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Equations for the calculation of enthalpy of eutectic and peritectic (in-
congruent) melting tn multicomponent systems were derived on the basis of
relations between enthalpy (and heat capacity) and phase (and chemical)
composition of heterogeneous systems. In the derivation use was made of
supplementary quantities related to the reference state represented by a heterogene-
ous mixture of molten pure components and to a model of reqular melt behaviowr.
The relationship was further analysed between heat flux and the rate of melting
during the heating up of a heterogeneous system; the model of sample with
non-ungform temperature distribution has been suggested for the purpose of
calculating the ‘‘equilibrium” curve of dynamic calorimetry from « known
phase dragram.

INTRODUCTION

Dynamic calorimetry methods (including differential thermal analysis—DTA (1],
{2], [3]) represent a valuable source of information on the behaviour of solids. Experi-
mental results of these methods are usually the most readily available source of data
on temperatures and enthalpies of melting and phase transformation processes.
The rules for interpretation of experimental curves obtained by these methods have
for the most part been derived from the laws of equilibrium (and kinetic) behaviour
of one-component systems, which offer only limited application in the case of
multicomponent systems. Study of these systems is of considerable significance for
a number of manufacturing technologies, in particular in the fields of silicates and
metallurgy.

The present study had the aim of analysing the results of the rules of equilibrium
behaviour of multicomponent systems with respect to the character of enthalpic
changes taking place during the heating up of a sample, and of deriving quantitative
relationships which would allow the data on enthalpies of eutectic and incongruent
melting to be utilized in calculations of phase diagrams [4] and of comparing the
course of experimental curves obtained by dynamic calorimetry with the equilibrium
behaviour of multicomponent heterogeneous systems.

ANALYSIS

Heterogeneous system and phase composition

A heterogeneous mixture containing as a whole n moles of individual components ¢
is described by total chemical composition by means of total molar fractions Xt
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N N
Xt =nblng, e E,z; nt; 21 Xt =1, (1)
i= =
(where N is the number of components in the system).
The chemical composition of each of the phases forming the heterogeneous mixture
is expressed by means of molar phase fractions X¢

N
X? = n?/ng; ne =Yy, ng; Y Xe=1, (2)
=1

where nf is the number of moles of component 7 contained in phase ¢.
In addition to this the phase composition of a heterogeneous system may be
conveniently described by means of phase fractions &,

P
bp = ngfne; Zlftp =1, (3)
p=

(where P is the number of phases in the system).
By combining the definition equations [1], [2], [3] one finds that the following
system of equatione holds for the given three types of fractions:

I)
Xt =Y &,X0. (4)
p=1

This represents the general lever rule from which it is possible to derive further
relations, e.g. that from the two-phase region (phases & and f§) of the N-component
system by equation

e = (X{— X])/(Xs — X8, (5)
X0 = [XYX2 — X0) — X3 X, — XD))/(Xy — X)) (6)

In a heterogeneous closed system there may arise three types of equilibrium changes
in relations to temperature. The continuous changes reflect the temperature depend-
ence of components in the individual phases, the break changes arising as a result of
at least one of the phases in the system beeing eliminated or created, and finally the
step changes corresponding to the equilibrium situation where at least one of the
phases of the original system is eliminated and simultaneously at least one new phase
is formed. From the point of view of the Ehrenfest’s classification of phase trans-
formations in one-component systems the step changes (including for instance
eutectic and incongruent melting) are related to the first order transitions whereas
the break changes (e.g. attainment of the liquidus temperature) are similar to the
second order transitions.

Entha-mlpy and thermal capacity of phases

Let molar enthalpy HY, of phase @ be defined as a ratio of total enthalpy of this
phase Hy to the material amount of this phase ng

H?))t:HQ’/nIP' (7)

When calculating the enthalpy changes one need not necessarily know the absolute
enthalpy values. When studying the melting processes it is convenient to operate
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with supplementary molar enthalpy*) which is the difference between the actual state
enthalpy and the reference state one, the latter being taken as a hypothetical
heterogeneous mizture of molten pure components (i) at the given temperature.

The supplementary enthalpy value of any molten pure component at an arbitrary
temperature (therefore even at temperatures lower than the melting one of the
component) is equal to zero

Hm, (Tl) = m, (TZ) = 1);3; 2(T1) = = HE N= 0. (8)

m,

In view of the standard state chosen the supplementary molar enthalpy of a homogene-
ous melt is equal to its mixing enthalpy. If the melt constitution and the choice
of the components [4] comply with the condition for application of the regular
behaviour model, then the supplementary molar enthalpy of the melt HZ may be
expressed as a function of its chemical composition (X¥) in the form

N1 XN
HyXi) =Y 3 XXy, (9)
i=1 j=i+1
where £2;; designates the quantities called interaction parameters.

Partial derivative of supplementary molar melt enthalpy with respect to tempera-
ture (supplementary molar heat capacity C%) is equal to zero with respect to the
standard state chosen when assuming that the £;; interaction parameters are
temperature-independent:

Ch, = (0HL[0T)xr = 0. (10)
In the determination of supplementary molar enthalpies of solid phases let us make
use of the fact that enthalpy of congruent melting of a given phase AH}! is the
difference between the enthalpy of the melt the composition of which is identical
with that of solid phase X¢ and the required solid phase enthalpy HY,

HY = HL(X7) — AHY. (11)

The value of this quantity may also be obtained from the data on the enthalpy of
combination AHY of the given phase from pure solid components and from the data
of congruent melting enthalpies AH¥ of these components:

Ar
HY, = AHF — % Xy.AHM. (12)
i=1
Supplementary molar heat capacity of solid phases C¢ is found to be identical (with

respect to [11] and [10]) with the negative value of the change in thermal capacity
at congruent melting ACY

He M
on =205 __ %8s __acw (13)

This quantity may be used in a short Taylor’s series for expressing the temperature
dependence of congruent melting enthalpy

*) The supplementary cuantities have been introduced for instance in chemical thermodynamics
of gaseous mixtures [5]. In view of the character of these cuantities those introduced in the present
study may be regarded as a certain extensicn of conception of homogeneous supplementary
cuantities applied to heterogeneous systems. The supplementary quantities should be distinguish-
ed from the excess ones for which an ideal homogencous mixture is the reference state.
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AHM(T) = AHM(TM) 4 (T — TM) ACH, (14)

in which T designates the temperature of congruent melting.
The temperature dependence of the quantities in equation (12) may be expressed
similarly. For the enthalpy of formation we may write

AHE(T) = AHE(To) 4 (T'— To) ACY, (15)

where ACT is the change in thermal capacity in the formation reaction
(ACT = —ACH + Y X? ACH, (16)
(where ACY are the changes in thermal capacities due to melting of pure com-

ponents).
The supplementary molar capacity may be determined from molar heats Cp of the
individual phases (insofar as they are available):

Cs = 02— X2CE | (17)

The data on molar enthalpies Hy related to the usual standard state may likewise
be used for expressing the supplementary enthalpies,

T
Hy(T) = HY(To) — Y, XgHg (To) + Tj Ce(T) dT. (18)

APPLICATION

Enthalpy of a heterogeneous mixture

Supplementary molar enthalpy H!, of a heterogeneous system containing P phases
is equal to the sum

P
Hy, = ), SoH (19)
The course of temperature dependence of enthalpy of an equilibrium mixture can
therefore be determined when temperature dependence of the phase fractions (phase
diagram) and the enthalpy values of the individual phases are known. For example
the enthalpy value of the system comprising a solid phase of constant composition (¢)
and a melt (L) may be determined for an arbitrary temperature using the equation

_ Xt— XHT) _x
H(T) = m (HE(X9) — AHY] + h—XL(

into which the value on the liquidus curve corresponding to temperature 7' is
substituted for X7.

Partial derivative of supplementary mixture enthalpy with respect to temperature
is further on called supplementary molar heat capacity of mixture at constant phase
composition and designated by the symbol C,.

From equation (19) it follows that

O = (0HR[0T)zp = 3, £6C5,. (21)
[

HI[XHT)],  (20)

Molar heat of (% of such a mixture (at constant phase composition) can be determined
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by adding molar heats of pure component melts (Cf ;) to the supplementary quantity
or directly from molar heats of the individual phases (C§)

Cf = Ch + 3, XiCP, = 3 €005 (22)
i (2

The slope of the temperature dependence of supplementary enthalpy for an equi-
librium mixture containing (P — 1) < (N — 1) of solid phases of fixed composition
and a melt of variable composition can be determined from the total derivative

an, Pl QH!, dXF

—_— 4 _
where for partial derivatives on the right-hand side one obtains
oH:, . 0fL oHE X<t 9HL dX* o 0%
— —m P ¥ 24
ax: ~ Hngxr v | 2 axs dX{'] L A

where &, is the melt phase fraction.

In the last equation derivative HZ is determined from the respective model
(e.g. (9)), the derivative of phase fractions from the expressions for phase fractions
(e.g. (D)), which are determined by solving the system (4) and in a similar way
derivative dX//dX} is determined [for instance by means of equation (6)]. For
a mixture of solid phase ¢ of constant composition with melt (L) with regular
behaviour one finds (in a binary system) that the equilibrium slope of temperature
dependence of enthalpy, with respect to (9), (23) and (24) is given by the expression

dH!, X4 — X% X$— Xt
d_'£ =~ X —xi ACY + TX—§—X{')2 [x;xgg(xg +
X3 dx%
52-—2) + AHYM = 25
+ 3 —2) + am | (25)

At liquidus temperature (T' = T'1,, X% = X}) the slope of the enthalpy on tempera-
ture dependence undergoes a step change the quantity of which may be expressed
by the following equation for the given system of phase ¢ and melt L:

e X — X \aT Jr_m,

in which (dX%/dT) is the reciprocal value of tangent line slope at point X, = X%
of the liquidus curve (in phase diagram 7' vs. X,).

Enthalpy at an invariant process

In a closed system (X! = const.) containing (N -+ 1) phases of fixed composition
(X# = const.) all the changes are only those in molar fractions. However, in view
of (3) these changes are bound by the condition

déy = — Y dé&o. (27)
PFy

Moreover, as the phase fractions are bound to the molar fractions by a system of
N eguations (4), the shares of the increments

dép/déy = Aéy|AE, = —Ep = const. (28)
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have a constant value in a clogsed system containing phases of fixed composition.
An infinitesimal change in molar enthalpy of such a system is then given by the
expression

dan = H;Jrl) déy — ; H%’;‘Ew déy (29)
PFY
~and for integral enthalpic change AH!, it holds that
=

On the basis of these considerations let us now derive equations for enthalpic changes
due to step increment of melt in the system, that is eutectic or incongruent melting.
In the course of such melting the system contains (N + 1) phases and it will be
assumed that the composition of the phases involved is not subject to any change
insofar as at least one of the initial set of phases has not ceased to exist.

Eutectic melting

Let us consider an equilibrium mixture of N solid phases of N-component system
the total composition of which is identical with that of eutectic melt X!= XZ.

Phase fractions & of this eutectic mizture can be determined from the system of
equations (4)

N
XF=7Y &Xy. (31)

@p=1
After attaining eutectic temperature 7'g all the original phases melt (Aéy = —&7)

producing a homogeneous melt (A&, = 1).
Afp=—&;; QAbr=1. (32)

Using equation (28) we find that for a mixture of N phases contained in an eutectic
mixture and a melt of eutectic composition it holds that

bo=&;. (33)

By substituting into the (30) the following equation is obtained for enthalpy of
melting AHY of eutectic mixture

AHY = HA(XT)— ) &0HS,. (34)

The change in heat capacity corresponding to melting of eutectic mixture ACY is

determined from the derivative of enthalpic change AHE with respect to temperature

P N
iggt = 00F =3 & ACY. (35)

The step change in phase composition at eutectic temperature 7'g takes place in all
systems containing the same system of phases as the eutectic mixture. Phase
fractions &) of initial mixture of N solid phases are given by the system of equations

Xi=Y &Xxp. (36)
[

After attaining temperature 7'g there arises a mixture containing eutectic melt
(having the composition XZ) in an amount corresponding to phase fraction £ (which
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simultaneously represents the increment of melt A% due to eutectic melting) and
at least one solid phase (w) disappears from the initial system in the course of melting.
As regards the changes in phase fractions A&E of solid phases, equations (33) and (28)
yield the relation

fq, —Eg = A&f ='-‘§; A‘EL Z—E;EL' (37)
The melt phase fraction £ = A&% is determined from the balance of phase fractions
B =0—=3 &L=} &), (38)

PFo PF®

in which the sums do not include the phase fractions of phases @ which have dis-
appeared during eutectic melting. By substituting into (30) and comparing with (34),
(molar) enthalpy AHF of eutectic melting of a general mixture is given as follows:

AHE — &8 AHE. (39)
=T
\/
= TE
-7
Xp 1
i
Hnixg
&
N aHy
_ N -
! AH:‘ N M .A_UV F
| \
Ay % : V
AHy
’- /AH;
2 XZE X —o- B

Pigy 1. Phase diagram and enthalpic quantities; HL — enthalpy of melt, v — molar fractions of

component B, AH; — formation enthalptes, TM, AHM — temperatures and enthalpies of congruent
melting, T, OHE — temperature and enthalpy of melting of cutectic miature, Tp, HE — temperature
and enthalpy of incongruent melting.
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For enthalpy of melting of a binary eutectic mixture, on the basis of equation (34)
(x = X;) it follows

AHE = HE(Xp) — 22— X L by — . (40)

Peritectic melting

Let us first consider an incongruent phase ¢ having the composition X%. On
attaining peritectic temperature 7'p the incongruent phase is completely decomposed
(A&} = —1) producing a peritectic mixture containing peritectic melt (XF) and
(N — 1) solid phases. Phase fractions &, of peritectic mixture are determined from
the system of equations

N1
Xy = EXT + ) £X¢. (41)
=1
For enthalpy of incongruent melting AHT of phase » one finds

The change in heat capacity ACY due to 1ncongruent melting is established from the
derivative of the enthalpy change with respect to temperature

d AH?
—3- = ACE = ACY — z £5 ACH. (43)

The step change in phase composition takes place in all heterogeneous systems
containing an incongruent phase . The initial mixture lacks at least one of the
phases of the set comprising a peritectic mixture so that the total number of phases
in the initial mixture is at the most N.

The phase fractions of the initial mixture are determined from the system of
equations

N—
Xi=&§X1 + Z £X7, (44)
=

where XP is substituted for the melt. The procedure employed for eutectic melting
can be used for determining the enthalpy of peritectic melting AHY

AH? = £0. AHP. (45)

Enthalpy of lncongruent melting of binary phase ¢ can be described according to (42)
(x =X 2) \
X, — Xp

AHP = AHY — HL(X,) + ———X; ———H (X} + ——*XV Hy.  (46)

Melting and heat flux in the course of heating

In dynamic calorimetry methods the rate of heat exchange between the sample
and its environment is measured under conditions of continuous heating. Heat
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flux ¢ from the environment into the sample compensates the increase in sample
enthalpy.
When considering a sample one mole in size there holds the equation

Q(= g/ns) = dH}y/dr, (47)

where H} is molar enthalpy of the sample related to standard state and t is time.

The degree of conversion and the rate of melting

The increase in enthalpy can be divided with advantage:to the stage involving an
increase (change) in temperature and the state related to a change in phase composi-
tion; however, the latter can be characterized by a single parameter only, namely
by the conversion degree .

. (H} oHL\ .
o= () (28)

where 7' = d7T'/d7, & = da/dr.

Partial derivative of enthalpy with respect to temperature at constant phase
composition is equal to molar heat of mixture C!, whereas the derivative of molar
enthalpy (related to usual standard state) with respect to the degree of conversion
is identical with the derivation of supplementary molar enthalpy. Using (22),
equation (48) can be written in the forin

Z XiCr . + CL) T + (0H! [oar) . (49)

We have so far not specified the conversion degree of «. When studying melting
processes this transformation degree should be chosen advantageously so as to be
equal to zero for the system free from melt (£1, = 0) and to attain unity value for the
system containing the melt only (£ = 1).

Supplementary enthalpy of the initial state (@ = 0) is then given by the equation

Hy(«=0) =) EHg, (50)

where £ are phase fractions of solid phases before the onset of melting, and for the
final stage (homogeneous melt) by the equation

Ht(e = 1) = HE(X}). (51)

For general state of the system (0 < o < 1) the supplementary enthalpy is given
by equation

H. (0 < o0 < 1) = ELHL(XE) + Y, &oHY,. (52)

When choosing the conversion degree « it should be advantageous to require that
the instantaneous enthalpy value be its linear function.*)

H(0 < 2 < 1) = of Hiy(e = 1) — Hiy(e = 0)] + Hey (o = 0). (83)

Then partial derivative (0H! [0x)T, further on called summary enthalpy of melting
AHY,
H! [0o)p = AHY = H(« = 1) — H! (x = 0) (54)

*) The problems of the conversion degree are also dealt with in ref. [6], [7].
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is independent of conversion degree «, which in view of its being derived from
enthalpic quantities will be called enthalpic advancement of melting (in contrast
to actual advancement of melting which is given by the phase fraction &y, of melt)
and will be designated ay. The explicit expression for this quantity follows from
equations (50)—(54)

wn = [ELHL(XT) + Z (Eo— £9) HE)|AHY. (55)

Let us express supplementary heat capacity of the mixture also as a linear function
of this transformation degree

Ch(an) Z §oCY, = Z §5C% + an ACY, (56)
where
ACY¥ = CL — ) £0Cs,. ((57)
1t o — 0,
then Chlen) = (1 —an) Y. 6505, (58)
D

By substituting (54) and (58) into equation (49) one obtains the relation between
heat flux, the rate of heating and the enthalpic rate of melting oy

z Xi0p; + (1 —an) ) &C8) T + AHY6n. (69)
?

Experimental curves of dynamic calorimetry methods record the time course of
heat flux [¢ = f(7)] and that of temperature [T' = f(r)]. By integrating the difference
between heat flux and the capacity term it is possible to determine summary enthalpy
of melting,

Toap=1 .
AHY¥ = [ (@—CD)dr (60)

To, =0

as well as the time course of enthalpic advacement of melting,

an(v) = (1/AHY) | O(Q — CLT) dr, (61)
where the relationship of this quantity to the parameters of phase composition is
given by the explicit expression (55).

Instantaneous enthalpic rate of melting &y can be determined from experimental
curves of dynamic calorimetry as the difference

an = (@ — CLT/AHY. (62)

Thia rate is of course a function of phase composition as well as one of temperature.
If one desires to express it in a form suitable for description of invariant melting,
it should be borne in mind that in the course of such melting the sample comprises
(N + 1) phases. Phase composition of such a system is then determined by N
independent parameters. In the case of systems where the melt is assumed to be
a single phase of variable composition, phase fraction &z, of melt and (N — 1) molar
fractions of melt X¥ may be chosen as independent parameters of phase composition.
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Enthalpic rate of meltlng is then found as a function of actual rate of melting £r,
of the rate of change in melt composition X;* and of temperature 7',

O 0 oo 7
Gy = 5”5L+2 X Xp 4 =1, (63)

while the terms for the respective partial derivatives are determined from
equation (55)

Oy

55, = UB(XD) + 3 Hy(050/060)) AHY, (64)
oL
'§°§i = [£2(0HZ/0XY) + 3, HE0k[0X)AHY, (65)
aao;{ = H(X}) Y, [6g — (1 — &1) £ O /(AR (66)
P

“Equilibrium” course of melting

The melting process is usually not an activated one [8], so that its time course
is to a considerable degree given by the rate at which heat is supplied into the sample,
by the rate of temperature increase, and by equilibrium dependence of phase com-
position on temperature. For this reason determination of an even approximate
relation between the time course of heat flux and the sample temperature on the
one hand and the equilibrium dependence of phase composition on the other is of
considerable significance. For the purpose of deriving this relationship let us make
use of the following consideration.

In a real experimental arrangement in dynamic calorimetry there exists a certain
temperature distribution in the sample at each moment (with respect to spatial
coordinates) so that in the course of heating the sample center exhibits a lower
temperature than its surface. Let us assume that local phase composition corresponds
to heterogeneous equilibrium for the respective local temperature 9. Enthalpy
of the entire sample is then a sum of enthalpies of the individual volume elements
of sample which may be expressed (in supplementary molar enthalpies) by equation

[ ¢ f(9) agf j f (67)

‘\[IN MIN
where the integrating limits are the lowest (Tyin) and the highest (Tnax) local
temperatures at the given moment and function f(§) is a distribution function
expressing the proportion of sample having an instant local temperature in the range
from & to & 4 d@. Derivation of this distributing function requires demanding solving
of differential equations of heat flux for the given sample shape, necessarily using
certain simplifying assumptions. For practical reasons let us accept such simplification
which allows for simple solving of integrals in (67). This simplification is given by the
assumption that the distributing function is specified by the conditions

f=1 for Tmixy = 9 < Tmax,
f=0  for & < Twuin or & > T'max. (68)
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When further assuming that T'wmax is identical with the sample temperature 7'
measured and that the difference in temperature is designated by the symbol 6 =
= Tmax — Tyin, equation (67) acquires the form

T

ST = % J' HE () ad. (69)
T—q)

The increase in enthalpy of one mole of the temperature-non-uniform system
specified in this way per unit of time is then given by the expression

dH: dH{
dT" — Tro' = [; XCL , + oL aT] T, (70)
where the total derivative with respect to temperature is determined from (69),

so that, using (47), the heat flux corresponding to equilibrium course of melting is
described by equation

= {¥, O X} + [H},(T) — H},(T' — 6)]/6} T (72)

On the basis of equation (72), “equilibrium” dependence of heat flux on temperature
was calculated for the course of melting of a hypothetical heterogeneous binary
system (X4 = 0.3, Tg = 700 K) with immiscible solid phases (X§ =0, X} =1),
AHM AHM = 20 000 J/mole, ( M = 1000 K) and ideal melt (Qu = 0), which
is p]otted in Flg 2.

100

G [Jmol’sT]

700

900 1 :
1 1

600 700 800

Q
T(x] =LY

Fig. 2. Heat flux during he;m"ng of model heterogeneous system; Q — heat flux (full line), §, — ,,equi-
librium'* advancement of melting (dashed line).

Model binary system: Tg = 700 K; X9 = 0; X¥ = 1; Ty = 1000 K; AHy = Hy = 20 kJ/mole;
i2=0;=10K; X = 0.3; Ch = C% = 0.
DISCUSSION AND CONCLUSION

The analysis of relations between enthalpy and phase composition, which has
been worked out in the present study, had the main aim of increasing the number
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of initial data for the calculation of phase diagram curves. The data on enthalpy
and temperature of congruent melting required for the calculation of phase diagrams
according to [4] are not available for phases which do not melt congruently or melt
at excessively high temperatures. This represents a considerable restriction of the
applicability ot more flexible models for the behaviour of melt and frequently makes
calculation impossible. Experimentally available enthalpy values for eutectic and
peritectic melting may advantageously supplement the set of input data for calcul-
ation, together with the data on summary enthalpies of melting, insofar as the
relationships between these quantities an dthe other enthalpic data in the system
are obvious. The choice of the reference state as well as that of the other assumptions
has been conformed to the requirement of direct applicability of the equations
derived for the purposes of numerical calculations based above all on quantities
that can be obtained by the methods of dynamic calorimetry.

a) The main advantage of the chosen reference state (8) lies in that it allows to
work out a complete set of mutually consistent thermodynamic data from temper-
atures and enthalpic changes measurable directly by DTA and DSC methods.

b) In view of the fact that the enthalpic data are measured in the same temper-
ature range in which they are subsequently utilized in calculation, the chosen
reference state permits a simple form of their temperature dependence to be chosen.

As the occurence of solid phases with a markedly variable composition is less
frequent in ceramic systems, most of the relations have been derived for hetero-
geneous systems in which the melt is the sole phase of variable composition.

The concentration dependence of melt enthalpy is described by a regular model (9)
based on the conception of pair interactions. Within the framework of the model,
parameters £2y; of a general N-component system are identical with the interaction
parameter of the respective binary system /—J. The model represents the simplest
form of non-ideal concentration dependence which, owing to the low number of
parameters, is advantageous for calculation of phase diagram curves from a small
number of input data. In the case of phases and systems for which larger numbers
of experimental data are available, it is possible to choose modelsallowing to describe
more accurately the actual behaviour of the systems.

Determination of enthalpy of invariant melting, or possibly of further data useful
for the determination of phase diagrain curves is related to the problems of correct
interpretation of experimental curves obtained by dynamic calorimetry methods
(including DTA).

For this reason the final part of the present study is devoted to the relations
between the conversion degree determined from experimental curves of dynamic
calorimetry (enthalpic advancement «g) and the phase composition parameters.
For the course of melting in real arrangement of dynamic calorimetry use is made
of a simplified model which allows “ideal equilibrium” curve of dynamic calorimetry
to be calculated on the basis of data on enthalpies of the individual phases and from
equilibrium curves of the phase diagram.

Extension of the calculation by “equilibrium” DTA curves, comparing the curves
calculated in this way with experimental values and possible derivation of more
realistic models of a sample with nonuniform temperature distribution should be the
subject of further studies.

The relationships derived for melting processes are for the most part applicable
also for processes involving phase transitions or other invariant changes (eutectoid
and peritectoid decompositions) in solid phase and for processes taking place
in systems solid phase — solution (solution = melt). However, they have been

siiikaty ¢. 4, 1979 301



P. Holba:

Variables characterizing individual phases
and a heterogeneous system

Molar Supple-
No.moles : Supple-
of 4-th fr:.; :l:}? S| Phase Molar Molar | mentary menffa,ry
com- come. fraction | enthalpy heat molar ?Z;}r
penent ponent enthalpy capacity
Phase ¢ n? x? & HY c% H?, c?,
ﬁglr:ogeneous nk X- o HE cL HE cx
Melt of
component — — £F Hg,, Ch.i HE, Chii
Solid phase
of pure — — & Hj, C3 H3p N
component,
Heterogeneous
mixture of n{ X - H (048 Ht, C,
phases
Quantities characterizing the individual processes
T Initial Final o Change | Change
emper- h h position . Tor | i Tor
abure phase phase of final in molar | in molar
composition | composition enthalpy heat
melt
Congruent M L . M M
meltging of phase Ty fo=1 fo=1 Xp=Xx¢ AHq ACy
Phase formation _ F "
from solid (T) (& =X | =1 — AHy ACy
components
Melting of _ Xi= £ i
eutectic mixture Tr fL=0 §o=1 =XF=X! AHE ACK
General eutectic _ L _ YVE E E
melting Tg &, =0 0<éL=1| X = X AH| ACH
Incongruent - - P P
melt.ingg of phase Tr & =1 §&y=20 X = X7 AH, ACy
Peritecti 1ti - n
e melting| ;, o<g=1 | =0 | XF=XP | AEP | acr
Summary melting ar P
of system (T, T1y| &L =0 =1 Xk =X AHx ACx
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derived for a closed system and thus do not allow, without respective adjustment,
to describe processesi ncluding escape of gases from the system (evaporation, ther-
mal decomposition — dissociation, sublimation) or interaction of gaseous atmos-
phere with the sample (oxidation, burning, condensation, reduction).
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List of Symbols

Quantities
o«  — conversion degree («g-enthalpic advancement)
Cp — molar heats
Cm — supplementary molar capacities
H, — molar enthalpy related to conventional standard state
H,;; — suplementary molar enthalpy
!, — supplementary molar enthalpy of sample with non-uniform temperature
distribution
A — differences (changes)
N — number of system components
P — number of system phases
n  — material amount — number of moles
T  — temperature (7';, — liquidus temperature)
#  —local temperature
8  — difference between maximum and minimum local temperature
T — time
X; — molar fractions
&p — phase fractions
2 — interaction parameter
Indexes (exponents)
expressing relation of a quantity towards
B — eutectic melting
F  — combining from pure solid components
1,7 — individual system components (always index)
¢ — individual phases of the system (also y, w, e, f8, ¥)
L — melt
M  — congruent (or summary) melting
P — peritectic (incongruent) melting (except for €, quantities)
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t — heterogeneous system as a whole

*  — eutectic or peritectic mixture

0  — initial phase composition of the system (except for quantities Hy)
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ENTALPIE A FAZOVE POMERY PRI TANf V HETEROGENNICH
SOUSTAVACH

Pavel Holba*)

Ustav anorganické chemie C:SAV, Ref

Jsou odvozeny rovnice, které vyjadiuji vztahy mezi celkovou entalpii uzaviené heterogenni
N-slozkové soustavy a fdzovymi poméry pii jejim tani. Heterogenni smés je popsana souborem
totalnich moldrnich zlomkd Xj, moldrnich zlomka fazi X¥ a fazovych zlomki &,. Doplitkové
entalpické veli¢iny jsou vztazeny k referenénimu stavu reprezentovanému hypotetickou hetero-
genni smési tavenin &istych slozek [rovnice (8)]. Pro molarni entalpii homogenni taveniny HE je
pouzit model reguldrniho chovéani (9). Molarni entalpie pevnych fazi H¥, souvisi s entalpii jejich
kongruentniho tani AH:{ a s entalpii jejich sluéovéani (z eistych pevnych slozek) AH; .Jsouodvo-
zeny rovnice pro teplotni zavislost totélni entalpie heterogenni soustavy H;,, pro entalpii tani
eutektické smési AHE a tani inkongruentniho AH;’ (obr. 1). Je analyzovan vztah mezi tepelnym
tokem mé&fenym pii dynamické kalorimetrii a rychlosti procesu téni. Je navrzen model teplotné
nehomogenniho vzorku, ktery umoznuje vypoéet ,,rovnovainé* kiivky dynamické kalorimetrie
ze znamého fédzového diagramu (vysledek pro idedlni bindrni soustavu je uveden na obr. 2).

Odvozené rovnice jsou uréeny pro vypocet fazovych diagrami [1] z kalorimetrickych dat a pro
interpretaci experimentélnich kiivek ziskanych metodami dynamické kalorimetrie.

Obr. 1. Fdzovy diagram a entalpické velifiny;

HL — entalpie taveniny, * — moldrni zlomky slozky B, AHF — entalpie sludovdni z &istych
slozek, T, AHM — teploty a entalpie kongruentniko tani, Ty, AHE — teplota a entalpie
tdni eutektické smési, Tp, AHY — teplota a entalpie inkongruentniho tdni.

Obr. 2. Tepelny tok pii ohievu modelové heterogenni soustavy;
Q — tepelny tok plnd &dra, &1, — ,,rovnovdind'‘ pokrodilost tani prerudovand édra.
Modelové bindrni soustava: Ty = T00K; X¢ = 0; X?=1; Ty = 1000K; AHp =
= AHy = 20 kJ/mol; @ = 0; CF = C¥ = 0;6 = 10 K; X4 = 0,3.

*) Novd adresa: P. Holba, PUDIS, Novédkovygch 6, 18000 Praha 8.
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9HTAJBIHA 1 ®A3OBBIE OTHOIMEHUA
ITPU ITJABJEHHAM B TETEPOTEHHBIX CUCTEMAX

ITasen Tosba

Hucmumym neopeariuvecrkoti xusmuu YCAH, Pucexc

BriBeieHb! ypaBHEHH, CBA3LIBAIONIME OOILYIO 9HTAJILIINIO 3aKPLITOI I'eTepOreHHOH CHCTeMbE
¢ (a30BLIMU OTHOIIEHHAMH HpHM ee IUIaBjeHun. I'eTeporeHHas cMech omucaHa HaGopom
MOJISIDHBIX JoJleif cmecr X, MOJIApHLIX joJeit asd X¥ i (asoBuix fouei &p. JlomonnHuTEN-
Hple 9HTaJILIMYECKHC BEJIMUHMHLI OTHOCATCA K OCHOBHOMY COCTOSIHIIO, KOTOPLIM I30OpaHa
I'MIIOTETHUECKAS] reTeporeHHast cMech pacIIaBJIEHHLIX UHCTLIX KOMIIOHEHTOB [ypaBHeHme(8)].
Jla1s1 MOJISIDHOIT 9HTANBIIMHM TOMOTEHHOr0 pacniaBa H, HCIO0IL3yeTca MO peryJisipHOTO
nosejienns (9). MossipHpie aHTaNbINKM TBepALIX (a3 M cBA3aHLI ¢ BHTAJILIMSAMH HX KOH-

M
rpyeHTHoro IvlaBiieHnss AHp 1 ¢ BHTANLIIMAMI HX 00pa30BaHusA (113 UICTHIX TBEPULIX KOM-

F .- o
noHeHTOB) AH . BLiBeieHb! ypaBHEHUsA [JIA TeMIepaTypHOil 3aBHCIMOCTH 06Iei SHTAIILIIK
reTeporeHHoi CHCTeMBI /5, JUIs1 BHTAJILIIMM I1JIaBJIeHHA 3BTeKTHUecKol cmecu AH§ 1 miasJe-

HHA HHKOHTPY9HTHOTO AHy (Puc. 1). PaccMaTpuBaeTcsi OTIOINEHIE MEXYy TCINIOBBLIM ITO-
TOKOM, H3MepfIeMbIM METOJOM IHHAMMUECKON KaJIOpHMETPHH II CKOPOCTHIO Hpoliecca INIaBlie-
Husl. IlpepiioskeHa Mofe)n, KOTOpasi I103BOJIsIeT pacyeT ,,PaBHOBECHOIi'" KPHUBOI HHAMH-
YecKOoii KaJIOPHMETPHH, HCXOMs U3 H3BECTHOI JiaIPAMMBI IHIABKOCTH (Pe3YJILTAT jiisd Hjlealh-
HOIl GIIHADHOM cHCTEMB! MpPHBEJeH Ha puc. 2).

BriBepgenHbIe ypaBHEHMA CJIYKaT (I PacUeTOB JuarpaMy miaBrocTH [ || 13 najopumerpu-
4CCKHUX JAHHBIX I JUIA OOCYKJICHIS KPHBLIX 9KCIEPHMEHTA  (IHAMMYECKOIl KaIOPUMCTPHIL.

Puc. 1. Dazosas Ouazpamma w snmaavnuvecxkue geauvunst; ML — osnwmaavnua pacnaaca,

x — wmoasprse doan komnonenma B, AHF — snmaavnus odpasocanus uz meepdwx
M

roanonenmos, T™M, AHg — mestnepamyput u oHmasbnu KoHepYaNmuo20 NAACAEHUR,

TE, H — meanepamypa u sumasbnus naasaenus sgmermuvecrkoii cmecu, TP, Hi —

meatnepamypa u ILMEAALRUR UHKOHZPYIHNIHO020 NAACACHUSR.

Puc. 2. Tenaocoii nomor npu rHazpese sodeavholi zemepozennoli cucmessl; @ — menaocoi
nomok (noanas rpusas), &L — ,,pasnosecnas’’ npodeuscrnocmv naasaenus (npepui-
eucmas kpugas).

: 5 M
Modeavnas 6unaprnas cucmema: Te =700 K; X§ =0; X7 =1; Ty = 1000 K;
M M ] 3
AHy = AH,, = 20 kdoclmonv; 212 = 0;, C¥ =C¥ =0; 6 = 10 K; X5 = 0,3.
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