KINETIKA HYDRATÁCIE TUHNÚCEJ SUSPENZIE α-SADRY

Július Kazimír

Výskumný ústav inžinierských stavieb, 894 13 Bratislava, Lamačská 8

Došlo 11.11. 1976

Pre hydratáciu tuhnúcej suspenzie a-sadry boli navrhnuté kinetické rovnice vychúdzajúce z Avramiho teórie kryštalizácie, Schillerova i Ridgeho rovnica. Experimentálne bolo potvrdené, že hydratáciu autoklávovej a-sadry možno v rozahu 7 až 41 °C najlepšie vystihnúť Ridgeho rovnicou. Aktivačná energia $E = 26,4 \, kJ \cdot mol^{-1}$ je väčšia ako u β -sadry a naznačuje, že hlavným riadiacim dejom bude pravdepodobne rychlosť difúzie. V plyv teploty na hydratačnú dobu a indukčnú periódu je najmä u nízkých teplót podstatne väčši ako u β -sadry.

ÚVOD

Pri hydratácii tuhnúcich suspenzií α -sadry možno taktiež pozorovať indukčnú a hlavnú periódu [1]. V publikácii [2] sa navrhuje pre hydratáciu kinetická rovnica Avramiho:

$$\alpha = 1 - \exp(-kt^{3/2}) . \tag{1}$$

Ridge [3] doporučuje empirickú rovnicu, ktorá má tvar:

$$F(\alpha) = kt + P . \tag{2}$$

Táto rovnica bola diskutovaná v predošlej práci [1].

Rovnica odvodená Schillerom [4] dáva podľa publikácie [2] u suspenzií α -sadry zlé výsledky. Uspokojivé výsledky boli však dosiahnuté v zriedenej netuhnúcej suspenzii [5]. Pre hydratáciu suspenzie β -sadry dáva Schillerova rovnica podľa údajov viacerých autorov horšie výsledky ako Ridgeho [6] až [9]. Vplyv teploty na kinetiku hydratácie tuhnúcej suspenzie α -sadry je doteraz málo prebádaný a je témou tejto práce.

EXPERIMENTÁLNA ČASŤ

Hmoty

Pre skúšky boli použité 4 komerčné autoklávové α -sadry vyrábané z čistého kusového prírodného sadrovca. (tab. I).

Prístroje a metodika

Stupeň premeny α a ostatné vlastnosti pri hydratácii tuhnúcich suspenzií α -sadry sa zisťovali kvaziadiabatickým kalorimetrom popísaným v [1]. Postupovalo sa tým istým spôsobom ako v predošlej práci [1]. Používané symboly majú ten istý význam ako v [1]. Pomer voda/sadra = 0,7.

Pochybnosti o vhodnosti adiabatickej metódy pri zisťovaní kinetiky hydratácie tuhnúcej suspenzie sadry v prácach [10], [11] a uprednosťovanie izotermnej metódy nie sú opodstatnené. Podľa výsledkov prác [12], [13] stupeň

J. Kazimír:

Tabulka I							
Niektoré	vlastnosti	použitých	αsadier				

č.	Druh	Kryšt. H2O [%]	Blaineho merný povrch [cm²/g]	Indukčná perióda ¹) Δt_i [min.]
1.2.3.4.	Hydrocal (US Gypsum) Hartformgips N°1 (Börgardts) Alfa Matrix (Monte Corona) α-Halbhydrat (Roddewig)	6,17 5,63 5,57 5,96	4162 3107 5033 2610	$23 \\ 29 \\ 29 \\ 15$

) Adiabaticky pri $\Delta T \cdot \Delta t^{-1} = 0,1$ °C. min⁻¹ [3].

premeny získaný z výsledkov merania v adiabatickom kalorimetri uspokojivo koreluje s hodnotami zistenými analyticky i izotermne. Korekcia teplôt len málo ovplyvňuje výsledky adiabatického merania [9].

VÝSLEDKY A ICH DISKUSIA

Kinetika hydratácie a-sadry podľa Combe a Ridge

Na obr. 1 a 2 sú vyznačené závislosti $\log(1 - \alpha)$ a $F(\alpha)$ na hydratačnej dobe v hlavnej perióde $\Delta t^{2/3}$ a Δt podľa (1) a (2) u sadier č. 1 až 3. Vypočítané hodnoty korelačných koeficientov dokazujú, že Ridgeho rovnica (2) platí pre tieto sadry lepšie ako rovnica Combe (1). Tento výsledok je v súhlase s prácou [11].

V ďalšej časti práci sme vyhodnocovali vplyv teploty na tuhnúcu suspenziu α -sadry č. 4 len Ridgeho rovnicou (2).

Obr. 1. Závislost log $(1 - \alpha)$ na $\Delta t^{2/3}$ pre $\alpha = 0.05$ až 0.95 podľa Combe [2]. $\times =$ sadra č. 1 $(T_i = 23.1 \ ^{\circ}C)$, $\blacktriangle =$ sadra č. 2 $(T_i = 20.5 \ ^{\circ}C)$, $\odot =$ sadra č. 3 $(T_i = 20.9 \ ^{\circ}C)$.

Obr. 2. Závislost F(α) na Δt pre $\alpha = 0,05$ až 0,95 podľa Ridge [3]. Označenie sadier ako v obr. č. 1.

Vplyv teploty na kinetiku hydratácie α-sadry

Vplyv teploty na kinetiku hydratácie a rýchlostnú konštantu bol zisťovaný v rozsahu 6,7 až 40,7 °C podľa rovnice (2) podobne ako v predošlej práci [1]. Získané hodnoty sú v tab. II a Arrheniova priamka je na obr. 3.

Obr. 3. Závislosť log k na T_i^{-1} podla Arrhenia pre sadru č. 4.

Hodnoty korelačných koeficientov ukazujú, že Ridgeho rovnica je dobre použiteľná aj pre hydratáciu tuhnúcich suspenzií α -sadry. Rýchlostná konštanta k pri danej teplote T_i je v porovnaní s β -sadrou menšia a doba hydratácie Δt dlhšia [1]. To znovu jednoznačne potvrdzuje známu skutočnosť z mnohých publikácií [10], [15] až [24]. Nameraná hodnota E = 26.4 kJ. mol⁻¹ je pod-

J. Kazimír:

Tabulka II Prehľad výsledkov pre sadru č. 4

ý.	T_i [°C]	$10^3 \cdot T_{i^{-1}}$ [K]	ΔT max [°C]	$\max_{[^{\circ}C} \Delta T \cdot \Delta^{t-1}$	Δt_i [min]	Δt [min]	$\alpha \max_{\Delta T \cdot \Delta t^{-1}} [^{\circ}C \cdot \min^{-1}]$	$\frac{1}{[s^{-1}]}$	<i>d</i> –	100r ² [%]
$ \begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ \end{array} $		3,5727 3,5688 3,5637 3,5410 3,5323 3,5285 3,5050 3,4904 3,4722 3,4411 3,4234 3,3921 3,3875 3,3749 3,3624 3,3478 3,3366 3,3123 3,2992 3,2916 3,2776 3,2776 3,2783 3,2414	$\begin{array}{c} 22,3\\ 22,5\\ 22,9\\ 22,6\\ 23,0\\ 22,6\\ 22,9\\ 22,7\\ 22,7\\ 22,7\\ 22,7\\ 22,7\\ 22,7\\ 22,6\\ 22,3\\ 21,4\\ 20,6\\ 20,9\\ 20,1\\ 19,9\\ 19,5\\ 19,4\\ 18,8\\ 18,5\\ 19,4\\ 18,8\\ 18,5\\ 18,5\\ 18,5\\ 18,5\\ 17,9\\ 17,5\\ 5\\ 17,9\\ 17,5\\ 5\\ 18,5\\$	$\begin{array}{c} 0,55\\ 0,56\\ 0,58\\ 0,59\\ 0,64\\ 0,61\\ 0,63\\ 0,69\\ 0,72\\ 0,70\\ 0,83\\ 0,72\\ 0,77\\ 0,83\\ 0,78\\ 0,78\\ 0,78\\ 0,78\\ 0,81\\ 0,81\\ 0,81\\ 0,83\\ 0,84\\ 0,84\\$	$\begin{array}{c} 35\\ 30\\ 24\\ 25\\ 23\\ 24\\ 20\\ 19\\ 18\\ 16\\ 11\\ 14\\ 15\\ 13\\ 14\\ 14\\ 15\\ 15\\ 14\\ 14\\ 15\\ 15\\ 14\\ 14\\ 13\\ 13\\ 12\\ 20\\ 14\\ 14\\ 13\\ 13\\ 12\\ 20\\ 14\\ 14\\ 13\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12$	$\begin{array}{c} 65\\ 66\\ 69\\ 61\\ 62\\ 59\\ 56\\ 55\\ 53\\ 47\\ 46\\ 44\\ 43\\ 41\\ 41\\ 39\\ 38\\ 38\\ 38\\ 38\\ 37\\ 35\\ 22\\ \end{array}$	0,58 0,61 0,59 0,59 0,61 0,62 0,61 0,57 0,59 0,59 0,59 0,59 0,59 0,59 0,57 0,59 0,57 0,52 0,52 0,52 0,52 0,52 0,52 0,54 0,53 0,55	2,8593 2,8639 2,8713 2,8270 2,8374 2,8271 2,8186 2,7976 2,708 2,7650 2,7386 2,7353 2,6626 2,6626 2,6626 2,6626 2,6626 2,6219 2,6200 2,5989 2,5862 2,5946 2,5821 2,5687 2,5687 2,5524	6,55 6,63 6,82 6,75 6,75 6,73 6,81 6,92 6,87 6,94 7,18 7,06 6,95 6,93 6,92 6,89 6,89 6,89 6,89 6,89 6,89 6,89 6,89 6,89 6,89 6,89 6,89 6,98	98,7 98,9 99,2 99,1 99,2 99,2 99,2 99,2 99,2 99
25 26 27	37,6 39,8 40,7	3,2175 3,1948 3,1857	16,9 16,6	0,84 0,78 0,82	13	$\frac{30}{37}$	0,55 0,57 0,52	2,5379 2,5383	7,12 6,92	98,9 97,5

statne väčšia ako u β -sadry [1]. Táto hodnota leží asi uprostred medzi hodnotami E = 17,2 a 34,3 kJ . mol⁻¹ zistenými v zriedených netuhnúcich suspenziách v publikáciách [5], [14]. Nameraná hodnota E nás núti k prijatiu predpokladu, že pri hydratácii tuhnúcich suspenzií α -sadry bude pravdepodobne hlavným riadiacim dejom difúzia ako predpokladá publikácia [2].

Vplyv teploty na indukčnú periódu

Na obr. 4 sú vynesené závislosti trvania indukčnej periódy Δt_i a hodnoty konštanty P od teploty T_i . Teplota $T_i > 20$ °C podobne ako u β -sadry nemá na Δt_i vplyv [1]. Pri teplote $T_i < 20$ °C nastáva značnejšie predĺženie indukčnej periódy v porovnaní s β -sadrou, ktoré poukazuje na pomalšie rozpúšťanie polhydrátu a zníženú difúznu rýchlosť v súhlase s prácami [1], [14].

Konštanta P, ktorá vyjadruje prítomnosť zárodkov na začiatku hydratácie je u α -sadry väčšia ako u β -sadry [1]. Zrná α -polhydrátu majú väčšie množstvo porúch, ktoré sú "aktívnymi zárodkami" ako zrná β -sadry zložené zo submikroskopických kryštálov polhydrátu. Teplota $T_i > 20$ °C nemá, podobne ako u β -sadry, na hodnotu P vplyv [1]. Pod touto teplotou hodnota P vzrastá v dôsledku väčšieho stupňa presýtenia.

Vplyv teploty na hydratačné teplo

Možno predpokladať, že hydratačné teplo $\Delta H = f (\Delta T_{\text{max}})$. Z obr. 5 možno zistiť, že maximálny vzrast teploty ΔT_{max} je pri tej istej teplote o niečo menší

Obr. 4. Závislosť $\Delta t_i a P$ na teplote $T_i u$ sadry č. 4.

Obr. 5. Závislosť $\Delta T_{\max} a \max \Delta T$. Δt^{-1} na teplote $T_i u$ sadry č. 4.

ako u β-sadry [1]. To je v súhlase s prácami [16], [23]. Z rozpúšťacích tepiel bolo nájdené pre β-CaSO₄. 1/2 H₂O $\Delta H_{29s} = -$ 19,25 kJ . mol⁻¹, kým pre α -CaSO₄. 1/2 H₂O $\Delta H_{298} = -$ 17,15 kJ . mol⁻¹. So vzrastom teploty T_i sa hodnota ΔT_{max} zmenšuje. V dôsledku tepelných strát je však tento vplyv značne skreslený. Hodnoty ΔH získané priamou hydratáciou metódou DSC sú taktiež v malom rozmedzí teplôt zaťažené veľkou chybou [24]. Hodnoty max $\Delta T \cdot \Delta t^{-1}$ sú u α -sadry v dôsledku pomalšiej hydratácie v porovnaní s β -sadrou menšie a vykazujú väčšie zníženie pri $T_i < 20$ °C. Vplyv teploty je väčší ako u β -sadry [1], [8].

V plyv teploty na dobu hydratácie a stupeň premeny α pri max ΔT . Δt^{-1}

Tieto závislosti sú vyznačené na obr. 6 a 7. Vplyv teploty na dobu hydratácie α -sadry je podstatne väčší ako u β -sadry a približně lineárny v súhlase s [11].

Obr. 6. Závislosť Δt na teplote T_i u sadry č. 4.

Obr. 7. Závislosť $e_{\max}\Delta T$. Δt^{-1} ne teplote T_i u sadry č. 4.

Stupeň premeny $\alpha_{\max}\Delta T$. Δt^{-1} vychádza z adiabatického merania u α -sadry podobne ako u β -sadry ~ 0,6 a so stúpaním T_i mierne klesá. Poukazuje to na opodstatnenosť aplikácie Ridgeho rovnice (2) na kinetiku hydratácie tuhnúcich suspenzií autoklávovej α -sadry i β -sadry ako bolo rozvedené v predošlej publikácii [1].

ZÁVER

Metódou kvaziadiabatického kalorimetra bolo experimentálne potvrdené. že kinetiku hydratácie tuhnúcej suspenzie autoklávovej α -sadry je možné podobne ako u β-sadry lepšie vystihnúť Ridgeho rovnicou ako rovnicou Combeho. Zistená aktivačná energia $E = 26.4 \text{ kJ} \cdot \text{mol}^{-1} \text{ v rozsahu teplôt } 7-40 \,^{\circ}\text{C}$ je vyššia ako u β -sadry, čo naznačuje, že riadiacim dejom je rýchlosť difúzie.

Vplyv teploty na hydratačnú dobu a indukčnú periódu je u α-sadry väčší ako u β-sadry. Doba hydratácie je dlhšia a hydratačná rýchlosť menšia, čo súhlasí s doterajšími publikáciami. Indukčná perióda sa pri teplotách nad 20 °C prakticky nemení, kým pod 20 °C nastáva značné predlženie, ktoré je väčšie ako u β -sadry. Vplyv teploty 7—40 °C na hydratačné teplo bude malý.

Literatúra

- [1] Kazimír J.: Silikáty 21, 137 (1977).
- [2] Combe E. C., Smith D. C., Braden M.: J. appl. Chem. 20, 287 (1970).
- [2] Connor E. C., Sinth D. C., Braten M.: J. appl. Chem. 20, 267 (1970).
 [3] Redge M. J., King A., Molony B.: J. appl. Chem. Biotechnol., 22, 1065 (1972).
 [4] Schiller K.: J. appl. Chem. 12, 135 (1962); 24, 379 (1974).
 [5] Šatava V.: Sbornik Vys. školy chem. technolog. Praka, B-13, 5 (1969).
 [6] Goto M., Ridge M. J.: Austral. J. Chem. 18, 769 (1965).
 [7] Ridge M. J., Beretka J.: Rev. Pure appl, Chem. 19, 17 (1969).
 [8] Clifton J. R.: NBS Technical Note No 755, januáry 1973. NBS Washington.
 [9] Nordhauson C., Zamont Kolk Cime 20, 277 (1976).

- [9] Neuhauser G.: Zement-Kalk-Gips 29, 277 (1976).
- [10] Karmazsin E., Murat M.: Bull. Soc. Chim. France 17 (1974).
- [11] Murat M., Karmazsin E.: Proc 4 ICTA Budapest 1974, V. 4., 87 (1975). Ed.: Buzas I. Akad. Kiadó Bupadest 1975.
- [12] Ridge M. J., Surkevicius H.: Austral. J. appl. Sci 13, 246 (1962).
- [13] Vološčenko I. A., Kolesnikov, V. A.: Platonova M. P.: Ukr. Chim. Ž. 40, 617 (1974).
- [14] Šatava V., Marek J., Matoušek J.: Silikáty 5, 309 (1961).
- [15] Berg L. G., Svešnikova V. N.: Izv. Akad Nauk SSSR Otd. Chim. Nauk Nº1, 19 (1946).
- [16] Budnikov P. P., Kosyreva Z. S.: Voprosy Petrogr. i Mineral. Akad. Nauk SSSR 2, 342 (1953).
- [17] Budnikov P. P., Kotov V. I.: Trudy Mosk. Chim. Technolog. Inst. Mendelejeva 21, 136 (1956).
- [18] Fischer K. W.: Wiss. Z. Hochsch. Archit. Bauwesen Weimar 10, 351 (1963); Zement-Kalk-Gips 17, 467 (1964).
- [19] Reingen W.: Silikat J. 3, 470 (1964).
- [20] Lautenschlager E. P., Harcourt J. K., Ploszaj L. C.: J. Dental Research 48, 43 (1969).

- [21] Bertoldi G., Kolmer H.: Zement-Kalk-Gips 25, 379 (1972).
 [22] Krönert W., Haubert P.: Zement-Kalk-Gips 25, 553 (1972).
 [23] Daimon H., Rhee H. K., Kondo R.: J. Ceram. Assoc. Japan 78, 277 (1970).
 [24] Hashizume G.: Gypsum et Lime č. 122, 20 (1973).
- [25] Southard C. J.: Ind. Engng. Chem. Ind. Ed. 32, 442 (1940).

К КИНЕТИКЕ ГИДРАТАЦИИ ТВЕРДЕЮЩЕЙ СУСПЕЙЗИИ α-ГИПСА

Юлиус Казамир

Научно-исследовательский институт инженерных сооружений, Братисласа

Для гидратации твердеющей суспензия «-гипса предлагались кинстические уравнения Комбом, Риджом и Шиллером. С помощью аднабитического калоримстра в пределах температур 7-41 °C было установлено, что кинетику гидратации автоклавированного α-гипса можно с успехом выражать с помощью уравнения Риджа.

Скорость гндратации с-гипса в сопоставлении с β-гипсом меньше, в то время как время гидратации больше — в согласии с до сих пор имеющимися взглядами.

Установленная энергия активации E = 26,4 кдж. мол⁻¹ существенно выше, чем

у β-гипса и показывается, что управляющим процессом является диффузия. Температуры < 20 °С увеличивают период индукции у α-гипса больше, чем у β-гипса. Наоборот, температуры > 20 °С не оказывают, подобно как и у β-гипса, существенного влияния. Влияние температуры на теплоту гидратации, подобно как и у β-гипса, в данном пределе температур невелико.

- Puc. 1. Зависимость $\log (1 \alpha)$ от $l^{2/3}$ ДЛЯ $\alpha = 0,05 0,95$ согласно Комбу [2]. × = гипс № 1 ($T_i = 23,1 \, ^{\circ}C$), $\blacktriangle = гипс № 2$ ($T_i = 20,5 \, ^{\circ}C$), $\circledcirc = гипс № 3$ ($T_i = 20,9 \, ^{\circ}C$).
- Puc. 2. Зависимость $F(\alpha)$ от $\Delta t = 0.05 0.95$ согласно Риджу [3]. Обозначение гипсов согласно рис. 1.
- Рис. 3. Зависимость log к от Ti⁻¹ согласно Аррению для гипса № 4.
- Рис. 4. Зависимость ∆іі и Р от температуры Ті у гипса № 4.
- Puc. 5. Зависимость $\Delta T_{\max} a_{\max} \Delta T$. Δt^{-1} от температуры T_i у гипса № 4.
- Puc. 6. Зависимость Δt от температуры $T_i y$ гипса \mathbb{N} 4.

Рис. 7. Зависимость а_{тах}∆Т. ∆t⁻ⁱ от температуры Т_i у гипса № 4.

HYDRATION KINETICS OF SETTING & GYPSUM SUSPENSION

Július Kazimír

Research Institute of Civil Engineering, Bratislava

Hydration of setting suspensions of β -hemihydrate has been kinetically described by equations suggested separately by Combe, Ridge and Schiller. Measurements in an adiabatic calorimeter in the temperature range from 7 to 41 °C showed that the hydration kinetics of autoclave α -hemihydrate can be well described by the Ridge equation. The hydration rate of α -gypsum is lower when compared with that of β -hemihydrate, and the time of hydration of the former is longer, which is in agreement with general experience. The activation energy $E = 26.4 \text{ kJ} \cdot \text{mol}^{-1}$ found by the author is substantially higher than that of β -hemihydrate and incidates that diffusion is the controlling process. Temperatures below 20 °C prolong the induction period of α -gypsum more than that of β -gypsum. On the other hand, temperatures above 20 °C have no substantial effect, similarly to the case of β -gypsum. The effect of temperature on the heat of hydration will be small, similarly to β -gypsum.

- Fig. 1. Log (1α) vs. $\Delta t^{2/3}$ for $\alpha = 0.05$ to 0.95 according to Combe [2]. $\times = gypsum$ No. 1 $(T_i = 23.1 \, {}^{\circ}C.) = gypsum No. 2 (T_i = 20.5 \, {}^{\circ}C), = gypsum No. 3$ $(T_i = 20.9 \ ^\circ C).$
- Fig. 2. $F(\alpha)$ vs. Δt for $\alpha = 0.05$ to 0.95 according to Ridge [3]. Designation of gypsum types as in Fig. 1.
- Fig. 3. Log k vs. T_1^{-1} according to Arrhenius, for gypsum No. 4.
- Fig. 4. Δt_i and P vs. T_i for gypsum No. 4. Fig. 5. ΔT_{\max} and $\alpha_{\max} \Delta T$. Δt^{-1} vs. temperature T_i for gypsum No. 4.
- Fig. 6. Δt vs. tempetarure T_i for gypsum No. 4.
- Fig. 7. α_{\max} . ΔT . Δt^{-1} vs. temperature T_i for gypsum No. 4.