystem MgO—MF—C₂NP of the system MgO— —CaO—Fe₂O₃—NP appear very favourable from the point of view of eutectic

MA-CMNP

MA-C₂NP

 $CA-C_2NP$

C12A -----GNP

C₃A-C₂NP

40.0

20.0

20.00

40.00

60.00

63.63

71.43

temperatures in the system NaPO₃ — magnesite (containing CaO and Fe₂O₃).

Hansen, Brownmiller and Bogue [16] found in the system $CaO-Fe_2O_3-Al_2O_3$ the ternary compound C_4AF which had later on been called brownmillerite. According to [17]-[22] brownmillerite C_4AF forms a continuous series of solid solutions with C_2F . Sweyze [23] showed that within the concentration region $CaO-C_5A_3-C_2F$ of the system $CaO-Fe_2O_3-Al_2O_3$ the C_4AF phase

Fig. 3. Phase co-existence diagram for the concentration region of the system MgO—CaO— Fe₂O₃—Na₂O . P₂O₅ adjacent to the MgO peak.

was not a stoichiometrie compound, but merely one member of a series of solid solutions $Ca_2(Fe, Al)_2O_5$ stretching from composition C_2F up to composition C_6Al_2F . The terminal member od solid solutions C_6Al_2F exhibits the properties of a compound. Newkirk and Thwaite [24] studied the concentration region $CaO-CA-C_2F$ and found the main conclusions reached by Sweyze [23] as correct. On the other hand, Schlaudt and Roy [25] established in the C_3A-C_3F section a solid solution having the composition $Ca_2Al_{1,08}Fe_{0,92}O_5$ in co-existence with CaO, which was very close to brownmillerite C_4AF . The composition C_4AF has so far been considered as an intermediate compound in a series of solid solutions along the connecting line between C_2F and the hypothetical compound C_2A , and this point od view has also been respected in the present study.

Literature [1] specifies co-existence of C_4AF with phases arising in the subsystem MgO—CaO—SiO₂—Fe₂O—Al₂O₃ of the main system MgO—CaO— \pm SiO₂—Fe₂O₃—Al₂O₃—NP. It has been shown that in the concentration region of the main system, containing the MgO phase, it is necessary to determine the co-existence of C₄AF with the phosphate phases M₂NP, CMNP and C₂NP. Similarly to the previous cases the stability of phases was assessed according to the H_{29sK} values of the reactions

$$2 \text{ MgO} + 4 \text{ CaO} + \text{Al}_2\text{O}_3 + \text{Fe}_2\text{O}_3 + \text{Na}_2\text{O} + \text{P}_2\text{O}_5 = \text{C}_4\text{AF} + \text{M}_2\text{NP} \quad (1a)$$

$$\Delta \text{H}_{298\text{K}}^\circ = -445,0 \text{ kJ}$$

$$2 \text{ MgO} + 4 \text{ CaO} + \text{Al}_2\text{O}_3 + \text{Fe}_2\text{O}_3 + \text{Na}_2\text{O} + \text{P}_2\text{P}_5 = \text{MgO} + 1/2 \text{ MA} + + 1/2 \text{ MF} + + 1/2 \text{ C}_4\text{AF} + \text{C}_2\text{NP} \quad (1b)$$

$$\Delta \text{H}_{298\text{K}}^\circ = -868,0 \text{ kJ}$$

$$\text{MgO} + 4 \text{ CaO} + \text{Al}_2\text{O}_3 + \text{Fe}_2\text{O}_3 + \text{Na}_2\text{O} + \text{P}_2\text{O}_5 = \text{C}_4\text{AF} + \text{CMNP} \quad (2a)$$

$$\Delta \text{H}_{298\text{K}}^\circ = -796,7 \text{ kJ}$$

$$\text{MgO} + 5 \text{ CaO} + \text{Al}_2\text{O}_3 + \text{Fe}_2\text{O}_3 + \text{Na}_2\text{O} + \text{P}_2\text{O}_5 = 1/2 \text{ MgO} + 1/4 \text{ MA} + + 1/4 \text{ MF} + \quad (2b)$$

$$+ 3/4 \text{ C}_4\text{AF} + \text{C}_2\text{NP}$$

$$\Delta \text{H}_{298\text{K}}^\circ = -868,3 \text{ kJ}$$

$$6 \text{ CaO} + \text{Al}_2\text{O}_3 + \text{Fe}_2\text{O}_3 + \text{Na}_2\text{O} + \text{P}_2\text{O}_5 = \text{C}_4\text{AF} + \text{C}_2\text{NP} \quad (3)$$

$$\Delta \text{H}_{298\text{K}}^\circ = -868,8 \text{ kJ}$$

The negative values of ΔH_{298K}° in equations [1b], [2b] and [3] imply the only co-existence of C₄AF with the phosphate phase C₂NP. X-ray phase analysis also indicated the co-existence of C₄AF with the single phosphate phase C₂NP.

The phase co-existence diagram for the subsolidus region of the system $CaO - Al_2O_3 - Fe_2O_3 - NP$ in Fig. 4 allows to derive 6 independent 4-phase combinations of univariant equilibria in which C_4AF co-exists with C_2NP : $CaO - C_2F - C_4AF - C_2NP$, $CaO - C_3A - C_4AF - C_2NP$, $C_3A - C_{12}A_7 - C_4AF - C_2NP$, $C_{12}A_7 - CA - C_4AF - C_2NP$, $CA - CF - C_4AF - C_2NP$, and $CF - CF_2 - C_4AF - C_2NP$, C_2NP . Among these only four are possible in which MgO co-exists with each phase: $CaO - C_2F - C_4AF - C_2NP$, $CaO - C_3A - C_4AF - C_2NP$, $C_3A - C_{12}A_7 - C_4AF - C_{2}NP$, $C_3A - C_{12}A_7 - C_{4}AF - C_{2}NP$.

In the magnesite system (containing CaO, Fe₂O₃ and Al₂O₃) the present C₄AF phase acts as a low-melting one (m.p. 1415 °C). Its total elimination from the system is attained by reaction between NaPO₃ and C₄AF which produces the refractory phosphate phase C₂NP, liberates oxides Fe₂O₃ and Al₂O₃ which subsequently react with the MgO phase producing refractory spinel phases MF and MA in co-existence with MgO and C₂NP. According to studies [26]—[31] the MA and MF spinel phases form a series of solid solutions of the type Mg (Al, Fe)₂O₄. The solid solution Mg(Al, Fe)₂O₄ then arises in the concentration volume of the quarternary system MgO—MA—MF—C₂NP as a homogenous phase and each composition in the system acquires the cha-

racter of co-existence of three phases represented by the system MgO—Mg (Al, Fe)₂O₄—C₂NP.

Fig. 4. Phase C₄AF co-existence diagram for the concentration region of the system CaO— Al_2O_3 —Fe₂O₃—Na₂O . P₂O₅.

THE RESULTS AND DISCUSSION

The present study was concerned with determining the co-existence of phases in partial volumes of subsystems MgO—CaO—SiO₂—NP, MgO—CaO—Al₂O₃— —NP, MgO—CaO—Fe₂O₃—NP and CaO—Al₂O₃—Fe₂O₃—NP of the main system MgO—CaO—Fe₂O₃—Al₂O₃—NP. An analysis of the results indicated to the existence of 14 independent 6-phase combinations of univariant equilibria in all the instances comprising the MgO phase. The C₂F phase is known not to co-exist with the calcium aluminate phases C₃A, C₁₂A₇ and CA. Then in the system MgO—CaO—SiO₂—Fe₂O₃—Al₂O₃—NP with a molar ratio CaO: :SiO₂ > 2 there are two possible resulting subsystems including free MgO and CaO for the derivation of the mechanism of subsequent changes in phase composition in terms of increasing additions of NaPO₃ to the original system. For molar ratio Al₂O₃: Fe₂O₃ \leq 1 the subsystem MgO—CaO—C₃S—C₃A— —C₄AF and for Al₂O₃ : Fe₂O₃ \leq 1 the subsystem MgO—CaO—C₃S—C₂F— —C₄AF. Initial phase composition

The mechanism of subsequent changes in phase composition in the system $MgO_CaO_SiO_2_Fe_2O_3_Al_2O_3_NP$ indicated that $NaPO_3$ in the system reacts preferentially with CaO either free or bound to Ca-phases, and that in co-existence with MgO there arise three phosphate phases C_2NP , CMNP and M_2NP . The number of occurences of the individual phases in the concentration range of the system MgO_CaO_SiO_2_Fe_2O_3_Al_2O_3_NP is as follows:

Phases	MgO	C₂NP C₄AF	C_2S	MA,MF	C_3S	C ₃ A	other phases
Number of	14	13 9	8	7	4	3	1-2
	~						

occurences

The number of occurences of the phases implies that within the concentration volume of the system MgO—CaO—SiO₂—Fe₂O₃—Al₂O₃—NP, characterized by the presence of the MgO phase, the phosphate phase C₂NP covers the largest existence region second to that of MgO. When, in relation to the system NaPO₃—magnesite (containing CaO, SiO₂, Al₂O₃, Fe₂O₃) the points of phases C₃A, C₁₂A₇, CA, C₄AF, C₃MS₂, CMS, CMNP and M₂NP are regarded as relatively low as compared to the high-melting phases MgO, C₂S, MA, MF and C₂NP, then the 6-phase combination MgO—C₂S—C₄AF—MA—MF—C₂NP (degree

6 in the schematic diagram) represents the terminal step of the subsequent changes in phase compositions which still include the low-melting C_4AF phase. When the last low-melting phase C₄AF has been eliminated by reaction of NaPO₃ with equivalent CaO contained in C₄AF from the system MgO-C₂S- $-MA - MF - C_4AF - C_2NP$, the system then comprises solely high-melting phases represented by the 5-component subsystem MgO-C₂S-MA-MF--C2NP. According to literature [6] [7], [32] the C2S and C2NP phases form a series of solid solutions of the type $(Ca, Na)_2$ (PO₄.SiO₄) and similarly, according to [26]-[31] the phases MA and MF form solid solutions of the type $Mg(Al, Fe)_2O_4$. Then, in the concentration volume of the 5-component subsystem MgO-C₂S-MA-MF-C₂NP there arise solid solutions (Ca, Na)₂ (PO_4, SiO_4) and Mg(Al, Fe)₂O₄ as independent homogeneous phases and each composition in the section through the 5-component subsystem is reduced to the co-existence of three phases, expressed by the system MgO—(Ca, Na)₂ (PO_4, SiO_4) —Mg(Al, Fe)₂O₄.

These results have shown that the subsystem MgO-C₂S-MA-MF-C₂NP is a boundary section of "effective" concentrations of NaPO₃ in the concentration volume of the system MgO-CaO-SiO₂-Fe₂O₃-Al₂O₃-NP since their exceeding results in the formation of low-melting phosphate phases CMNP M_2NP and silicate phases C_3MS_2 and CMS. The optimum amount of NaPO₃ addition to the magnesite system (containing CaO, Fe₂O₃, Al₂O₃, SiO₂) and having the molar ratio $CaO : SiO_2 > 2$, is given by the following relationship:

$$YNaPO_3 = 1.82(a \cdot CaO - 1.87b \cdot SiO_2)$$

where YNaPO₃ is the amount of NaPO₃ addition in % by wt. related to the initial weight of the system,

a is the total CaO content in % by wt. in the original system,

b is the total SiO₂ content in % by wt. in the original system. The amount of NaPO₃ calculated according to the above relationship is equivalent to the total CaO content in the system reduced by the CaO necessary for maintaining the high-melting C_2S phase. Under such conditions NaPO₃ reacts only with CaO either free or bound to relatively low-melting Ca-phases (C_3A , $C_{12}A_7$, CA, C_4AF , C_2F) and the phase composition is subject to changes. From the original low-melting Ca-phases, ions Fe_{3}^{+} and Al^{3+} diffuse into periclase grains forming inclusions of high-melting spinels MA and MF, and/or solid solutions Mg(Al,Fe)₂O₄, while Ca²⁺ ions react with NaPO₃ producing C₂NP, or, in the presence of C₂S, the solid solution (Ca,Na)₂(PO₄,SiO₄) taking up the intergranular space of the periclases. Under these conditions, in the system $NaPO_3$ -magnesite there always arise only the high-melting phases of MgO, C₂S, MA, MF and C₂NP as the final ones.

CONCLUSION

The effect of NaPO₃ addition as a component of the system MgO-CaO--SiO₂-Fe₂O₃-Al₂O₃-NP has indicated implicitly that among the phosphate phases M_2NP , CMNP and C_2NP being formed in the partial section of the concentration volume of the given system, only the C_2NP phase exhibits very favourable refractory properties. The subsystem MgO-C₂S-MA-MF- $-C_2NP$, including the phosphate phase C_2NP , is a boundary section of "effective" concentrations of $NaPO_3$ in the system $NaPO_3$ — magnesite, in which only high-melting phases of MgO, C₂S, MA, MF and C₂NP arise as final ones. The given phases represent the sole suitable phase composition from the point of view of marked improvement of refractory properties in the system NaPO₃— —magnesite, containing a higher amount of CaO and Fe_2O_3 and a lower amount

of SiO_2 and Al_2O_3 and having a molar ratio $CaO : SiO_2 > 2$.

References

- [1] Berezhnoy A. S.: Mnogokomponentnye sistemy okislov, (Multicomponent systems of oxides), Izd. Naukova Dumka, Kijev 1970.
- [2] Kaprálik I., Potančok M.: Chem. zvesti 25, 272 (1971).
- [3] Kaprálik I., Potančok M.: Chem. zvesti 27, 451 (1973).
- [4] Kubaschwski O., Evans E. L., Alcock C. B.: Metallurgical Thermochemistry. Pergamon Press, New York (1967). [5] Bobrownicki W., Jarmakowicz J.: Chemia stosowana 4A, 365 (1966).
- [6] Kaprálik I., Hanic F.: Trans. Brit. Ceram. Soc., (v tlači).
- [7] Midgley H. G.: Trans. Brit. Ceram. Soc. 70, 61 (1971).
 [8] Rankin G. A., Merwin H. E.: Z. anorg. Chem. 96, 309 (1916).
 [9] Welch J. H.: Nature 191, 559 (1961).
- [10] Majumdar A. J.: Trans. Brit. Ceram. Soc. 63, 347 (1964).
- [11] Glasser F. P., Marr J.: Trans. Brit. Ceram. Soc. 74, 113 (1975).
- [12] Hay R., White J.: J. West. Scotl. Iron Steel Inst. 48, 75 (1941).
 [13] Hay R., White J.: J. Blast Furn. St. Plant. 30, 446 (1942).
- [14] Kaprálik I.: Chem. zvesti 20, 452 (1966).
- [15] Rigby G. R., Richardson H. M., Ball F.: Trans. Brit. Ceram. Soc., 46, 313 (1947).
 [16] Hansen W. C., Brownmiller L. T., Bougue R. H.: J. Amer. Chem. Soc., 50, 396 (1928).
 [17] Hansen W. C., Brownmiller L. T.: Amer. J. Sci., 5th ser. 15, 225 (1928).
 [18] Solacolu S.: Zement 21, 301 (1932).

- [19] Tavasci B.: Ann. Chim. Appl. 27, 505 (1937).
- [20] McMurdy H. F.: J. Res. Nat. Bur. Stands. 18, 475 (1937).
- [21] Cirilli V., Burdese A.: Ricerca Sci. 21, 1185 (1951).
- [22] Bertaut F., Blum P., Saguiires A.: Compt. Rend. 244, 2044 (1957).
- [23] Sweyze M. A.: Amer. J. Sci. 244, 65 (1946).
- [24] Newkirk T. F., Thwaite R. D.: J. Res. Nat. Bur. Stands. 61, 233 (1958).
- [25] Schlaudt Ch. M., Roy D. M.: Nature 206, 918 (1965).
- [26] Jones G. O., Roberts F. F.: Proc. Phys. Soc. B 65, 390 (1952).
 [27] Bacon G. E., Roberts F. F.: Acta Cryst. 6, 57 (1953).
- [28] Yearian H. J., Kortright M. J., Langenheim R. H.: J. Phys. Chem., 22, 1196 (1954).
- [29] Derbyshire W. D., Yearian H. J.: Phys. Rev. 112, 1603 (1958).
- [30] Kwestroo W.: J. Inorg. Nucl. Chem. 8, 65 (1959).
- [31] Allen W. C.: Amer. Cer. Soc. Bull., 376, (1966).
- [32] Staroň J.: Ber. Dtsch. Keram. Ges., 46, 369 (1969).

VPLYV NaPO₃ NA FÁZOVÉ ZLOŽENIE V SÚSTAVE $MgO-CaO-SiO_2-Fe_2O_3-Al_2O_3-Na_2O \cdot P_2O_5 \quad VO \quad VZ\check{T}AHU$ K BÁZICKÝM ŽIARUVZDORNÝM MATERIÁLOM

Ivan Kaprálik, Miroslav Potančok

Ústav anorganickej chémie SAV, Bratislava Katedra chemickej technologie silikátov ChTF-SVŠT, Bratislava

Štúdium koexistencie fosfátových fáz v koncentračnej časti sústavy MgO—CaO— SiO₂—Fe₂O₃—Al₂O₃—Na₂O . P₂O₅, obsahujúcej vždy fázu MgO, objasňuje spôsob väzby NaPO₃ v magnezite (obohatený o CaO, FeO₃, Al₂O₃, SiO₂) s mólovým pomerom $CaO : SiO_2 > 2.$

V sústave sa našli tri fosfátové zlúčeniny MgNaPO₄, MgCaNa₂(PO₄)₂ a CaNaPO₄ v koexistencii s priľahlými fázami pri subsolidusových teplotách. NaPO3 prednostne reaguje s CaO voľným alebo viazaným na nízkotaviteľné Ca-fázy (C₃A, C₁₂A₇, CA, C4AF, C2F). Z pôvodných nízkotaviteľných Ca-fáz difundujú ióny Fe3+ a Al3+ do zrn periklasu za vzniku inklúzií vysokotaviteľných spinelov MgFe₂O₄ a MgAl₂O₄, resp. tuhých roztokov MgFe_xAl_{2-x}O₄ a ióny Ca²⁺ reakciou s NaPO₃ tvoria vysokotaviteľný CaŇaPO₄, ktorý v prítomnosti Ca₂SiO₄ tvorí tuhý roztok Ca_{2-x}Na_x(PO₄)_x(SiO₄)_{1-x}, vyplňujúci intergranulárny priestor periklasov.

závislosti od narastajúcej koncentrácie NaPO3 určil sa v sústave mechanizmus následných zmien fázových zložení a existencia 14 nezávislých 6-fázových kombinácií nasledných zmien lazových zložen a existencia 14 hezavisých o-lazových komolnach univariantných rovnováh, v ktorých fáza MgO je eště termodynamicky stabilná s fosfá-tovými fázami. Subsystém MgO—2CaO. SiO₂—MgO. Al_2O_3 —MgO. Fe_2O_3 —2CaO. . Na₂O. P_2O_5 reprezentuje limitný rez optimálnych koncentrácií NaPO₃ v hlavnej sústave MgO—CaO—SiO₂—Fe₂O₃—Na₂O₃. P_2O_5 , z hľadiska fosfátovej väzby v bázic-kých žiaruvzdorných materiáloch. Optimálne množstvo prídavku NaPO₃ do sústavy NaPO₃—magneziť (obsahujúci CaO, SiO₂, Fe₂O₃, Al₂O₃) s mólovým pomerom CaO : : SiO₂ väčším ako 2 je dané vzťahom:

$$YNaPO_3 = 1.82 (a \cdot CaO - 1.87 b \cdot SiO_2)$$

kde YNaPO₃ – množstvo prídavku NaPO₃ vo váhových %, vztiahnuté na pôvodnú váhu sústavy,

a— celkový obsah CaO vo váh. % v pôvodnej sústave, b— celkový obsah SiO₂ vo váh. % v pôvodnej sústave.

Takto vypočítané množstvo NaPO3 podľa uvedeného vzťahu je ekvivalentné celkovému obsahu ČaO v povôdnej sústave, zmenšenému o CaO, ktorý je nevyhnutný pre zachovanie vysokotaviteľnej fázy Ca2SiO4. Za takýchto podmienok vznikajú ako konečné len vysokotaviteľné fázy, reprezentované sústavou MgO-2CaO. SiO2-MgO. Fe2O3--MgO. Al₂O₃-2CaO. NaO. P₂O₅.

Obr. 1. Diagram koexistence fáz v koncentračnej oblasti sústavy MgO-CaO-SiO₂- Na_2O . P_2O_5 , prilahlých k vrcholu MgO.

- Obr. 2. Digram koexistencie fáz v koncentračnej oblasti sústavy MgO-CaO-Al2O3-Na₂O. P₂O₅, prilahlých k vrcholu MgO.
- Obr. 3. Diagram koexistencie fáz v koncentračnej oblasti sústavy MgO-CaO-Fe₂O₃-Na2O. P2Os, prilahlých k vrcholu MgO.
- Obr. 4. Diagram koexistencie fázy C4AF v koncentračnej oblasti sústavy CaO-Al2O3- Fe_2O_3 —Na₂O. P₂Os.

ВЛИЯНИЕ NaPO3 НА СОСТАВ ФАЗ В СИСТЕМЕ Mg—CaO—SiO₂—Fe₂O₃—Al₂O₃—Na₂O . P₂O₅ В ОТНОШЕНИИ К ОСНОВНЫМ ЖАРОУПОРНЫМ МАТЕРИАЛАМ

Иван Капралик, Мирослав Потанчок

Институт неррганической химии САН, Братислава Кафедра химической технологии силикатов химико-технологического факультета СПИ Братислава

Исследование сосуществования фосфатных фаз в концентрационной части системы MgO—CaO—SiO₂—Fc₂O₃—Al₂O₃—Na₂O . P₂O₅, содержащей всегда фазу MgO, объясняет способ связи NaPO₃ в магнезите (с добавкой CaO, Fc₂O₃, Al₂O₃, SiO₂) с молярным отношением CaO : $SiO_2 > 2$.

В системе были установлены три фосфатных соединения MgNaPO₄, MgCaNa₂(PO₄₎₂ и CaNaPO4 в сосуществовании с соседними фазами при температуре субсолидус. NaPO3 преимущественно реагирует со свободной или связанной СаО в низкокипящую Са-фазу (Č₃A, Č₁₂A₇, CA, C₄AF, Č₂F). Из первоначальных низкокипящих Са-фаз днффундируют ионы Fe³ и Al³ в зерна перикласа с образованием включений жароупорных шпинелей MgFe₂O₄ и MgAl₂O₄, нли твердых растворов MgFe₂Al_{2-x}O₄ и ионы Ca²⁺ взаимодействием с NaPO3 образуют жароупорный СаNaPO4, который в присутствин Са2SiO4 образует твердый раствор Са_{2-х}Na_x(PO₄)_x (SiO₄)_{1-x}, заполняющий межгранулярное пространство перикласов.

The Effect of NaPO₃ on Phase Composition...

В зависимости от растущей концентрации NaPO₃ определяли в системе механизм следующих изменений составов фаз и существование 14 независимых 6-фазных комбинаций одновариантных равновесий, в которых фаза MgO является еще термодинамически устойчивой с фосфатными фазами. Подсистема Mg()-2 CaO. SiO2-MgO. Al2O3--MgO. Fe₂O₃-2 CaO. Na₂O. P₂O₅ представляет собой предельный разрез онтимальных концентраций NaPO3 в основной системе MgO-CaO-SiO2-Fc2O3-Al2O3--Na₂O . P₂O₅ с точки зрения жароупорности фосфатной связи в основных жароупорных материалах. Оптимальное количество добавки NaPO₃ в систему NaPO₃ — магнезит (содержащий СаО, SiO₂, Fe₂O₃, Al₂O₃) с молярным отношением CaO : SiO₂ > 2 дано отношением:

$$NaPO_3 = 1,82(a \cdot CaO - 1,87b \cdot SiO_2),$$

где *a* — общее содержание CaO в % по весу в первоначальной системе, *b* — общее содержание SiO₂ в % по весу в первоначальной системе.

Таким образом рассчитанное количество NaPO3 согласно приводимому отношению является эквивалентным к общему содержанию СаО в первоначальной системе, пониженному на CaO, которое необходимо для сохранения жароунорной фазы Ca2SiO4. При таких условнях образуются в виде окончательных фаз только жароупорные фазы, представляющие собой систему

$$MgO = 2 CaO$$
. $SiO_2 = MgO$. $Fc_2O_3 = MgO$. $Al_2O_3 = 2 CaO$. Na_2O . P_2O_5 .

- Рис. 1. Диаграмма сосуществования фаз в концентрационной области системы- $MgO-CaO-SiO_2-Na_2O$. P_2O_5 , npuneranowing κ nuk y MgO.
- Рис. 2. Диаграмма сосуществования фаз в кон центрационной области системы $MgO-CaO-Al_2O_3-Na_2O$. P_2O_5 , прилегающих к пик у MgO.
- Рис. 3. Диаграмма сосуществования фаз в консентрационной области системы MgO—CaO—Fe2O3—Na2O. P2O5, прилегающих к пику MgO.
- Рис. 4. Диаграмма сосущ ествования фазы С4АF в концентрационной области системы СаО-Al₂O₃-Fe₂O₃-Na₂O . P₂O₅.