TEPELNÝ ROZKLAD Sr₄Al₂O₂(OH)₈CO₃

FRANTIŠEK HANIC a kol.

Ústav anorganickej chémie Slovenskej akadémie vied, 809 34 Bratislava, Dúbravská cesta 5

Došlo 31. 7. 1978

Študovali sa podmienky vzniku zlúčeniny $Sr_4Al_2O_2(OH)_8CO_3$ reakciou $Sr_4Al_2O_7$ a atmosféry $H_2O + CO_2$ a jej teplotná stálosť. Tepelný rozklad $Sr_4Al_2O_2(OH)_8CO_3$ prebieha v troch stupňoch. Prvé dva stupne tepelného rozkladu sú dehydroxylačné reakcie, tretí stupeň je dekarbonatácia. I. stupeň dehydroxylácie je reakcia prvého poriadku. Jej aktivačná energia je 133 kJ/mol H_2O , jej reakčná entalpia je 64,4 kJ/mol H_2O .

ÚVOD

Tetrakalcium-karbonáto-aluminát tetrahydrát, $Sr_4Al_2O_6(CO_3) \cdot 4H_2O$, je pri laboratórnej teplote a príslušnom tlaku nasýtenej vodnej pary stabilná zlúčenina v sústave SrO—Al₂O₃—H₂O—CO₂, ktorá sa tvorí reakciou Sr₄Al₂O₇ a atmosféry H₂O + CO₂.

Cieľom tejto práce bol kvalitatívny a kvantitatívny popis termického rozkladu zlúčeniny $\rm Sr_4Al_2O_6(CO_3)$. 4 H₂O pomocou termických, röntgenových a spektrálnych metód za účelom objasnenia väzby H₂O v zlúčenine a mechanizmu tepelného rozkladu.

EXPERIMENTÁLNA ČASŤ

Zlúčenina Sr₄Al₂O₆(CO₃). 4 H₂O sa pripravovala dvomi spôsobmi:

1. reakciou $Sr_4Al_2O_7(Sr_4A) \vee prietoku H_2O(g) + CO_2 pri teplote 313 K <math>\vee$ termoanalyzátori DuPont 990 (termováhy TGA 951). Rýchlosť prietoku plynov bola 60 ml/min. Narastanie hmotnosti vzorky v priebehu reakcie sa kontrolovalo na zapisovači prístroja a je znázornené na obr. 1. Doba reakcie bola 31,5 h. Na tom istom prístroji sa sledoval úbytok hmotnosti zlúčeniny, vzniknutej hydroxyláciou a karbonatáciou, pomocou tepelného rozkladu (VTA) v kontrolovanej atmosfére pri konštantnom prietoku dusíka (60 ml/min), pri rýchlosti záhrevu 20 K/min v intervale teplôt 293—1300 K (obr. 2). Vykonal sa tiež experiment, v ktorom sa uskutočnila reakcia medzi Sr₄A a H₂O pri 313 K za neprítomnosti CO₂. Po 400 min bol prírastok na hmotnosti vzorky 0,37 %. Za rovnakú dobu vzrástla hmotnosť v prietočnej atmosfére H₂O + CO₂ o 8,58 %. Prítomnosť CO₂ urýchlila teda reakciu približne 23krát.

2. pozvoľnou reakciou Sr₄A s atmosferickým CO₂ a H_2O v laboratórnej atmosfére v priebehu cca 4 týždňov.

Identitu produktov oboch typov reakcií dokázali výsledky chemickej analýzy, termických metód (DTA a VTA) a porovnanie rtg. práškových difrakčných záznamov a IČ spektier. Výsledky chemickej a termickej analýzy (VTA) sú uvedené v tabuľke 1. Charakteristický DTA záznam zlúčeniny $Sr_4Al_2O_6(CO_3)$. 4 H_2O je znázornený na obr. 3. Záznam sa zhotovil v atmosfére dusíka pri jeho konštantnom prietoku 60 ml/min a pri rýchlosti záhrevu 50 K/min v termoanalyzátore DuPont 990 u vzorky, vzniklej pozvoľnou reakciou Sr_4A s atmosferickým CO_2 a H_2O . Podobný záznam poskytla vzorka syntetizovaná v prietočnej atmosfére $H_2O + CO_2$ pri zvýšenej teplote.

IČ spektrá sa zmerali na prístroji Perkin—Elmer 221 v oblasti 2—15 μ m po peletizácii s KBr v pomere 2 : 1. IČ spektrum zlúčeniny Sr₄Al₂O₆(CO₃) . 4 H₂O je znázornené na obr. 4.

Röntgenové práškové difrakčné záznamy základných zlúčenín $Sr_4A a Sr_4Al_2O_6(CO_3)$. 4 H₂O sa zhotovili na práškovom difraktometri Philips s goniometrom PW 1540.

Obr. 1. Narastanie hmotnosti vzorky v priebehu reakcie medzi $Sr_4Al_2O_7$ a prietočnou atmosférou $H_2O + CO_2$ (60 ml/min) pri 313 K. Časová stupnica je v hodinách.

Obr. 2. Krivka VTA zlúčeniny Sr4Al₂O₆(CO₃). 4 H₂O v prietočnej atmosfére dusíka (60ml/min). Rýchlosť záhrevu 20 K/min.

Fázy, vznikajúce pri tepelnom rozklade $Sr_4Al_2O_6(CO_3)$. 4 H_2O sa kontrolovali na vysokoteplotnom difraktometri s $\Theta - \Theta$ geometriou, konštruovanom na Ústave anorganickej chémie SAV. Použilo sa žiarenie CuK α . Rtg. záznamy, zhotovené za normálnej a zvýšenej teploty, znázorňuje obr. 5.

Tetrastronciumaluminát, Sr₄A, použitý pri syntéze zlúčeniny Sr₄Al₂O₆(CO₃). . 4 H₂O sa pripravil zo stechiometrickej zmesi SrCO₃ a Al₂O₃ o čistote "p. a.", ktorá sa najprv homogenizovala na ultrazvukovom generátore UZDN I-UČ2 a potom žíhala 4 hod. pri 1673 K. Vzhľadom na značnú reaktivitu zlúčeniny Sr₄A so vzdušnou vlhkosťou a CO₂ sa tetrastronciumaluminát ihneť po skončení výpalu hermeticky uzavrel.

Vyhodnotenie rýchlosti dehydroxylácie, pravdepodobného mechanizmu rozkladu a približnej hodnoty aktivačnej energie pre I. stupeň dehydroxylácie sa uskutočnilo z meraní na termoanalyzátori DuPont 990 (termováhy TGA 951) v kontrolovanej

Obr. 3. Krivka DTA zlúčeniny Sr₄Al₂O₆(CO₃). 4 H₂O v prietočnej atmosfére dusíka (60 ml/min). Rýchlosť záhrevu 50 K/min.

Obr. 4. IR spektrum zlúčeniny Sr₄Al₂O₆(CO₃). 4 H₂O v oblasti 2-15 µm.

Silikáty č. 1, 1980

F. Hanic a kol.

atmosfére pri konštantnom prietoku dusíka 60 ml/min. Stupeň konverzie α v teplotnom intervale 443—659 K, v ktorom prebieha I. stupeň tepelného rozkladu Sr₄Al₂O₆(CO₃). 4 H₂O, sa stanovil ako podiel úbytku hmotnosti Z_{τ} pri izotermickom meraní v čase τ z celkového úbytku hmotnosti Z_f v uvedenom teplotnom intervale, stanoveného dynamickou metódou pri konštantnej rýchlosti záhrevu 10 K/min. K vyhodnoteniu Z_f sa použila termogravimetrická krivka, zhotovená na termoanalyzátore DuPont 990.

Obr. 5. Röntgenové práškové difrakčné záznamy zlúčeniny Sr4Al₂O₆(CO₃). 4 H₂O a produktov jej termického rozkladu. Záznam, zhotovený pri teplote 578 K je identický s difrakčnými záznamami pri teplotách 514, 556 a 611 K. Záznam pri teplote 803 K je identický so záznamom pri teplote 773 K Použilo sa žiarenie CuK_x.

Obr. 6. Izotermy tepelného rozkladu Sr₄Al₂O₆(CO₃) . 4 H₂O v prietočnej atmosfére dusíka (60 ml/min).

Tepelný rozklad Sr₄Al₂O₂(OH)₈CO₃

Predstavu o mechanizme I. stupňa rozkladu poskytli izotermické úbytky hmotnosti pri teplotách 476, 478, 487 a 495 K. Izotermy sú na obr. 6. Zo získaných izoteriem sa odčítali poločasy rozkladu $\tau_{0.5}$, potrebné pre vyhodnotenie funkcie

$$\alpha = f[\tau/\tau_{0,5}]. \tag{1}$$

VYHODNOTENIE VÝSLEDKOV A DISKUSIA

Chemická identita hydratovanej a karbonátovanej zlúčeniny $Sr_4Al_2O_6(CO_3) \cdot 4H_2O_7$ vyplynula z výsledkov jej chemickej a termickej analýzy, uvedenými v tabuľke I. Výsledky VTA (obr. 2) poukazujú na to, že termický rozklad $Sr_4Al_2O_6(CO_3) \cdot 4H_2O_7$ prebieha v troch stupňoch. Z porovnania medzi termálnym rozkladom trikalciumaluminátu hexahydrátu, 3 CaO. $Al_2O_3 \cdot 6H_2O = Ca_3Al_2(OH)_{12}$ a fázy $Sr_4Al_2O_6(CO_3) \cdot 4H_2O_6(CO_3) \cdot 4H_2O_6(CO_3) \cdot 4H_2O_6(CO_3) \cdot 4H_2O_6(I)$. $AH_2O_6(I)$, ako aj z IČ spektier (obr. 4) vyplýva záver, že voda je v štruktúre obidvoch zlúčenín viazaná vo forme hydroxidových skupín. IČ spektrá obsahujú absorpčný pás pri 2,8–2,9 µm, ktorý je typický pre prítomnosť hydroxidových skupín.

Tabulka I

Porovnanie chemického zloženia produktov reakcie l a 2 s teoretickým pre štruktúrny vzorec $3Sr(OH)_2$. 2 AlO(OH). $Sr(OH)_{2-x}(CO_3)x$.

x	SrO	Al ₂ O ₃	H ₂ O 443 až 659 K	H ₂ O 659 až 850 K	CO2	Poznámka
2,0	65,53	16,12	8,54	2,85	6,96	Vypočítané chemické
1,9	65,66	16,15	8,70	2,86	6,62	zloženie
1,8	65,80	16,19	8,87	2,86	6,29	
1,7	65,93	16,22	9,02	2,87	5,95	
1,6	66,07	16,25	9,19	2,87	5,61	
1,5	66,21	16,29	9,35	2,88	5,27	
1,4	66,35	16,32	9,51	2,89	4,93	
1,3	66,49	16,35	9,68	2,89	4,58	
1,2	66,62	16,38	9,84	2,90	4,24	
1,1	66,76	16,42	10,01	2,90	3,90	
1,0	66,91	16,46	10,18	2,91	3,55	
~ 1,7	65,83	16,72	11,88		5,56	Chemická analýza produktu reakcie 2
~ 1,9			8,57	2,87	6,35	Termogravimetrická analýza produktu reakcie 1

Výsledky sú uvedené v hmotnostných %.

V prvom stupni tepelného rozkladu sa v teplotnom intervale 443—659 K uvoľňuje zo štruktúry $Sr_4Al_2O_6(CO_3) \cdot 4 H_2O$ voda z hydroxidových skupín, viazaných na atómy stroncia.

V druhom stupni tepelného rozkladu sa zo štruktúry uvoľňuje v teplotnom intervale 659—850 K voda z hydroxidových skupín, viazaných na atómy hliníka. Po ukončení druhého stupňa rozkladu štruktúra už neviaže nijakú vodu.

F. Hanic a kol.:

V treťom stupni sa v teplotnom intervale 850—1400 K rozkladajú uhličitanové skupiny za uvoľňovania CO₂. Výsledným produktom tepelného rozkladu je zlúčenina $Sr_4Al_2O_7$.

Existencia troch rozkladných produktov tepelného rozkladu bola potvrdená tiež vysokoteplotnou práškovou difraktometriou. Difraktometrické záznamy, zhotovené pri rozličných teplotách, viedli k identifikácii troch vysokoteplotných fáz. Prvá fáza bola identifikovaná na záznamoch, zhotovených pri teplotných hladinách 514, 556, 578 a 611 K. Druhá fáza sa zistila pri teplotných hladinách 773 a 803 K. Tretia vysokoteplotná fáza, Sr_4A , vznikla po vyžíhaní na teplotu 1500 K (obr. 5).

Na základe uvedených výsledkov je možné pripísat zlúčenine $Sr_4Al_2O_6(CO_3) \cdot 4H_2O$ štruktúrny vzorec $Sr_4(AlO)_2(OH)_8(CO_3) = 3$ $Sr(OH)_2 \cdot 2$ $AlO(OH) \cdot SrCO_3 \cdot Posledný zo štruktúrnych vzorcov vystihuje väzbu hydroxidových a uhličitanových skupín na jednotlivé katióny a úzko súvisí s jednotlivými stupňami tepelného rozkladu. Súčasne reprezentuje najvyšší stupeň hydroxylácie a karbonatácie tetrastroncium$ $aluminátu a ďalšia hydroxylácia a karbonatácia účinkom atmosféry <math>H_2O + CO_2$ za uvedených podmienok už neprebieha. Zistili sme však rozdiely v obsahu CO_2 v zlúčenine podľa doby pôsobenia atmosféry $H_2O + CO_2$, reakčnej teploty a koncentrácie plynných zložiek. V dôsledku toho možno predpokladať, že pri karbonatácii prebieha na atóme Sr postupná substitúcia hydroxidových skupín, čomu zodpovedá štruktúrny vzorec

$$3 \operatorname{Sr}(OH)_2 \cdot 2 \operatorname{AlO}(OH) \cdot \operatorname{Sr}(OH)_{2-x}(CO_3)_{x/2}$$

Tabuľka I porovnáva vypočítané chemické zloženie s chemickou analýzou vzorky, vzniknutej pozvoľnou hydroxyláciou a karbonatáciou za normálnej teploty v laboratórnej atmosfére a s termogravimetrickou analýzou vzorky vzniknutej na termováhach v prietočnej atmosfére $H_2O + CO_2$ pri teplote 313 K. Zatiaľ čo v prvom prípade sa dosiahol stupeň premeny s hodnotou $x \sim 1,7$, reakcia Sr₄A s prietočnou atmosférou $H_2O + CO_2$ viedla k vzniku produktu s $x \sim 1,9$. K termochemickým meraniam sa použili produkty s predĺženou dobou reakcie Sr₄A s atmosférou $H_2O + CO_2 + CO_2$ so zložením $x \sim 2,0$.

VÝSLEDKY TERMOCHEMICKÝCH MERANÍ. MERANIE RÝCHLOSTI DEHYDROXYLÁCIE, STANOVENIE MECHANIZMUROZKLADU A VÝPOČET AKTIVAČNEJ ENERGIE PRVÉHO STUPŇA TEPELNÉHO ROZKLADU Sr4Al2O2(OH)8CO3

Obr. 7 znázorňuje priebeh funkcie α , vyhodnotenej podľa (1). Obr. 8 zobrazuje modelové krivky $\alpha = f[\tau/\tau_{0,5}]$ pre reakčné mechanizmy F_1 , R_2 , A_2 , D_1 [2].

 F_1 je reakcia prvého poriadku charakterizovaná rovnicou:

$$\ln\left(1-\alpha\right) = -k\tau,\tag{2}$$

$$\frac{\mathrm{d}\alpha}{\mathrm{d}\tau} = k(1-\alpha),\tag{3}$$

 R_2 je reakcia, kontrolovaná konštantnou rýchlosťou posunu fázového rozhrania z okraja dovnútra pre idealizovaný diskovitý tvar podľa rovnice:

$$1 - (1 - \alpha)^{1/2} = k\tau.$$
(4)

 A_2 je reakcia, kde je určujúcim kinetickým faktorom nukleácia reakčného produktu, vyjadrená tzv. Avrami—Jerofjejeovou rovnicou:

$$[-\ln(1-\alpha)]^{1/2} = k\tau, \tag{5}$$

 D_1 je reakcia kontrolovaná difúziou produktov z fázového rozhrania.

Z modelových[§]kriviek na obr. 8 sa experimentálnym výsledkom najviac blíži priebeh funkcie F_1 (reakcia prvého poriadku). Rýchlostné konštanty pre interval premeny $\langle 0,1, \alpha, 0,8 \rangle$ pre tento mechanizmus sme stanovili zo smerníc priamok na obr. 9. Vyhodnotenie rýchlostných konštant spolu s poločasmi rozpadu $\tau_{0,5}$ je pre jednotlivé teploty T uvedené v tabuľke II. Podobné výsledky, k akým viedlo štúdium mechanizmu I. stupňa tepelného rozkladu Sr₄Al₂O₂(OH)₈CO₃ sa zistili v prípade I. stupňa tepelného rozkladu Ca₃Al₂(OH)₁₂ [3].

Z grafického spracovania Arrheniovho vzťahu sme vypočítali približnú hodnotu aktivačnej energie E_a pre I. stupeň dehydroxylácie 133 kJ/mol H₂O (obr. 10).

Obr. 7. Závislosť $\alpha = f[\tau | \tau_{0,5}]$ pre zlúčeninu $\operatorname{Sr}_4\operatorname{Al}_2\operatorname{O}_6(\operatorname{CO}_3)$. 4 $\operatorname{H}_2\operatorname{O} v$ prietočnej atmosfére dusíka. Plná čiara reprezentuje priebeh modelovej reakcie prvého poriadku F_1 .

Obr. 8. Priebeh kriviek modelových reakcií F_1 , D_1 , A_2 , R_2 .

F. Hanic a kol.

Tabulka II

Rýchlostné konštanty I. stupňa tepelného rozkladu zlúčeniny $Sr_4Al_2O_6(CO_3) \cdot 4 H_2O$ s poločasmi rozpadu $\tau_{0.5}$ pre jednotlivé teploty T podľa obr. 10

T [K]	$(1/T) \ 10^3$	$k [\min^{-1}]$	$\ln k$	τ _{0,5} [min]
476	2,10	0,0099	-4,6152	79
478	2,09	0,0143	-4,2474	63
487	2,03	0,0320	-3,4418	24

Obr. 9. Závislosť $\ln (1 - \alpha)$ vs. τ pre zlúčeninu $\mathrm{Sr}_4\mathrm{Al}_2\mathrm{O}_6(\mathrm{CO}_3)$. 4 H₂O Obr. 10. Grafické určenie aktivačnej energie E_α pre I. stupeň tepelného rozkladu zlúčeniny $\mathrm{Sr}_4\mathrm{Al}_2\mathrm{O}_6(\mathrm{CO}_3)$. 4 H₂O.

Na základe uvedených výsledkov bolo možné navrhnúť schému tepelného rozkladu zlúčeniny $Sr_4Al_2O_2(OH)_8CO_3$:

$$\begin{array}{rl} 3 \; {\rm Sr}({\rm OH})_2 \, . \, 2 \; {\rm AlO}({\rm OH}) \, . \; {\rm SrCO}_3 \\ -3 \; {\rm H}_2{\rm O} & \downarrow & 443-659 \; {\rm K} & ({\rm I. \; stupe} {\rm \check{n}}) \\ & 3 \; {\rm SrO} \, . \, 2 \; {\rm AlO}({\rm OH}) \, . \; {\rm SrCO}_3 \\ -{\rm H}_2{\rm O} & \downarrow & 659-850 \; {\rm K} & ({\rm II. \; stupe} {\rm \check{n}}) \\ & 3 \; {\rm SrO} \, . \; {\rm Al}_2{\rm O}_3 \, . \; {\rm SrCO}_3 \\ -{\rm CO}_2 & \downarrow & 850-1400 \; {\rm K} & ({\rm III. \; stupe} {\rm \check{n}}) \\ & \; {\rm Sr}_4{\rm Al}_2{\rm O}_7 \end{array}$$

Tepelný rozklad $Sr_4Al_2O_2(OH)_8CO_3$ prebieha odlišným spôsobom ako rozklad $Ca_3Al_2(OH)_{12}$ [4]. V prípade trikalciumaluminátu hexahydrátu dochádza v I. stupni

rozkladu k tvorbe prechodnej fázy 12 CaO. 7 Al₂O₃. (0—1) H₂O a Ca(OH)₂. II. stupeň začína disociáciou Ca(OH)₂. Konečným produktom tepelného rozkladu trikalciumaluminátu hexahydrátu je Ca₃Al₂O₆. Tepelný rozklad Sr₄Al₂O₂(OH)₈CO₃ prebieha v troch stupňoch podľa naznačenej schémy.

STANOVENIE REAKČNEJ ENTALPIE I. STUPŇA DEHYDROXYLÁCIE ZLÚČENINY Sr4Al2O2(OH)8CO3

Reakčnú entalpiu I. stupňa rozkladu $Sr_4Al_2O_2(OH)_8CO_3$ sme vyhodnotili z meraní na DSC module termoanalyzátora DuPont 990 z plochy extrému podľa vzorca:

$$H_{\rm I} = \frac{A}{m} \times 60 \times {\rm citlivosf} \times {\rm časová základňa} \times E, \tag{6}$$

kde *A* je plocha extrému, *m* je navážka, *E* je bezrozmerná konštanta (v danom prípade E = 1,15). Výsledky meraní sú v tabuľke III. Priemerná hodnota reakčnej entalpie I. stupňa tepelného rozkladu zlúčeniny $Sr_4Al_2O_2(OH)_8CO_3$ je podľa našich meraní 193,2 kJ. Prepočítané na mol H_2O je táto hodnota blízka hodnotám disociačnej entalpie I. a II. stupňa tepelného rozkladu Ca₃Al₂(OH)₁₂, ktoré sú 56,2, resp. 72,2 kJ mol_{H₂O</sup>. Zodpovedajúca hodnota pre I. stupeň tepelného rozkladu Sr₄Al₂O₂(OH)₈CO₃ je 64,4 kJ mol_{H₂O}. Pomocou rozpúšťacej kalorimetrie bola pre I. stupeň rozkladu Ca₃Al₂(OH)₁₂ zmeraná hodnota 63,21 kJ mol_{H₂O</sup> (1).}}

Tabulka III

Reakčná entalpia $\Delta H_{\rm I}$ I. stupňa tepelného rozkladu zlúčeniny Sr₄Al₂O₆(CO₃). 4 H₂O

Navážka v mg	ΔH v mcal/mg	ΔH v kJ/mol	
9,92	74,4	197,0	
$\begin{array}{c}10,19\\9,95\end{array}$	71,0 73,5	188,0 194,7	
Priemerná hodnota	73,0	193,2	

Literatúra

- [1] Proks I., Nerád I., Kosa L.: Silikáty, 22, 125 (1978).
- [2] Sharp J. H., Brindley G. W., Narahari Achar: Numerical Data for Some Commonly Used Solid State Reaction Equations. Thermodynamics and Kinetics of Dehydroxylation of Hydrous Minerals. Final Report No. AF 19/628-2773, pp 94. Pennsylvania State University 1965.
 [3] Horváth I., Proks I., Nerád I.: J. Thermal Anal. 12, 105 (1977).
- [4] Kuzel H. J.: N. Jb. Miner. Mh. 1969, 397.

F. Hanic a kol.:

ТЕРМИЧЕСКИЙ РАСПАД Sr4Al2O2(OH)8CO3

Ф. Ганиц и друг.

Институт неорганической химии САН, Братислава

Соединение Sr₄Al₂O₆(CO₃). 4 H₂O образуется взаимодействием Sr₄Al₂O₇ с проточной средой H₂O + CO₂. Его структурная формула — Sr₄(AlO)₂(OH)₈CO₃ = 3 Sr(OH)₂. . 2 AlO(OH). SrCO₃. Термический распад проходит во трех реактивных степенях:

 $\frac{-3 \text{ H}_2\text{O}}{443-659 \text{ K}} \quad 3 \text{ SrO} \cdot 2 \text{ AlO(OH)} \cdot \text{SrCO}_3 \quad \frac{-\text{H}_2\text{O}}{659-850}$ 3 Sr(OH)2. 2 AlO(OH). SrCO3 659-850 K первая степень вторая степень

> $3 \text{ SrO} \cdot \text{Al}_2\text{O}_3 \cdot \text{SrCO}_3 \xrightarrow{-\text{CO}_2} \text{Sr}_4\text{Al}_2\text{O}_7.$ третья степень

Первая степень распада является реакцией первого порядка. Ее энергия активации $E_a = 133$ кдж/мол. H₂O, энтальния реакции $\Delta H = 64.4$ кдж/мол. H₂O.

- Рис. 1. Рост веса пробы во время взаимодействия между Sr4Al2O1 и проточной средой $H_2O + CO_2$ (60 мя/мин) при 313 К. Единицы времени приводятся в часах. Рис. 2. Кривая $T\Gamma A$ соединения $Sr_4Al_2O_6/CO_3 \cdot 4 H_2O$ в проточной среде азота
- (60 мл/мин.). Скорость нагрева 20 К/мин. Рис. 3. Кривая ДТА соединения Sr4Al2O6(CO3). 4 H2O в проточной среде азота
- (60 мл/мин.). Скорость нагрева 50 К/мин.
- Рис. 4. ИК спектр соединения Sr4Al2O6(CO3). 4 H2O в области 2—15 µм.
- Рис. 5. Рентгеновские порошковые дифрактограмы соединения Sr4Al2O6(CO3). 4 H2O и продуктов его термического распада. Запись, полученна при температуре 578[°]К идентична с дифракционными ваписями при температурах 514, 556 и 611 К. Запись при температуре 803 К идентична с ваписью при температуре 773 К. Применяли излучение СиКа.
- Рис. 6. Изотермы термического распада Sr4Al2O6(CO3). 4 H2O в проточной среде азота (60 мл]мин.).
- Рис. 7. Зависимость $\alpha = f[\tau | \tau_{0,5}]$ для соединения $Sr_4Al_2O_6(CO_3)$. 4 H_2O в проточной среде азота. Полная линия изображает ход модельной реакции первого порядка Ēı.
- Рис. 8. Ход кривых модельных реакций F1, D1, A2, R2.
- Puc. 9. Зависимость $\ln (1 \alpha)$ на τ для соединения $Sr_4Al_2O_6(CO_3)$. 4 H_2O .
- Рис. 10. Графическое определение энергии активации Еа для первой степени термического распада соединения $Sr_4Al_2O_6(CO_3)$, 4 H₂O.

THERMAL DECOMPOSITION OF Sr4Al2O2(OH)8CO3

František Hanic et al.

Institute of Inorganic Chemistry, Slovak Academy of Sciences, Bratislava

The compound $Sr_4Al_2O_6(CO_3)$. 4 H_2O is produced by the reaction of $Sr_4Al_2O_7$ with the atmosphere of $H_2O + CO_2$. Its structural formula is $Sr_4(A|O)_2$ (OH)₈CO₃ = 3 Sr(OH)₂ · 2 AlO(OH). . SrCO₃. Thermal decomposition of this compound proceeds in the following three stages:

$$3 \operatorname{Sr}(OH)_2 \cdot 2 \operatorname{AlO}(OH) \cdot \operatorname{SrCO}_3 \xrightarrow[443-659]{} K \xrightarrow[3 \operatorname{sro} \cdot 2 \operatorname{AlO}(OH) \cdot \operatorname{SrCO}_3 \xrightarrow[659-850]{} K \xrightarrow[3 \operatorname{srage} I. \xrightarrow[3 \operatorname{SrO} \cdot Al_2O_3 \cdot \operatorname{SrCO}_3 \xrightarrow[3 \operatorname{SrO} - 1400]{} K \xrightarrow[3 \operatorname{Sr}_4Al_2O_7. \xrightarrow[3$$

stage III.

The first stage I of the decomposition proceeds according to a model for a first-order reaction. The values of the activation energy $E_a = 133 \text{ kJ/mole H}_2\text{O}$, and the reaction enthalpy $\Delta H = 64.4 \text{ kJ/mole H}_2\text{O}$ have been determined.

- Fig. 1. Increasing sample weight in the course of reaction between $Sr_4Al_2O_7$ and the stream of $H_2O + CO_2$ (60 ml/min) at 313 K. The time scale is given in hours.
- Fig. 2. TG curve of the compound Sr₄Al₂O₆(CO₃). 4 H₂O in the flowing atmosphere of nitrogen (60 ml/min). Heating rate 20 K/min.
- Fig. 3. DTA curve of the compound Sr₄Al₂O₆(CO₃). 4 H₂O in flowing atmosphere of nitrogen (60 ml/min). Heating rate 50 K/min.
- Fig. 4. IR spectrum of the compound $Sr_4Al_2O_6(CO_3)$. 4 H₂O in the range of 2-14 µm.
- Fig. 5. X-ray powder diffraction patterns of the compound Sr₄Al₂O₆(CO₃). 4 H₂O and of the products of its thermal decomposition. The pattern prepared at 578 K is identical with those made at 514, 556 and 611 K. The pattern made at 803 K is identical with that made at 773 K. CuK_x radiation was used.
- Fig. 6. Isotermal plots of the thermal decomposition of Sr₄Al₂O₆(CO₃). 4 H₂O in flowing nitrogen atmosphere (60 ml/min).
- Fig. 7. Plot of $\alpha = f[\tau | \tau_{0,5}]$ for the compound $\operatorname{Sr}_4\operatorname{Al}_2O_6(\operatorname{CO}_3)$. 4 H₂O in flowing nitrogen atmosphere. The full line represents the course of the first order model reaction F_1 .
- Fig. 8. Model curves for reactions F_1 , D_1 , A_2 , R_2 .
- Fig. 9. The relationship between $\ln (1 \alpha)$ and τ for the compound $Sr_4Al_2O_6(CO_3) \cdot 4H_2O$.
- Fig. 10. Graphic determination of activation energy E_a for stage I of thermal decomposition of the compound $Sr_4Al_2O_6(CO_3) \cdot 4 H_2O$.