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Equations for the calculation oj enthalpy oj eutectic and pei·itectic ( in­
congruent) melting in multicomponent systems were der-ived on the basis oj 
relations between enthalpy (and heat capacity) and phase (and chemical) 
composition oj hetei·ogeneous systems. In the derivation use was made oj 
supplementary quantities related to the rejei·ence state represented by a heterogene­
ous mixture oj molten pure components and to a model oj regulai· melt behctviour. 
The relationship was furthei· analysecl between heat flux ancl the rate oj melting 
during the heating up oj a heterngeneous system; the model oj sample with 
non-unifoi·m ternperature clistribution has been suggested for the purpose oj 
calculating the "equilibriurn" curve oj clynarnic calorimetry frnrn a lcnown 
phase diagram. 

INTRODUCTION 

Dynamic calorimetry methods .(including differential thermal analysis-DTA [1], 
[2], [3]) represent a valuable source of information on the behaviour of solids. Experi­
mental results of these methods are usually the most readily available source of data 
on temperatures and enthalpies of melting and phase transformation processes. 
The rules for interpretation of experimental curves obtained by these methods have 
for the most part been derived from the laws of equilibrium (and kinetic) behaviour 
of one-component systems, which offer only limited application in the case of 
multicomponent systems. Study of these systems is of considerable significance for 
a number of manufacturing technologies, in particular in the fields of silicates and 
metallurgy. 

The present study had the aim of analysing the results of the rules of equilibrium 
behaviour of multicomponent systems with respect to the character of enthalpic 
changes taking place during the heating up of a sample, and of deriving quantitative 
relationships which would allow the data on enthalpies of eutectic and incongruent 
melting to be utilized in calculations of phase diagrams [4] ancl of comparing the 
course of experimental curves obtained by dynamic calorimetry with the equilibrium 
behaviour of multicomponent heterogeneous systems. 

ANALYSIS 

Heterogeneous system and phase composit ion 

A heterogeneous mixture containing as a whole ni moles of  individua! components i 
is described by total chemical composition by means of total molar fractions Xi 
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N .

nt= Ln�; 
i=l 

N 

L Xf = 1, 
i=l 

(where Nis the number of components in the system). 

(1) 

The chemical composition of each of the phases forming the heterogeneous mixture 
is expressed by means of molar phase fractions Xf 

N 

L xr = 1, 
i=l. 

(2) 

where nf is the number of moles of component i contained in phase <p. 
In addition to this the phase composition of a heterogeneous system may be 

conveniently described by means of phase fractions ;q, 

p 

L ;q, = 1, (3) 
,p=l 

(where P is the number of phases in the system). 
By combining the definition equations [1], [2], [3] one finds that the following 

system of equa.tions holds for the given three types of fractions: 
p 

Xf = L ;q,Xf. (4) 
<p=l 

This represents the general lever rule from which it is possible to derive ťurther 
relations, e.g. that from the two-phase region (phases ex and Pl of the N-component 
system by equation 

;« = (Xi - Xf)/(X't - .Xf), 

Xf = 
[X}(X't - Xf) - Xr(X� - Xf)]/(X't - Xi)-

(5) 

(6) 

In a heterogeneous closed system there may arise three types of equilibrium changes 
in relations to temperature. The continuous changes reflect the temperature depend­
ence of components in the individual phases, the break changes arising as a result of 
at least one of the phases in the system beeing eliminated or created, and finally the 
step changes corresponding to the equilibrium situation where at least one of the 
phases of the original system is eliminated and simitltaneously at least one new phase 
is formed. From the point of view of the Ehrenfesťs classification of phase trans­
formations in one-component systems the step changes (including for instance 
eutectic and incongruent melting) are related to the first order transitions whereas 
the break changes (e.g. attainment of the liquidus temperature) are similar to the 
second order transitions. 

Enthalpy and thermal  capac ity of  phases  

Let molar enthalpy Hr,, of  phase <p be defined as a ratio of total enthalpy of this 
phase H q, to the material amount of this phase nq, 

(7) 
When calculating the enthalpy changes one need not necessarily know the absolute 

enthalpy values. When studying the melting processes it is convenient to operate 
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with supplementary molar enthalpy*) which is the difference between the actual state 
enthalpy and the reference state one, the latter being taken as a hypothetical 
heterogeneous mixture o/ molten pure components (i) at the given temperature.

The supplementary enthalpy value of any molten pure component at aiJ. arbitrary 
temperature (therefore even at temperatures lower than the melting one of the 
component) is equal to zero 

(8) 
In view of the standard state chosen the supplementary molar enthalpy of a homogene-

. ous melt is equal to its mixing enthalpy. If the melt cónstitution and the choice 
of the components [4] comply with the condition for application of tne regular 
behaviour model, then the supplementary molar enthalpy of the melt H{:. may be 
expressed as a function of its chemical composition (Xf) in the form 

N-1 N 

H{:.(Xf) = L -I XfXf .Qij' 
. i=l i=i+l 

(9) 

where QiJ designates the quantities called interaction parameters. 
Partial derivative of supplementary molar melt enthalpy with respect to tempera­

ture (supplementary molar heat capacity O{:.) is equal to zero with respect to the 
standard state chosen when a·ssuming that the QiJ interaiction parameters are 
tempera ture-independent: 

O{;, = (oH{;,/oT)xf = O. (10) 

In the determination of supplementary molar enthalpies of solid phases let us make 
use of the fact that enthalpy of congruent melting of a given phase D.H!f is the 
difference between the enthalpy of the melt the composition of which is identical 
with that of solid phase Xf and the required solid phase enthalpy Hr,, 

Hf,
1 

� H{:.(Xf) - D.H:. (11) 
The value of this quantity may also be obtained from the data on the enthalpy of 
combination 6.H: of the given phase from pure solid components and from the data. 
of congrnent melting enthalpies D.Hff of these components: 

N 

Hf,, = D.H: - L Xf . D.Hf. 
i=l 

(12) 

Supplementary molar heat capacity of solid phases C'f. is found to be identical (with 
respect to [11] and [10]) with the negative value of the change in thermal ca,pacitJ 
at congruent rnelting D.0: 

0rp = oH'fn = _ d D.H!� = -6.CM
"' oT clT - rp . 

(13) 

This quantity may be used in a short Taylor's series for expressing the temperature 
dependence of congruent melting enth.alpy 

*) The supplementary quantities have been introduced for instance in chemical thermodynamics 
of gaseous mixtures [5]. In view of. the character of these quantities those introduced in the present
study may bo regarded as a certain extension of conception of homogeneous supplementary 
quantities applied to heterogeneous systems. The supplementary quantities should be distinguish­
ecl from the excess ones for which an idea! homogeneous mixture is the reference stat0. 
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(14) 

in which T�1 designates the temperature of congruent melting. 
The temperature dependence of the quantities in equation (12) may be expressed 

similarly. For the enthalpy of formation we may write 
b.H:(T) = !1H:(T0) + (T - T0) 110:, (15) 

where 110: is the change in thermal capacity in the formation reaction 
;110: = -110: + I xr 11cr, (16) 

(where b.Cf are the changes in thermal capacities due to melting· of pure com­
ponents). 

The supplementary molar capacity may be determined from molar heats Op of the 
individua! phases (insofar as they are available): 

O:fi = o;- L xrc{:,,. (17) 
The data on molar enthalpies H0 related to the usual standard state may likewise 
be used for expressing the supplementary enthalpies, 

T 

H'&,(T) = H'f,(To) - L X'f,Hg, ,(To) + J O:,(T) dT. (18) 
To 

APPLICATION 

Enthalpy of  a heterogeneous mixture  

Supplementary molar enthalpy Hf„ of a heterogeneous system containing P phases 
is equal to the sum 

p 

n:,. = L t;(J)H<t., (19) 
'! -=1 

The course of temperature dependence of enthalpy of an equilibrium mixture can 
therefore be determined when temperature dependence of the phase fractions (phase 
diagram) and the enthalpy values of the individua} phases are known. For example 
the enthalpy value of the system comprising a solid phase of constant composition ( <p)
and a melt (L) may be determined for an arbitrary temperature using the equation 

nt (T , - Xi - Xf(T) [HL(X'P) - f1HM] xr - Xi HL[XL 1 
m ) - Xf - Xf(T) m i "' 

+ Xf - Xf.(T) "' ;. (T) ' (20)

into which the value on the liquidus curve corresponding to temperature T is 
substituted for Xf. 

Partial derivative of supplementary mixture enthalpy with respect to temperatura 
is further on called supplementary molar heat capacity of mixture at constant phase 
composition and designated by the symbol Cf,. .

From equation (19) it follows that 
c:,. = (oH;./oT)Erp = L 1;(J)c:,. (21) 

<p 

Molar heat of O� of such a mixture (at constant phase composition) can be determined 
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by adding molar heats of pure component melts (O{:, i) to the supplementary quantity
or directly from molar heats of the indiviq.ual phases (Of) 

O!= Gt, + t XiG{:)i = L ťq,G;. (22)
i rp 

The slope of the temperature dependence of supplementary enthalpy for an equi­
librium mixture containing (P -1) � (N -1) of solid phases of fixed composition
and a melt of variable composition can be determined from the total derivative 

dHt, = oi P�1 aH:,, dXf .
dT m + i�l oXf dT '

where for partial derivatives on the right-hand side one obtains

aHt, HL 
oh 1: 

[ 
oH{:. N�1 aHt, dXL

] 
"H oť'I' 

axf = "' axf + <,;L axf + _L.,' -::ixI- dxf + L., r,, axr., •
t t t ?=P u 1 i (fl,t,L i 

where ť L is the melt phase fraction. 

(23)

(24)

In the last equation derivative H[:. is determined from the respective model
(e.g. (9)), the derivative of phase fractions from the expressions for phase fractions 
(e.g. (5)), which are determined by solving the system (4) and in a similar way
derivative dXf/dXf is determined [for instance by means of equation (6)]. For
a mixture of solid phase <p of constant composition with melt (L) with regular
behaviour one finds (in a binary system) that the equilibrium slope of temperature
dependence of enthalpy, with respect to (9), (23) and (24) is given by the expression

dH;, x� ....::.. xf 
�CM X! -x� [xrp LQ (xL 

dT = -Xf-Xf <p 
+ (Xf-XW 2X2 2 + 

• Xf ) M] dXf 
+ Xf- 2 + �Hrp dT •

(25)

At liquidus temperature (T = TL, Xf = X�) the slape of the enthalpy on tempera­
ture dependence undergoes a step change the quantity of which may be expressed
by the following equation for the given system of phase <p and melt L: 

�(
dH;.

) = X�X�Q(X�-2 + X!/Xf) + �H!1 • (
dXf) (26)

dT . X! -X� dT T-TL 

in which (dXf/dT) is the reciprocal value of tangent line slope at point X2 = X�
of the liquidus curve (in phase diagram T vs. X2). 

Enthalpy a t  an invar iant  process

In a closed system (Xi = const.) containing (N + 1) phases of fixed composition
(Xf = const.) all the changes are only those in molar :fractions. However, in view
of (3) these changes are bound by the condition 

dťv, = - L dťq, - (27)
rp,j,,p 

Moreover, as the phase fractions are bound to the molar fractions by a system of
N eguations (4), the shares of the increments 

(28)
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have a constant value in a closed system containing phases of fixed composition. 
An infinitesimal change �n molar enthalpy of such a system is then given by the 

expression 
d.H!,. = Hr,, dťw - L H'f:Jrp dťw (29) 

cp,t.,p 

• and for integral enthalpic change !::.Ht, it • holds that
t::.H:n = (Hr,, - L Hr,Jrp) !::.ťw , (30) 

cp,J,,,p 

On the basis of these considerations let us now derive equations for enthalpic changes 
due to step increment of melt in the system, that is eutectic or incongruent melting. 
In the course of such melting the system contains (N + 1) phases and it will be 
assumed that the composition of the phases involved is not subject to any change 
insofar as at least one of the initial set of phases has not cea,sed to exist. 

Eutect ic  melt ing 

Let us  consider an equilibrium mixture of  N solid phases of N-component .system 
the total composition of which is identical with that of eutectic melt Xí = Xf. 
Phase fractions ť! of this eutectic mixture can be determined from the system of 
equations (4) 

N 

xr = I ť;xr, (31) 
cp=l 

After attaining eutectic temperature TE all the original phases melt (!::.$rp = -ť!) 
producing a homogeneous melt (!::.h = 1). 

l::.$rp = -$;; í::.$L = 1. (32) 
Using equation (28) we find that for a mixture of N phases contained in an eutectic 
mixture a.nd a melt of eutectic composition it holds that 

�rp = t;. (33) 
By substituting into the (30) the following equation is obtained for enthalpy of
melting !::.Hf of eutectic rnixture

t::.H!:. = H�,(Xf} - I t;Hr:,. (34) 
The change in heat capacity corresponding to melting of eutectic mixturť;l. !::.O[{. is 
determined from the derivative of enthalpic change !::.Hf with respect to temperature 

d !::.Hf = f::.OF - ť t* t::.Ollf
dT - * - cp=l q, .  cp .

(35) 

The step change in phase composition at eutectic temperature TE takes place in all 
systems containing the same system of phases as the eutectic mixture. Phase 
fractions tZ of initial mixture of N solid phases are given by the system of equations 

Xf = L t�Xf- (36) 

After attaining temperature TE there_ arises a mixture containing eutectic melt 
(having the composition Xf) in an amount corresponding to phase fraction ťf (which 
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simultaneously represents the increment of melt D.ťf due to eutectic melting) and 
at least one solid phase ( w) disa ppears from the initial system in the course of melting. 
As regards the changes in phase fractions D-ť! of solid phases, equations (33) and (28) 
yield the relation 

(37) 

The melt phase fraction ťf = D.ťf is determined from the balance of phase fractions 
ťf = (1 - I ť!)/(1 - I ťg), (38) 

q,*w q,*á> 

in which the sums do not include the phase fractions of 'phases w which have dis­
appeared. during eutectic melting. By substituting into (30) and comparing with (34), 
(molar) enthalpy t:::.Hf o/ eutectic melting of a general mixture is given as follows: 

(39) 

TM � 

TM 
). 

'f 

T'i-1 
i 

TM 
A 

1--- t 
I I 

I 

o Xp 'Xl xť XE
I 

I 
I 

H�(xp) H�(xí}') 

-1t t1H: 

A a 

Fig. 1. Phase diagram and enthalpic quantities; H� - enthalpy oj melt, x - molar jractions of 
-component B, liH; - jormation enthalpies, TM, fiHM - temperatures and enthalpies oj congruent
melting, TE, 6.H: - temperature and enthalpy oj melt1ng oj cute.ctic mixture, Tp , H!- temperature

and enthalpy oj incongruent melting. 
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For enthalpy of melting of a binary eutectic mixture, on the basis of equation (34) 
(x = X2) it follows

(40) 

Peritectic melting  

Let US first consider an incongruent phase y having the composition xr. On
attaining peritectic temperature Tp the incongruent phase is completely decomposed 
(A�; = -1) producing a peritectic mixture containing peritectic melt (Xf) and 
(N - 1) solid phases. Phase fractions �; of peritectic mixture are determined frorn. 
the system of equations 

N-1 

xr = �1xr + I �;xr- (41) 
q,=1 

For enthalpy oj incongruent melting AH: of phase y one finds 
N-1 

AH� = �1Hf:i(Xf) + I �:H�, - Ht,. 
q,=1 

(42) 

The change in heat capacity AG: due to incongruent melting is established from the 
derivative of the enthalpy change with respect to temperature 

d AHP N-1 

__ ,_Y - AGP = AGM - L �· AGM 
dT r r q,

=t cp .,, • (43) 

The step change in phase composition takes place in all heterogeneous systems 
containing an incongruent phase y. The initial mixture lacks at least one of the 
phases of the set comprising a peritectic mixture so that the total number of phases 
in the initial mixture is at the most N.

The phase fractions of the initial mixture are determined from the system of 
equations 

(44) 

where Xf is substituted for the melt. The procedure employed for eutectic melting 
can be used for determining the enthalpy oj peritectic melting AHf 

(45) 

Enthalpy of incongruent melting of binary phase y can be described according to ( 42) 
(x = X2) 

(46) 

Melt ing  and heat flux  in  t h e  course  of  heating 

In dynamic calorimetry methods the rate of heat exchange between the sample 
a.nd its environment is measured under conditions of coritinuous heating. Heat 
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flux <j from the_ environment into the sample compensates the .increase in sampleenthalpy. When considering a sample one mole in size there holds the equation 
Q(= q/ne) = dHt/d-r:, (47)

where Ht is molar enthalpy of the sample related to standard state and -,; is time. 
The degree of convers ion and the rate  of me l t ing  

The increase in enthalpy can be divided with advantage• to the stage involving an. increase ( change) in tempera ture and the state related to a change in phase composi­tion; however, the latter can be characterized by a single parameter only, namelyby the conversion degree a. 
. . (an&) . (an&) . 

Q = oT « •• 

T + 
� Ta' (48) 

where T = dT/d-r:, ci = da/d-r. 
Partial derivative of enthalpy with respect ·to temperature at constant phasecomposition is equal to molar heat of mixture Ct whereas the derivative of molarenthalpy (related to usual standard state) with respect to the degree of conversionis identical with t,he derivation of supplementary molar enthalpy. Using (22),equation ( 48) can be written in the fonn 

Q = ([ X�Cfr,; + C�) T + (oH:,./oa) a. (49) 

We have so far not specified the conversion degree of a. When studying meltingprocesses this transformation degree should be chosen advantageously so as to be equal to zero for the system free from melt (�L = O) and to attai.u unity value for the system containing the melt only (h = 1). Supplementary enthalpy of the initial state (<X= O) is then given by the equation
H:,.(a = O) = L ;�H:,, (50) 

where ;� are phase fractions of solid phases before the onset of melting, and for thefinal stage (homogeneous melt) by the equation 
H;.(a = 1) = H�(X1), (51)

For general state of the system (O < tX. < 1) the supplementary enthalpy is givenby equation 
(52) 

When choosing the conversion degree ct it should be advantageous to require thatthe instantaneous enthalpy value be its linear function. *) 
H!1

(0 < x < 1) = a[H!n(ct = 1) - Ht,(ct = O)] + H:,.(ct = O). (53) 
Then partial derivative (oH!,Joct)T, further on called summary enthalpy of melting 
ilHf, (54) 

*) The problems of the conversion degree are also dealt with in ref. [6], [7]. 
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is independent of conversion degree oc, which in view of its being derived from 
enthalpic quantities will be called enthalpic advancement of melting (in contrast 
to actual advancement of melting which is given by the phase fraction �Lof melt) 
an.d will be designated OCH. The explicit expression for this quantity follows from 

' equations (50)-(54) 
ocH = ceJJJ{:.(Xf) + r (eqJ - �g) H:.Jf AH'f. (55) 

q,*L 

Let us express supplementary heat capacity of the mixture also as a linear function 
of this transformation degree 

where 

If 

then 

o�;(ctH) = r e(/)o� = r �ior,, + OCH AO'f,
q, q, 

AC'f == o;:. - r �gor,,. 
q, 

o�= o,

Ot,(ocH) = (1- OCH) L �io:..

'(56) 

((57) 

(58) 

By substituting (54) and (58) into equation (49) one obtains the relation between 
heat fl.ux, the rat.e of heating and the enthalpic rate of melting iH 

Q = (Í:: x�o�.i + (1 - ctH) r �go1r.) T + AH'fiY.H, 
i q, 

(59) 

Experimental curves of dynamic calorimetry methods record the time course of 
heat flux [q = /(T)] and that of temperature ['I'= /(T)]. By integrating the difference 
between heat fl.ux and the capacity term it is possible to determine summary �nthalpy 
of melting, 

TJO.:H:::::,l 

AH'f = J (Q - OtT) d. 
To, O::n=O 

as well as the time course of enthalpic advacement of melting, 

c.m(T) = (1/AH'f) J (Q - O�T) di-, 
. To,o:n=O 

(60) 

(61) 

where the relationship of this quantity to the parameters of phase composition is 
given by the explicit expression (55). 

Instantaneous enthalpic rate of melting ČX.H can be determined from experimental 
• curves of dynamic calorimetry as the difference

(62) 

This rate is of course a function of phase composition as well as one of temperature. 
If one desires to express it in a form suitable for description of invariant melting, 
it should be borne in mind that in the course of such melting the sample coniprises 
(N + 1) phases. Phase composition of such a system is then determined by N

independent parameters. In the case of systems where the melt is assumed to be 
a single phase of variable composition, phase fraction h cif melt and (N - 1) molar 
fractions of melt Xf may be chosen as independent parameters of phase composition. 
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• Enthalpic rate of melting is then found as a function of actual rate of melting f L,
of the rate of change in melt composition Xl and of temperature 'I',

. O(XH • 
N

-0
l 0(XH • L 0(XH • 

• 

rxH = a�L h + 
i�1 axf x, + aif' T, (63) 

while the terms for the respective partial derivatives are determined from 
equation (55) 

�:H 

= [IIf1(Xf) + I, Hr,,(o�rp/oh)J/6.Hjf, 
Ur,;L . <p*L 

(64) 

�(X,x11 = [�L(oHf:./oXf) + I Hr,,(o�rp/oXf)J/6.H'J!,
u i q,*L 

(65) 

(66) 

"Equi l ibr ium" course .of melt ing 

The melting process is usually not an activated one [8], so that its time course 
is to a ccmsiderable degree given by the rate at which heat is supplied into the sample, 
by the rate of temperature increase, and by equilibrium dependence of phase com­
positio.n on ternperature. For. this reason determination of au even approximate 
relation between the time course of heat flux and the sample temperature on the 
one hand and the equilibrium dependence of phase composition on the other is of 
considerable significance. For the purpose of deriving this relationship let us make 
use of the following consideration. • 

In a real experimental arrangement in dynamic calorimetry th.ere exists a certain 
temperature distribution in the sample at each moment (with respect to spatial 
coordinates) so that in the course of heating the sample center exhibits a lower 
temperature than its surface. Let us assume that local phase composition corresponds 
to heterogeneous equilibrium for the respective local temperature {}, Enthalpy 
of the entire sample is then a sum of enthalpies of the individua] volume elements 
of sample which may be expressecl (in supplementary molar enthalpies) by equation 

TMAX TMAX 

.Yf':,.(T) = J H:11 ({}) /({}) df}/ J /({}) elf}, 
T�nN T1,nN 

(67) 

where the integrating limits are the lowest (Ti\nN) and the highest (TMAX) Jocal 
temperatures at the given moment and function /({}) is a distribution function 
expressing the proportion of sample having an instant local temperatme in the range 
from {} to f} + df}. Derivation of this distributing function requires demanding solving 
of differential equations of heat flux for the given sample shape, necessarily using 
certain simplifying assumptions. For practical reasons let us accept such simplification 
which allows for simple solving of integrals in (67). This simplification is given by the 
assumption that the clistributing function is specified by the conclitions 
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for Ti\HN � f} � TMAX,

for f} < T11nN or {} > TMAX. (68) 
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When further assuming that TMAX is identical with the sample temperature Tmeasured and that the difference in temperature is designated by the symbol c5 == 
= TMAX - Tr.nN, equation (67) acquires the form 

Yf'!,(T) = � J H�(-0) d,&. 
T-<l 

The increase in enthalpy of one mole of the temperature-non-uniformspecified in this way per unit of time is then given by the expression 
dHb dHt ,· " I L 4L't � = dT • T = [

'7' 
XPo, i + dd!: mfdT] T,

(69) 

system 

(70) 
where the total derivative with respect to temperature is determined from (69), 

d.Yé-'fnfdT = [H;,(T) - Hf,.(T - c5)]/c5. (71)

so that, using (47), the heat flux corresponding to equilibrium course of melting isdescribed by equation 
(72) 

On the basis of equation (72), "equilibrium" dependence of heat flux on temperaturewas calculated for the course of melting of a hypothetical heterogeneous binary system (X� = 0.3, TE = 700 K) with immiscible solid phases (X� = O, X!f = 1), 
!).fff;= !).ff:= 20 000 J/mole, (Tf/= 1000 K) and ideal melt (.012 = O), which is plotted in Fig. 2. 

o 

100 

700 

900 

r--------------�1; 

----------- . . . . . . . . . . .... . . . . . . . . . . .. . .. ... .... ......... o 

600 700 800 
T [K) 

900 

Fig. 2. Heatjlux during heating oj model heterogeneous syslem; Q - heatflux (jull line), �L - ,.equi­
librium" advancement oj melting (dashed line). 

Model binary system: TE= 700 K; xr = O; Xf = l; T: = 1000 K; t:iH; = H7, = 20 kJ/mole;

Q12 = O; o = 10 K; X� = 0.3; G� = o: = O. 

DISCUSSION AND CONCLUSION 

The analysis of relations between enthalpy and phase composition, which hasbeen worked out in the present study, had the main aim of increasing the number
300 Silikáty č. 4, 1979 



Ennthalpy ancl Phase RelationB at 1l1elting in Heterogeneous Systems 

of initial data for the calculation of phase diagram curves. The data on enthalpy 
and temperature of congruent melting required for the calculation of phase diagrams 
according to [4] are not available for phases which do not melt congruently or melt 
at excessively high temperatures. This represents a considerable restriction of the 
applicability ot more flexible models for the behaviour of melt and frequently makes 
calculation impossible. Experimentally available enthalpy values for eutectic and 
peritectic melting may advantageously supplement the set of input data for calcul­
ation, together with the data on summary enthalpies of melting, insofar as the 
relationships between these quantities an dthe other enthalpic data in the system 
are obvious. The choice of the reference state as well as that of the other assumptions 
has been conformed to the requirement of direct applicability of the equations 
derived for the purposes of numerical calculations based above all on quantities 
that can be obtained by the methods of dynamic calorimetry. 

a) The main advantage of the chosen reference state (8) lies in that it allows to
work out a complete set of mutually consistent thermodynamic data from temper­
atures and enthalpic changes measurable directly by DTA and DSC methods. 

b) In view of the fact that the enthalpic data are measured in the same temper­
a ture range in which they are subsequently utilized in ca.lculation, the chosen 
reference state permits a simple forrn of their temperature dependence to be chosen. 

As the occurence of solid phases with a markedly variable composition is less 
frequent in ceramic systems, most of the relations have been derived for hetero­
geneous systems in which the melt is the sole phase of variable composition. 

The concentration dependence of melt enthalpy is described by a regular model (9) 
based on the conception of pair interactions. Within the framework of the model, 
parameters Q,1 of a general N-component system are identical with the interaction 
parameter of the respective binary system I-J. The model represents the simplest 
fonn of non-ideal concentration dependence which, owing to the low number of

parameters, is advantageous for calculation of phase diagram curves from a small 
number of input data. In the ca.se of phases and systems for which larger numbers 
of experimental data are available, it is possible to chaose models allowing to describe 
more accurately the actual behaviour of the systems. 

Determination of enthalpy of invariant melting, or possibly of further data useful 
for the determination of phase diagram curves is related to the problems of correct 
interpretation of experimental curves obtained by dynamic calorimetry methods 
(including DTA). 

For this reason the final part of the present study is devoted to the relations 
between the conversion degree determined from experimental curves of dynamic 
calorimetry (enthalpic advancement ťXH) and the phase composition parameters. 
For the course of melting in real arrangement of dynamic calorimetry use is made 
of a simplified model which allows "ideal equilibrium" curve of dynamic calorimetry 
to be calculated on the basis of data on enthalpies of the individua! phases and from 
equilibrium curves of the phase diagram. 

Extension of the calculation by "equilibrium" DTA curves, comparing the curves 
calcul::i,ted in this way with experimental values and possible derivation of more 
realistic models of a sample with nonuniform temperature distribution should be the 
subject of further studies. 

The relationships derived for melting processes are for the most part applicable 
also for processes involving phase transitions or other invariant changes (eutectoid 
and peritectoid decompositions) in solid phase and for processes taking place 
in systems solid phase - solution (solution = melt). However, they have been 
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Variables characterizing individua! phases 

and a heterogeneous system 
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derived for a closed system and thus do not allow, without respective adjustment, 
to describe processesi ncluding escape of gases from the system (evaporation, ther­
mal decomposition - dissociation, sublimation) or interaction of gaseous atmos­
phere with the sample (oxidation, burning, condensation, reduction). 

[ll Holba P.: Silikáty 20, 45 (1976). 
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List of Symbols 

Quantities 

a - conversion degree (awenthalpic advancement) 
- molar heats 

-supplementary molar capacities 
- molar enthalpy related to conventional standard state 
- suplementary molar enthalpy

Cv 
Cm 
Ho 
Hm 
Yé'!n - supplementary molar enthalpy of sample with non-uniform temperature

Ď,. 
N 

p 
n 
T 

{} 
o 

• 

Xt 
�IP 
Q 

distribution 
-differences (changes)
- number of system components
- nurnbe1; of system phases
- material amount - number of moles
- temperature (Tj,-liquidus temperature)
- local temperature
- difference between maximum and minimum local temperature
-time
- molar fractions
- phase fractions
- interaction parameter

Indexes (exponents) 
expressing relation of a quantity towards 

E - eutectic melting
F -combining from pure solid components
i, j - individ.ual system components (always index)
<p - individua! phases of the system (also 'ljJ, w, a, /J, y)
L - melt
M - congruent (or summary) melting
P - peritectic (incongruent) melting (except for Cp quantities)
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- heterogeneous system as a whole
* - eutectic or peritectic mixture 
o - initial phase composition of the system (except for quantities H0) 
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ENT ALPIE A FÁZO VÉ POMĚRY PŘI TÁNÍ V HETEROGENNÍCH 
SOUSTAVÁCH 

Pavel Holba*) 

Ústav cmorganické chemie ČSA V, Řež 

Jsou odvozeny rovnice, které vyjadfojí vztahy mezi celkovou entalpií uzavfoné heterogenní 
N-složkové soustavy a fázovými poměry při jejím tání. Heterogenní směs je popsána souborem
totálních molárních zlomků x:, molárních zlomků fází XT a fázových zlomků �q, • Doplňkové 
entalpické veličiny jsou vztaženy k referenčnímu stavu reprezentovanému hypotetickou hetero­
genní směsí tavenin čistých složek [rovnice (8)]. Pro molární entalpii homogenní taveniny H;;, je 
použit model regulárního chování (9). Molární entalpie pevných fází Hr,, souvisí s entalpií jejich 
kongruentního tání f!i.H:;: a s entalpií jejich slučování (z čistých pevných složek) f!i.H; . Jsou odvo­
zeny rovnice pro teplotní závislost totální entalpie heterogenní soustavy H:"' pro entalpii tání 
eutektické směsi f!i.Hf a tání inkongruentního f!i.H;, (obr. 1). Je analyzován vztah mezi tepelným 
tokem měřeným pl'Í dynamické kalorimetrii a rychlostí procesu tání. Je navržen model teplotně 
nehomogenního vzorku, který umožňuje výpočet „rovnovážné" khvky dynamické kalorimetrie 
ze známého fázového diagramu (výsledek pro ideální binární soustavu je uveden na obr. 2). 

Odvozené rovnice jsou určeny pro výpočet fázových diagramů [l] z kalorimetrických dat a pro 
interpretaci experimentálních khvek získaných metodami dynamické kalorimetrie. 

Obr. 1. Fázový diagra.rn a entalpické veličiny; 
H;. - entalpie taveniny, x - molární zlomky složky B, f!i.HP - entalpie slučování z čistých 
složek, TM, f!i.HM - teploty a entalpie kongruentního tání, TE, f!i.Hf - teplota a entalpie 
tání eutektické směsi, Tp , f!i.H; - teplota a entalpie inkongruentního tání. 

Obr. 2. Tepelný tok při ohřevu modelové heterogenní soustamJ; 
Q - tepelný tok plná čára, �L - ,,rovnovážná" pokročilost tání přerušovaná čára. 
Modelová binární soustava: TE= 700 K; Xf = O; Xf = l; T'; = 1000 K; f!i.H'; 
= f!i.H': = 20 kJ/mol; Q12 = O; Cf, = Gt = O; ó = 10 K; X� = 0,3. 

*)'Nová adresa: P. Holba, PÚDIS, Novákových 6, 180 00 Praha 8. 
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3HTAJ1hrilIH 11 <DA30BhIE OTHOIUEH11H 
II P lI II JI A B J1 E H 1111 B r E TEP O r E H H bI X C 11 C TEM A X

IIanen ro116a 

HHcmumym Heopaa1-m11.ec1.oií xu.,1mu TJCAH, P�,ceJ,c 

Bbrnep;eHbI ypaBH0HIUI, CBH3b!B3!01.1.{He 06ll{yIO 3HTUlII,IIHIO 3UHpl,ITOll reTeporemroii CHCT0Mbl 
c qiaaoBb!MH OTHOllleHHRMH npu ee mrannemrn:. I'eTeporeuuaa cMech omrcaua Ha6opoM 
MOlIHpHbIX p;onefr CM0Cl1 x:, MOJIRpHblX /J;OJJeH qiaa X; H qiaaOBbIX /J;OJieii gq,. ,D;orrOJibHHTeJI­
Hbre 3HT3Jlbml'JeCHHe B0l1H'IHHbI OTHOCRTCR I{ OCHOBHOMY COCTOHHHIO, IWTOpbIM 11a6paua 
I'HIIOT0TH'IecrrnR reTeporeHHaR CM0Cb pacnJI3BlleHHb!X 'IHCTblX HOMIIOH0HTOB [ypanueune(8) ]. 
)];JIH MOJIRpHofr SHT3llblll1H roMoreHHOro pacnnana Ilf;, IICIIOJlb 3YeTCll MO/J;0llb pe1·yrrnpuoro 
Il0B0}.\0HHH (9). MonRpHbJe 3HT3l1b ilHH TBepp;bIX qiaa 11:,:, CBR3UHbI C 3HTUJlbilHRMH HX I<OH­

rpyeHTHOI'O IlJIUBl10HHR !),_IJ"':/ H C 3HT3JlbilHHMH HX o6pa30BUHllR (113 'lllCTb[X TBep}.\bIX IWM­
noHeHTOB) !),.H:. BbIBep;eHbI ypaBHeHHH /J;lIH TeMrrepaTypnoii 3UDHClfMOCTH o6u�eii 3HTUJ!b!IIUI 
reTeporennoií: CHCT0MbI H� .. /J;Jlll 3HT3Jib lIHH IIlI3BJieHHH 3BT0HTI1'IeCHOH CM0CH !:lfl! 11 mran11e­
HHH HHHOHrpyaHTHOro !:lH;. (PHC. t). PaccMaTpHnaeTCH OTIIOllleHHe Memp;y TC!IJIOBbIM no-

. TOI<OM, H3MeplleMb!M M0TO/J;OM AHH3MH'IeCI<Oll 1rn11opHMeTpHH li CHOpOCTblO apOL\0CCa !IlI3BJre­
HHll. IIpep;nomeua MO/J;0Jlb, I<OTOpaR II03BOJilleT pactieT „paBHOBeCHOH" "PHDOH wrnaMH­
'JeCI<011 I<UJIOpHMeTpHH, HCXO/J;ll ll3 H3BeCTHOH }.\HarpaMMbl !I lIUBHOCTII (peaym,TaT wrn 11neam,­
uo{1 61rnapuoii CHCT0Mbl npHBep;eH Ha pHc. 2). 

BbIBep;eHHbie ypanHeHHH cnymaT ].\JIH pac•reTOB p;tiarpaMM IIJIUBIWCTH [t] ua l\aJIOp1meTpu­
'!ec1mx AUHHbJX li �,JIH o6cymp;emrn Hp11Bb!X SHcnep11MeHTU HJ-IHUMH'JeCIWii m1JIOpHMCTp11u. 

Puc. 1. (/)aaoeaR ouaapa.M,.1ta u a11,,na.ll,bnu11.ecI.ue ee„iu<tuHbi; H;. - a11,11ta.ll,blWR pac,uaea, 
X - ,\tO.ll,.'l,PHbie 00.ll,ll 1.0.lf-lWH,eHma B, f:lff P - /iH,/ll/1.ll,b/llUI o6paaoaaHUJI, Uil maepOblX 
h:o,It1w11,e11,11wa, TM, !:lJl"':/ - me,Itnepamypbi u aHma.ll,bnuu 1.011,apya11,m11,oao 1t.ll,a1J.ll,e11,uR, 
TE, 11! - me.1tnepamypa u a1-t11ta.ll,bl!UR IMaa.ll,e1-tuR aame1.mwiec1,oii c.Itecu, TP, 11; -
me.,iinepamypa u /JHllW.ll,b/!ll/1, UHKOH,apyaHmHoao l!.ll,aO.ll,eHIUI. 

Puc. 2. Te1Moaoa. nom.01. npu 11,aapeae ,1woe.ll,bHOií aemepoae11,noií. cucme .. \tbt; Q - me1uoeo1'i, 
nomon (no.ll,Ha:i npueaR), ťL - ,,paeHoaecHaR" npooeu,1c11,ocmb ll.ll,/I01ienuR (npepb1-
euc11iaR h:pueaR). 
Jl1ooe.ll,bl-Uui 6unapnan cucme,Iia: TE = 700 R; Xf = O; X'.,'' = 1; T;' = 1000 Jí; 
!:lH;' = !:lH�; = 20 1,0J1c/,1to.ll,b; .Q12 = O; c: = C'f = O; o = 10 R; X� = 0,3. 

Silikúty č. 4, 1979 305 




