VPLYV PRÍDAVKOV NA KRYŠTALIZÁCIU BOROKREMIČITÝCH SKIEL

Ivan Vojtaššák

Chemickotechnologická fakulta SVŠT, 880 37 Bratislava, Jánská 1

Došlo 7. 9. 1977

Bola sledovaná kryštalizácia skiel v sústave $Na_2O - B_2O_3 - SiO_2 - TiO_2$ so zložením v oblasti metastabilného sublikvidusového odmiešania (SI) a mimo tejto oblasti (SII). Ako prídavky sa použili v smaltárskej praxi používané LiF, NaF, Na₂SO₄, Na₃PO₄, ktoré sa používajú na stabilizáciu anatasovej modifikácie a prídavok Fe₂O₃. Anatas kryštalizuje len v skle SI, prídavok Fe₂O₃ do skla SI a zloženie SII sp**š**sobuje kryštalizáciu rutilu.

Metódou EPR sa zistilo, že prídavky LiF, NaF a čiastočne Na₃PO₄ vplývajú na metastabilné odmiešanie a tým na nukleáciu anatasovej modifikácie. Prídavok Na₂SO₄ stabilizuje paramagnetické centrá iónov Fe³⁺ a Ti³⁺, anióny SO₄²⁻ najvýraznejšie podporujú anatasovú modifikáciu zabudovaním sa do kryštálovej štruktúry. Prídavok Fe₂O₃ mení oxidačno-redukčnú rovnováhu, prítomné sú len centrá Fe³⁺, ktoré nie sú ovplyvnené odmiešaním a kryštalizuje len rutilová modifikácia.

ÚVOD

Borokremičité sklotvorné systémy sú základom smaltárskych frít. Jednou z hlavných požiadaviek na smalt je jeho krycia mohutnosť a farebná stálosť. V titaničitých smaltoch sú tieto vlastnosti späté s mechanizmom kryštalizácie TiO_2 zo skloviny a s transformáciou anatasovej (A) na rutilovú (R) modifikáciu.

Ako sa zistilo [1], prítomnosť taveniny má rozhodujúci vplyv na premenu $A \rightarrow R$, okrem vlastnej premeny sa zistilo aj rozpúštanie anatasu do taveniny, z ktorej následne kryštalizuje rutil. Vítanejšou formou je anatasová modifikácia, preto je snaha prídavkami ovplyvniť vlastnosti taveniny tak, aby sa zachovala táto forma. Výsledná kryštalizácia môže byť ovplyvnená týmito faktormi:

1. ovplyvnením viskozity a medzifázového napätia [2], [3];

2. ovplyvnením metastabilného odmiešania a tým aj nukleácie a rastu kryštálov vznikajúcej fázy [4], [5];

3. zabudovaním prídavných iónov do kryštálovej štruktúry vznikajúcich fáz [6], [7], [8];

4. ovplyvnením oxidačno-redukčnej rovnováhy [9], [10];

5. tvorbou nových zlúčenín, alebo tuhých roztokov [11].

Cieľom tejto práce bolo zistiť možný mechanizmus vplyvu prídavkov na kryštalizáciu TiO₂ v modelovom skle Na₂O—B₂O₃—SiO₂—TiO₂ (v dalšom N—B—S—T). Uvedený systém je charakteristický širokou oblasťou metastabilného sublikvidusového odmiešania. Odmiešanie spôsobuje vznik paramagnetických centier, ktoré sú späté so vznikom iónu Ti³⁺ [12]. Odmiešanie a nukleácia mení koordináciu štruktúrnych jednotiek paramagnetického iónu Ti³⁺. Preto sa ukázalo výhodné použiť metódu elektrónovej paramagnetickej rezonancie na sledovanie mechanizmu pôsobenia prídavkov na kryštalizáciu TiO₂ v borokremičitých sklotvorných systémoch.

I. Vojtaššák:

EXPERIMENTÁLNA ČASŤ

Príprava skiel

Skla sa tavili v Pt tégliku v elektrickej peci z chemikálií Lachema, čistoty p.a. Mletý kremeň mal obsah SiO₂ 99,99 % a použitý Fe_2O_3 bol v kvalite "čistý".

Maximálna teplota tavenia bola 1200 °C. Sklo po utavení bolo ochladené vyliatim na kovovú platňu. Druhotné tepelné spracovanie sa robilo vo vertikálnej peci; sklo v množstve asi 2 g sa vyhrievalo v Pt púzdrach pri zvolenej teplote (\pm 1,5 °C, vždy jednu hodinu).

Chemické zloženie skiel sa volilo tak, aby zloženie skla označeného SI ležalo v oblasti metastabilného sublikvidusového odmiešania a sklo SII ležalo mimo tejto oblasti.

Zloženie sledovaných skiel je uvedené v tabuľke I. Sledovali sa v praxi používané prídavky LiF, Na_2SO_4 , NaF, Na_3PO_4 a prídavok Fe_2O_3 .

Tabulka I

Označenie a chem. zloženie (počítané) (v mol %)

Označenie skla	Na2O	B ₂ O ₃	SiO ₂	TiO₂ (nad 100 %)	Prídavky (nad 100 %) skla SI 5T		
SI	10	54	36	_	_		
SI 5T	10	54	36	5	_		
SI 5T 1 LiF	10	54	36	5	LiF 1		
SI 5T 1 NaF	10	54	36	5	NaF 1		
SI 5T 1 Na ₂ SO ₄	10	54	36	5	Na ₂ SO ₄ 1		
SI 5T 1 Na ₃ PO ₄	10	54	36	5	Na ₃ PO ₄ 1		
SI 5T 1 Fe ₂ O ₃	10	54	36	5	Fe ₂ O ₃ 1,4		
SII	3●	42	28	_	_		
SII 10 T	30	42	28	10	_		
SII 20 T	3●	42	28	20			
SII 30 T	3●	42	28	3●			

Podmienky merania

Spektrá EPR sa merali na prístroji Varian E-3. Rozsah magnetického poľa vzhľadom na stred 0,3246 T je 0,4 T. Modulačná amplitúda je 1×10^{-3} T. Výkon klystróna je 25 mW. Meralo sa pri teplote 293 K.

Rtg. difrakčné záznamy sa registrovali prístrojom Mikrometa II s použitím CoK_{α} žiarenia za štandardných podmienok.

Označenie spektier:

A - východiskové sklo,

B — sklo druhotne tepelne spracované — teplota 500 °C,

C — sklo spracované — teplota 700 °C,

D - sklo spracované - teplota 500 a 700 °C.

Sklá vyhodnocované Rtg analýzou boli spracované pri teplote 600, 650, 700 a 750 °C.

Výsledky merania

Sklá SI a SII bez obsahu TiO₂ dávajú rovnaký štandardný tvar spektra EPR (sklo SI obr. 1). Takéto spektrum je popísané v literatúre [13], [14], [15]. Prídavok 1,4 mol % Fe₂O₃ do týchto skiel zintenzívňuje rezonančné signály, ale charakter spektier nemení (sklo SI 1F a SI 5T1F obr. 2). Takéto spektrum obsahuje 3 rezonančné absorpčné línie s hodnotami g faktora 6; 4,13; a 2. Tieto rezonančné línie sú pripisované jednako tetraedricky koordinovaným jednotkám [Fe³⁺O₄] (pre g = 6 a 4,13), jednak oktaedricky koordinovaným jednotkám [Fe³⁺O₆] v strede magnetického poľa.

Obr. 1. Spektrum EPR skla SI.

Sklo SI s prídavkom TiO₂ dáva zmenený tvar spektra EPR (obr. 3). To svedčí o silnom vplyve iónu Ti⁴⁺ na štruktúrne pomery v skle. Úzky signál s g = 4,13 je potlačený a objavuje sa nový signál v strede magnetického poľa s hodnotou g = 1,99. Tento signál sa priraďuje iónu Ti³⁺ v oktaedrickom komplexe [15].

Druhotným tepelným spracovaním se tvar spektra mení. Pri teplotách nad 450 °C v skle SI dochádza k odmiešaniu fáz a v prípade, že sklo obsahuje aj TiO₂, k nukleácii a rastu TiO₂ vo forme anatasu, alebo rutilu. Na spektre EPR sa prejavuje široká absorpčná línia v celom meranom magnetickom poli (krivka *B*). Pri teplote 700 °C v skle dochádza k rastu kryštálov TiO₂. Na spektrách EPR sa zvýrazňuje singletový signál v strede magnetického poľa (spektra *C* a *D*).

Prídavky LiF, NaF, Na₂SO₄, Na₃PO₄ a Fe₂O₃ vplývajú na priebeh a intenzitu štruktúrnych zmien pri metastabilnom odmiešaní, pri nukleácii a raste kryštalickej fázy TiO₂. Tieto zmeny sa prejavujú na spektrách EPR. Prídavok 1 mol % LiF (obr. 4) spôsobuje, že spektrum EPR východiskového skla prejavuje širokú absorpčnú líniu v celom rozsahu magnetického poľa (A). Druhotným spracovaním pri 500 °C sa táto línia stáva menej intenzívnou (B) a na spektre EPR začína sa objavovať úzka absorpčná línia v strede magnetického poľa. Singletová línia s g = 4,13 znova sa objavuje na spektrách skiel spracovaných pri teplote 700 °C (C). Podobný vplyv má i NaF (obr. 5).

Obr. 2. Spektrum EPR skiel SI 1F a SI 5T 1F.

Obr. 3. Spektrum EPR skla SI 5T.

Silikáty č. 2, 1979

Osobitný vplyv má prídavok Na₂SO₄ (obr. 6). Je to zvýraznenie singletového signálu s g = 4,13 a potlačenie širokej línie pri teplote 500 °C a zvýraznenie singletového signálu s g = 1,99 už pri tejto teplote (B). Na tento signál sa transponuje nová línia v strede magnetického poľa (spektrá C a D).

Obr. 6. Spektrum EPR skla SI 5T 1 Na₂SO₄.

Na obr. 7 sú spektrá EPR skla SI 5T s prídavkom Na₃PO₄. Tento prídavok menej výrazne vplýval na širokú absorpčnú líniu v spektre východiskového skla i pri teplote spracovania 500 °C (A = B), i na singletový signál v strede magnetického poľa spektrá C = D.

Vplyv prídavkov na vznik iónu Ti³⁺ sa vyhodnotil i semikvantitatívne. Merala sa výška singletového signálu za štandardných podmienok (výška singletu g = 1,99 po prepočte na jednotnú citlivosť v mm). Toto vyhodnotenie vplyvu prídavkov pre rôzne teploty je na obr. 8.

Priebeh kryštalizácie sa sledoval metódou rtg. fázovej analýzy. Sklo SI 5T po vykryštalizovaní pri teplote 600 °C dáva široké difrakčné maximá, čo svedčí o malých rozmeroch kryštalitov. Do teploty 650 °C nachádzame maximá obidvoch modifikácií. Zvýšením teploty kryštalizácie na 750 °C dosiahneme kryštalizáciu len anatasu (obr. 9, označenie modifikácií anatas A a rutil R).

V plyv prídavkov na kryštalizáciu borokremičitých skiel

Silikáty č. 2, 1979

Prídavok LiF (obr. 10) a Na₂SO₄ (obr. 11) potláča v najväčšej miere vznik rutilu v prvotných fázach kryštalizácie. Menší vplyv majú NaF a Na₃PO₄ (obr. 12 a 13). Prídavok 1,4 mol % Fe₂O₃ úplne potláča vznik anatasovej modifikácie, v skle kryštalizuje len rutil (obr. 14). Rovnako len rutil kryštalizuje

)br. 13. Rtg. dífrakčný záznam skla SI 5T 1 Na₃PO₄.

v skle SII obsahujúcom TiO₂, kedy prvá zistiteľná fáza je nad teplotou kryštalizácie 700 °C (obr. 15).

Výsledky semikvantitatívnej rtg fázovej analýzy sú v tabuľke II. Merali sa príslušné plochy pod difrakčnými maximami (mm²) pre anatas $d_{hk1} = 0.351$ nm; pre rutil $d_{hk1} = 0.324$ nm.

Silikáty č. 2, 1979

DISKUSIA

Prídavky, ktoré pôsobia na kryštalizáciu skla SI, môžeme rozdeliť na prídavky podporujúce odmiešanie (LiF, NaF, čiastočne Na₃PO₄), na prídavky, ktorých anión sa zabudováva do kryštalickej fázy (Na₂SO₄) a na prídavky ovlivňujúce oxidačno-redukčnú rovnováhu (Fe₂O₃).

Pôsobenie fluoridov je zreteľné už vo východiskových sklách (obr. 4 a 5A). Odmiešanie spôsobuje zmenu symetrie lokálnych polí paramagnetických iónov Fe^{3+} a Ti^{3+} a tým i zmenu šírky rezonančných línií. Je to zvlášť výrazné pre ióny Ti^{3+} [16].

Najvýraznejší je vplyv Na₂SO₄ (obr. 6). Zvýrazňuje sa singletová línia s g = 4,13 vo východiskovom skle, rovnako je zreteľná táto línia i pri jej trans-

Teplota	Sklo	Prídavok										
	SI 5T	LiF		NaF		Na ₂ SO ₄		Na ₃ PO ₄		Fe ₂ O ₃		
	A R	A	R	A	R	A	R	Α	R	A	R	
600	512 102	511	154	740	162	428	60	640	527		637	
650	440 238	1217	50	1350	56	1316	33	1175	135	1 121	595	
750	315 54	1470	75	1245	195	1200	305	1350	463		1153	
800	neurč.	0,1	55	584	590	143	144	200	466		neurč.	
Koeficie	nt pomeru plâ	ch A/R				T						
600	5,0	3,3		4,6		7,1		1.2				
650	1,8	24,3	1.111	24,1		39,9		8,7		3 dimit 141		
750	5,8	19,6	i sali d	6,4		3,9		2,9		Contractor Planet		
800	6 - Wolfred	0,0	0,002		1,0		1,0		0,4		10 Permi	

Tabułka II Vyhodnotenie vplyvu prídavkov rtg-fázovou analýzou $(d_{hk1} = 0.351 \text{ nm anatas}; d_{hk1} = 0.324 \text{ nm rutil})$

pozícii na širokú líniu (krivka *B*). To nasvedčuje o stabilizácii štruktúrnych centier Fe^{3+} , na ktoré odmiešanie v tomto prípade pôsobí menej výrazne. Rovnako je intenzívnejšia singletová línia v strede magnetického poľa, čo je spôsobené zabudovaním sa iónov SO_4^{2-} do anatasovej fázy.

Anatas bol zistený len v prípade skla, v ktorom dochádza k metastabilnému odmiešaniu. Prídavok 1,4 mol % Fe_2O_3 zapríčiní kryštalizáciu len rutilu. Vnesenie takéhoto prídavku posúva oxidačno-redukčnú rovnováhu, metastabilné odmiešanie nenarúša paramagnetické centrá iónov Fe^{3+} , nevzniká Ti^{3+} , kryštalizuje len rutil, ktorého difrakčné maximum je zdvojené (obr. 14). Takýto rutil má krémovožltý farebný odtieň, preto je v praxi nežiadúci.

V prípade kryštalizácie skla, ktorého zloženie je mimo oblasť metastabilného odmiešania (sklo SII), nezistilo sa odmiešanie ani po pridaní TiO_2 (do 30 %), sklo kryštalizuje pri vyššej teplote a len ako rutil.

Metastabilné odmiešanie má podstatný vplyv na mechanizmus nukleácie a na stabilizáciu anatasovej modifikácie. Požadovaný modrý odtieň anatasu je zapríčinený zabudovaním iónov Ti³⁺ do štruktúry anatasu. Vznik iónu Ti³⁺ priamo súvisí s procesom odmiešania v skle.

Porovnaním vplyvu prídavkov na vznik singletového signálu sg = 1,99a semikvantitatívnym posúdením anatas a rutil zistíme, že vplyv prídavkov klesá v poradí

$$Na_2SO_4$$
—LiF— NaF — Na_3PO_4 — Fe_2O_3 .

ZÁVERY

Sledovala sa kryštalizácia skiel v systéme $Na_2O - B_2O_3 - SiO_2 - TiO_2$. Ukázalo sa, že použité prídavky vplývajú rozdielnym mechanizmom na vznik anatasovej modifikácie. Je to ovplyvnenie metastabilného odmiešania (LiF, NaF, Na_3PO_4). Toto odmiešanie zapríčiňuje vznik iónu Ti³⁺, ktorý podstatne vplýva na farebnú charakteristiku kryštálov anatasu. Najvýraznejší z prídavkov na vznik a stabilizáciu anatasovej modifikácie je Na_2SO_4 , ktorý sa zabudováva do štruktúry anatasu.

Dôležitým poznatkom je zistenie, že prídavok Fe_2O_3 ovplyvňuje kryštalizáciu tak, že vzniká len rutil. V tomto prípade je to dôsledok ovplyvnenia oxidačnoredukčnej rovnováhy prídavkom Fe₂O₃.

Priaznivý účinok prídavkov na vznik iónu Ti³⁺ a na vznik a stabilizáciu anatasovej modifikácie klesá v poradí

Na₂SO₄—LiF—NaF—Na₃PO₄—Fe₂O₃.

Poďakovanie

Dovoľujem si poďakovať Ing. S. Ďurovičovi, CSc., Ing. L. Omelkovi a Ing. K. Kazdovi za technickú pomoc a spolupracovníkom na Katedre chemickej technológie silikátov za podporu v práci.

Literatúra

- [1] Pach L., Vaniš M., Vojtaššák I.: Silikáty 18, 343 (1974).
- [2] Matrijenko V. N., Barinov Ju. D.: O vlijanii ščeločnych okislov na glušenije titanovych emalej. In: Neorganičeskije steklovidnije pokrytia i materialy, str. 309. Riga, Zinatne 1969.
- [3] Ješkov A. S., Smakota N. F.: O roli okisi kalcija v emalevych steklach. In: Neorganičeskije steklovidnije pokrytia i materialy, str. 315. Riga, Zinatne 1969.
- [4] Vargin V. V., Smirnova G. P.: Titanovyje emali. In: Neorganičeskije steklovidnije pokrytia i materialy, str. 299. Riga, Zinatne 1969.

- pokryta i materiały, str. 299. Riga, Zinatne 1969.
 [5] Rao C. N. R., Turner A., Honig J. M.: J. Phys. Chem. Solids 11, 173 (1959).
 [6] Schlossberger F.: Z. Kristallogr. 104, 358 (1942).
 [7] Barblan F.: Helv. chim. acta 27, 88 (1944).
 [8] Sullivan W. F., Coleman J. R.: J. Inorg. Nucl. Chem. 24, 645 (1963).
 [9] Shannon R. D., Firedberg A.: Eng. Exp. Sta. Bullet. 57, 44 (1964).
 [10] Vargin V. V., Popova L. B.: Svetlookrašennyje titanovyje emali dlja stalnoj posudy. In: Neorganičeskije steklovidnije pokrytia i materialy, str. 303. Riga, Zinatne 1960. Zinatne 1969.
- [11] MacKenzie K. J. D.: Trans. J. Brit. Ceram. Soc. 74, 29 (1975).
- [12] Vojtaššák I., Vaniš M., Pach L.: Proc. XI. Int. Glass Congr. I, str. 103. Praha 1977.

- [13] Loveridge D., Parke S.: Phys. Chem. Glasses 12, 19 (1971).
 [14] Galimov D. G., Judin D. N., Jafajev N. R.: Z. Prikl. Spektrosk. 19, 364 (1973).
 [15] Peterson F. E., Kurkjian C. R., Carnevale A.: Phys. Chem. Glasses 15, 52 (1974).
 [16] Abdrachmanov R. S., Ivanova T. A., Petuchov V. Ju.: Fiz. Chim. Stekla 2, 6 (1976).

ВЛИЯНИЕ ДОБАВОК НА КРИСТАЛЛИЗАЦИЮ БОРОСИЛИКАТНЫХ СТЕКОЛ allines, sugar a subtransiones

Иван Войташиак

Химико-технологический факультет Словацкого политехнического института Братислава

Исследовали кристаллизацию стекол в системе Na₂O-B₂O₃-SiO₂-TiO₂. Состав стекол подбирали так, чтобы стекло обозначенное как SI находилось в области метастабильного расслоения, а стекло SII находилось вне этой области (состав стекол приводится в таблице 1).

Исследовали механизм действня добавок, применяемых в эмалировочном производстве для стабилизации анатасовой модификации (LiF, NaF, Na₂SO₄, Na₃PO₄) и добавки Fe₂O₃. Было установлено, что анатас образуется только в стекле SI. В этом стекле установили также присутствие нонов Ti³⁺, оказывающих влияние на характеристику стекла и кристаллической фазы. Поэтому для исследования действия добавок использовались методы электронного парамагнитного резонанса (ЭПР).

Добавки 1 мол. % LiF, NaF и частично Na₃PO₄ оказывали положительное влияние на интенсивность расслоения стекла SI, а в результате того даже на ион Тіз+ и анатас (рис. 4, 5, 7, спектры А, В).

Добавка Na₂SO₄ стабилизировала комплексы ионов Fe³⁺ (g = 4,13) и ион Ti³⁺ (g == 1,99) и встроилась в анатасовую структуру и таким образом вызвала ее стабилизацию.

Добавка 1,4 мол. % Fe₂O₃ в стекле SI вызывала кристаллизацию только рутиловой

модификации, в то время как присутствие иона Ti³⁺ не было установлено. Такой до-бавкой смещается окислительно-восстановительное равновесие в системе. Подобным образом при кристаллизации стекла SII установили рутил.

Была установлена прямая зависимость между образованием иона Ti³⁺ и кристаллизацией анатасовой модификации. Благоприятное действие добавок понижается в последовательности Na₂SO₄—LiF—NaF—Na₃PO₄—Fe₂O₅. Puc. 1. Спектр ЭПР стекла SI. Puc. 2. Спектр ЭПР стекла SI 1F и SI 5T 1F. Puc. 3. Спектр ЭПР стекла SI 1F и SI 5T 1F.

- Рис. 2. Спектр ЭПР стекла SI 57. Рис. 4. Спектр ЭПР стекла SI 57. Рис. 5. Спектр ЭПР стекла SI 57 ILiF. Рис. 6. Спектр ЭПР стекла SI 57 INa₂SO₄. Рис. 7. Спектр ЭПР стекла SI 57 INa₂SO₄.
- Рис. 6. Спектр ЭПР стекла SI 51 1182504. Рис. 7. Спектр ЭПР стекла SI 5T 1183PO4. Рис. 8. Зависимость высоты сигнала ЭПР (g = 1,99) от температуры вторично обработанных проб исходных стекол и стекол с добавками LiF, NaF, Na2SO4, Na₃PO₄.
- Рис. 9. Рентгеновская дифракционная запись стекла SI 5T.
- Рис. 10. Рентгеновская дифракционная запись стекла SI 5T 1LiF.

- Рис. 11. Рентгеновская дифракционная запись стекла SI 57 INa₂SO₄. Рис. 12. Рентгеновская дифракционная запись стекла SI 57 INa₂SO₄. Рис. 13. Рентгеновская дифракционная запись стекла SI 57 INa₅. Рис. 14. Рентгеновская дифракционная запись стекла SI 57 I Na₃PO₄. Рис. 15. Рентгеновская дифракционная запись стекла SI 57 I Fe₂O₃. Рис. 15. Рентгеновская дифракционная запись стекла SI 107, SII 207, SII 307.

THE EFFECT OF ADDITIONS ON THE CRYSTALLIZATION OF BOROSILICATE GLASSES

Ivan Vojtaššák

Chemico-Technological Faculty of the Slovak Technical University, Bratislava

Crystallization of glasses in the system Na₂O-B₂O₃-SiO₂-TiO₂ was studied. The glass compositions were chosen so that the glass designated SI was in the range of metastable liquation and glass SII was beyond this range (the glass compositions are listed in Table 1).

The study was concerned with the functional mechanism of additions currently used in enamelling practice for the purpose of stabilizing the anatase modification (LiF, NaF, Na₂SO₄, Na₃PO₄) and of the Fe₂O₃ addition. Anatase was found to be formed in glass SI only. Formation of the Ti³⁺ which affects the glass and crystalline phase characteristics was also established in this type of glass. The electron paramagneic resonance method (EPR) was chosen for the purpose of studying the actual effects of the additions.

Additions of 1 mole percent LiF, NaF and partially Na₃PO₄ affected positively the separation intensity of glass SI and thus also formation of the Ti^{3+} ion and of anatase (Figs. 4, 5, 7, spectra A, B).

The Na₂SO₄ additon stabilized the Fe₃⁺ ionic complexes (g = 4.13) and the Ti³⁺ ion (g = 1.99), and having built itself into the anatase structure, has stabilized it.

An additon of 1.4 mole percent Fe_2O_3 to glass SI has brought about crystallization of the rutile modification only; the Ti³⁺ ion was not found. Such an addition displaces the oxidation-reduction equilibrium in the system. Rutile was likewise found during crystallization of glass SII.

I. Vojtaššák:

A direct relationship has been established between the formation of the Ti^{3+} ion and crystallization of the anatase modification. The favourable effect of the additions decreases in the following order:

Na₂SO₄—LiF—NaF—Na₃PO₄—Fe₃O₂.
Fig. 1. EPR spectrum of glass SI.
Fig. 2. EPR spectrum of glasses SI 1F and SI 1F.
Fig. 3. EPR spectrum of glass SI 5T.
Fig. 4. EPR spectrum of glass SI 5T 1LiF.
Fig. 5. EPR spectrum of glass SI 5T 1 NaF.
Fig. 6. EPR spectrum of glass SI 5T 1 Na₂SO₄.
Fig. 7. EPR spectrum of glass SI 5T 1 Na₃PO₄.
Fig. 8. Height of EPR signal (g = 1.99) vs. temperature of secondarily treated samples of the initial glasses and those with additions of LiF, NaF, Na₂SO₄, Na₃PO₄ respectively. pectively.

Fig. 9. X-ray diffractogram of glass SI 5T.

- Fig. 2. A-ray diffractogram of glass SI 5T. Fig. 10. X-ray diffractogram of glass SI 5T 1 LiF. Fig. 11. X-ray diffractogram of glass SI 5T 1 Na₂SO₄. Fig. 12. X-ray diffractogram of glass SI 5T 1 NaF. Fig. 13. X-ray diffractogram of glass SI 5T 1 Na₂PO₄. Fig. 14 X-ray diffractogram of glass SI 5T 1 Na₂O₄.
- Fig. 14. X-ray diffractogram of glass SI 5T 1 Fe2O3. Fig. 15. X-ray diffractogram of glasses SII 10T, SII 20T, SII 30T.