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An equation is derived for the kinetics of dissolution or growth of tmiform 
solid grains uniformly dispersed in a liquid. The conditions under which sana 
dissolves during glass melting are discussed and a simple formula for the pertinent 
mass transfer coefficient is suggested. Some factors governing the lifetime of 
silica grains are analyzed. 

INTRODUCTION 

A necessary basis for any optimization of glassmaking is a comprehension of the 
glass melting to a degree where it may be described mathematically. An important 
part of the overall batch melting process is the dissolution of sand. The purpose of the 
present contribution is to provide a framework for the description of its kinetics. 

The dissolution of silica sand during the melting of glass batch is extremely complex 
because it may involve a number of processes. For the purpose of further treatment 
it can be divided into the following stages: 

1. the initial stage - controlled by a surface reaction,
2. the transient stage - combined control by surface reaction and non-steady

diffusion occurs, 
3. the stationary stage - convective diffusion is rate controlling,
4. the grains disappearing stage - the diffusion_is accelerated by spherical effect,
5. melt homogenization.
Although we are going to treat of the melting process as general, in this section

we shall discuss the case of soda-lime-silica glass. 
I. The initial stage. At the first contact of sand with the carbonate melt tbe material

of the grains is being consumed by a chemical reaction. In the presence of sodium 
sulphate a sulphate-rich liquid is formed and, due to its low surface tension, it readily 
wets the surfaces of grains [I]. Šašek [2a] has experimentally proved that in the 
initial period the rate at which sulphate reacts with silica is lower than that of the 
carbonate (sodium sulphate reacts with silica below its decomposition temperature) 
and so the rate of sand dissolution decreases with increase of sodium sulphate con­
centration. 

2. The transient stage. The silica,rich melt forms a concentration boundary layer
around tlie grains, the thickness of which increases with time. Th,is increase is limited 
by 

a) free and forced macroscopic convection,
b) free buoyancy convection due to non-uniform density,
c) forced and free convection due to the effect of gas bubbles.
Convec}ion ad c) is the most effective one. It can take place as a result of a nuinber

of different mechanisms: 
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i) Since a bubble attached to a sand grain is situated in a non-uniform concentra­
tion field, a non-uniform surface tension arises on its surface so that free surface 
convection can be induced. Grain dissolution can thus be intensively accelerated 
at the three phase boundary, similarly to the familiar case of upward drilling of 
a refractory brick. It is unlikely to apply this mechanism to silica sand for the glass 
surface tension depends only slightly on silica concentration. 

ii) Provided that the concentration of the finin!t agent as well as temperature
are sufficiently high the bubbles grow rapidly. Since the contact angle between a silica 
grain !1nd the inelt is small the bubbles break away easily from the grain surfaces 
and ascend upwards. Just after breaking away they spheroidize and, at the same 
time, the conce�tration of melt at their surfaces becomes uniform due to the effect of 
surface convection. As a consequence of these two effects the bubbles are driven 
abruptly away from the grains bringing about a turbulence in their boundary layers. 
The grain dissolution is thus intensively promoted. This behaviour of bubbles was 
directly observed by Němec [3). A protective effect of the bubbles is also imaginable, 
however, when not increasing bubbles are attached to grains for a given period. 

iii) The ascendent bubbles stir the grain-melt rnixture thus lirniting the boundary
layer growth. The bubbles can either destroy the clusters of grains or, on the contrary,
add to aglomerate the grains by preferring those paths through the melt at which
the viscosity is lower. It seems probable that the latter effect operates at lower
temperatures when the bubbles are formed by the decomposition of carbonates
while the forrrier one is due to the bubbles resulting from the refining. The flotation 
of grains by the attached bubbles has been often observed, too. 

The shape of grains can change during dissolution. The initially irregular grains 
can be spheroidized by bubble-free dissolution owing to the fact that dissolution rate 
increases with increasing surface curvature. The bubbles, however, can produce 
a geometrie instability of grains owing to surface convection or surface protection 
as explained. 

3. The stationary stage. In this stage the effect of diffusion and convection on the
dissolution rate are mutually balanced. The inore intensive the convection the 
earlier it sets in. Naturally, the name "stationary" is justified only when the con­
vection pattern does not change with time. 

4. The stage of the disappearing of grains. At the very end of dissolution the dif­
fusive resistance drops down to zero owing to the spherical symmetry of a grain [4]. 
The dissolution is then again governed by the surface reaction. 

5. The stage of melt homogenization. After complete dissolution of all grains the
melt refines for the bubbles can no longer be nucleated. The non-uniformity in the 
melt composition is gradually smoothed by diffusion as analyzed by Cooper [5). 
• It is interesting to note that the effect of bubbles can be very different - they can
both accelerate and retard or even stop the dissolution of the sand grains. Which
effect prevails depends on the melting conditions, particularly on the temperature.
It is obvious that the dissolution process can become more complex when the temper­
ature changes with time in an intricate way as in the case of glass-melting in both
classical and electric tank furnaces.

The following section deals with the growth or dissolution of a grain material in 
a liquid in a more general way. It is only assumed that the grains are uniform in 
sizes and shapes and uniformly dispersed in the mixture. As the mechanism of the 
mass transfer in such a rn.ixture can be very complicated or even unlrnown, the 
approach to the problem is not based on field equations of continua but rather on 
defining a mass transfer coefficient subject only to the requirement that it must be 
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reduced to the rate constant of a chemical reaction or D/6 (D is diffusion coefficient 
and o boundary layer thickness) in trivial cases, As a result of this section a differential 
equation is established which enables to calculate the grain size as a function of time, 
if the mass transfer coefficient as a function of time is known. 

In the last two sections the mass transfer coefficient for the case of the sand dís­
solution in a melt is being discussed. In the first of them a relation correlating the 
re ults of crucible experíments is suggested. In the last section the batch-free time, 
e.i. the Iifetime of sand · grains is discussed regarding possibilities of accelerating the
sand dissolution.

KINETIC E QUATION FOR 'l'HE INTERACTION BETWEEN GRAINS 

I 
AND A LIQUID 

Let us consider such a mixture of soiid grains and a liquid where the grains of 
uniform sizes and shapes are uniformly distributed in space and soluble in the liquid, 
thus forming one of the liquid components (component A). H the liquid is over­
saturated with A, the grains are increasing in size; in the opposite case the dissolution 
of the grains proceeds. 

An effective radius r of a grain can be defined by 

Ws =
3

1tr3n(!s , (1) 

where Ws is the mass fraction of solid in the mixture, n the number of grains in a unit 
mass of the mixture and es the solid density. The rate of change of the solid concentr­
ation can be measured as the rate of change of r. It seems useful to define the mass 
transfer coefficient a by the equation 

(2) 

where Wm is the mean and We the saturated mass fraction of A in the liquid and de 
denotes the time derivative. Wm can be expressed from the mass balance of A

(3) 

where wa is the mass fraction of A in the mixture. 
Denoting by w0 the mass fraction of solid in the mixture at time t = O, it follows 

from (1) that 
(4) 

where r0 is the effective grain radius at t = O. Equation (4) rests upon the assumption 
that the number of grains is constant during the process. 

The mass fraction w1 of the solid in the equilibrium mixture is given by the 
relation 

(5) 

indeed, if Ws = Wf, it follows from (3) and (5) that Wm = We , The corresponding 
effective grain radius is 

r1 = ro(w1/wo)113
• (6) 

According to the value of w1 the mixtures may be divided into the followíng 
classes: 
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(i) Wf > w0 , the grains increase in sizes,
(ii) w1 = w0 , the grains do not change, the rnixture is at equilibrium,

(iii) Wf < w0 , the grains decrease in sizes, 
(a) w1 E (O, w0), the grains never disappear, 
(b) w1 = O, the grains disappear and a saturated solution results, 
(c) w1 < O, the grains diappear and the liquid remains unsaturated.

In clases (i)-(iiib) the process)eads to a mixture of liquid saturated with A and
solid of the mass fraction w1. In- class (iiic) it would be necessary to add the mass
I w1 I of A to every unit mass of the mixture to saturate it. 

Using (3) and (5) equation (2) can be rewritten 
dtť = a(l - We) (w1 -Ws)/(1 - W8). (7)

Ey (4) and (6) we ha:ve

der = a(wa - We) (r'j -r3)/(r'j -Wfť3). (8)
Introducing a substitution
<p = (1 -we)-1(r-2/2wo + r) for ťf = O, (9a)

<p = (r,/ro) (l -we)-1(r + (l/w,-1) (�ln ((1 - 'ř3)/(1 -'ř)3) +

+ 3-1/2 tan-1(3-1/2(2'ř + 1)))) for r1 =I= O, (9b)

where r = r/r0 and 'ř = rfrt, equation (8) becomes
di<p = a/ro. (10)

Substitutions (9a) and (9b) eliminate effects of changes of boundary surface,
liquid volume and liquid composition on the rate of dissolution or crystalization.
Coefficient a describes only the effects of diffusion, convection, surface reaction, and
the change of grain shapes during the process. A similar substitution was introduced
by Hixson and Crowell (6] in 1931. Their analysis, however, was based on a different
starting point, because they have considered the liquid volume as a constant. 

• Integration of (10) yields 

or

t 
<p(r) - <p(l) = J a dt/r0

o 

t 

(lla) 

<p('ř) - rp(ro) =J a dt/ro, (llb)

For large t we can deduce from (11), (9) and (5) the approximations
r = kt-112, for r1 = O, (12a)

r = 1"[(1 ± exp (-bt)), for r1 =I= O, (12b)
where k = r512(2wo(l -we) aoo)-1l2, b = 3(aoo/r1) (wa - We) (1 -we)/(1 -wa),
and aoo = lim a. 

t-co 
In the mixtures of class (iiic) the solid is completely dissolved in a finite time t1 .

Developing (9b) into a Taylor series in the neighbourhood of r = O, we get 

10 

<p = rp(O) - (we - Wa)-1ro1 (r + (1 -w,) ťf ( � f'4 + � r7 + .. ·)) (13'.
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bere 

<p(O) = -(r:/6 Vs") (r1/ro) (1 -w1)/(we -wci).

If t1 - t = o(t1), then 
r = a(we - wa) (tf -t) + o('ř4). (14) 

For a constant a equation (14) represents the model of a sphere shrinking with a 
constant rate. As seen from the last term it holds up to the relatively large values 
of 'ř. For very small r, however, a is not constant as will be discussed in the follow­
ing sections. Relation (14) without its last term also results [rom the equation 

(15) 

which follows from ( 7) or ( 8) for Ws = o(l \ or r = o(r 0). If, moreover, w0 = o(l ), 
(15) describes the whole dissolution process.

THE ISOTHERMAL DISSOLUTION 

It follows from above given reamarks that the sand dis�olution during the glass 
melting is too complicated for exact analysis. On the other hand the semiempirical 
approach based on the mass transfer coefficient defined by equation (2) is relatively 
easy. The dissolution of grains is then described by a simple equation (ll b). It does 
not suffice to detennine the overall dissolution kinetics alone and it must be supple­
mented by a relation for a appropriate to the given mixtrire. It is also possible to 
determine a experimentally as a function of tiine and temperature. Typical plots of 
'1/J = ( cp(r) - cp(řo)) r0 vs. t established by isothermal melting experiments (2] are 
shown in Fig. 1. According to (10) the mass transfer coefficient a(t) = dt'I/J is equal 
to the slope of the curve correlating the experimental points. At t = O, the mass 
transfer coefficient a 0 represents the rate of the surface reaction between a grain 
and the ambient melt. For t > O the total resistance a-1 can be given as the sum of 
resistance due to surface reaction and that due to diffusion: 

(16) 

The value of aa1 gradually increases in the transient stage. This behaviour can be 
described by 

'(17) 

where x and av are constants. In the stationary stage the slope of the curve in Fig. 1 
is a1 = (o:;j"1 + a1j1)-1. The introduction of (16) and (17) into (llb) gives after
integration 

'1/J = a1t + (a1/x) ln (ao/a1- (ao/a1- l) exp (-xt)). . (18) 

This equation correlates the experimental data using only three coefficients, a0, x,

and a1, each of them is related to one of the melting stages, i.e. initial, transient, and 
stationary, respectively. For a cursory estimation of these coefficients the following 
relations may be useful 

'I/Jo = (a1/x) ln (0:0/0:1), 

x = t11 ln (2 - exp (-X'lj)o/a1)), 

where 'I/Jo and t1 are defined in Fig. 1.
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If segregation or aglomeration phenomena occur, the sand dissolution can be 
retarded or even suppresed as it is shown by curve 3 in Fig. 1. If no such phenomena 
take place, a remains constant during the stationary stage until the grain size becomes 
comparable to the conéentration boundary layer thickness, b. Then th:e final stage 
sets in and 

a;? = a"i/r/(r + o). 

The substitution of (21) into (15) and integration leads to the equation 

r .- (1 - atf ao) o ln (1 + r/b) = a,(we - wa) (tf - t),

which for r = o(r0) is simplified to 

r = ao(we - wa) (tf - t).

(21) 

(22) 

(23) 

By (13) we can see that dt'IJ' lr=o = a0 , thus at its very end the dissolution is again 
controlled by the surface reaction. 

1/J 

1/J 

'ljl(O) ------------------

2 1 J ___ _ 
----s :

I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
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F'ig. 1. The time-dependence oj 1J! for isothermal crucible melting. ln the final stage the dissolution 
rate oj silica particles is accelemted due to the spherical efject as ii is shown by curve 2. However, 
a retardation oj dissolution is also possible under some circumstances-see curve 3. lt can result from 
segregation ar aglomeration oj grains ar from the lowering the convection efficiency (due to viscosity 
increase, bubbles disappearing etc.). Line 1 is an extrapolation from the stationary stage and does not 

correspond to any real situation. 

Since the initial heating rate of a sample is limited by heat conduction (and also 
dueto endothermal effect of chemical reactions), the initial dissolution rate of grains 
is controlled by heat supply into the mixture. An isothermal melting is, therefore, 
not possible at the very beginning of the process. For slightly nonisothermal melting, 
where the sequence of dissolution mechanisms remains unchanged, equation (18) 
can be generalized to 

t 
'lfJ = J (a1(T)-1 + (a1(T)-1 

- a0 (T)-1) exp (-x(T) t))-1 dt. 
o 

(24) 

This equation rests upon the assumption that ao, a1, and � are known functions of 
temperature which depends on time. 
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THE LIFETIME OF GRAINS 

When segregation or aglomeration does not take place, then, neglecting theacceleration of dissolution at very small r, the isoihermal lifetime of grains can beexpressed by (18) as 
ti= u-1ln (1 + (r1..1/a0) (exp (ua11roev) -1)), (25)

where ev = qi(0) - qi('ř0). At glass melting temperatures rt..0 � a1. Further simplifica­tions result for small and large r0ev. In the former case 
(26) 

which is equivalent the grains being completely dissolved in the initial stage by •
chemical reaction alone. In the latter case, by (19), we obtain 

(27). 

This represents the most frequent case, an illustration of which is shown in Fig. 1(curve 1). Assuming that rt.. does not depend on r0 , in both cases, the lifetime increases with r0 linearly. This assumption, however, can be violated in practise for the initial surfacereactivity and the hydrodynamic interaction among grains, melt and bubbles·_(especial­
ly in the presence of refining agents) can be affected by the initial grain size. Equation (27) is appropriate to show the effect of fining agents. Below its de­composition temperature a fining agent (particularly] sulphate) can inhibit thesurface reaction and so increase t1. Above its decomposition temperature it enhancesthe diffusive mass transfer thus reducing t1. The quantity ev depends only on the compositiop. of the mixture and can be ex­pressed using (9b ), (14), (5) and (6) as 

ev= (1 -We)-1 (((1 -w<1,)/(we -w<1,)) Sť(W) -1), (28)
where

Sť(W) = w-1/3 ( ! ln ((1 + Wl/3)3/(1 + W)) + 3-1/21t(
+ 3-1/2 tan-1 (Wl/3 31/2 (2 _ WI/3)�1))

1 1 = 1 - 4 w + 7 w2 - . . .  , 

W = Wo(l -We)/(we - W<1,),

C = {l for W > 8, O for W < 8.
Definitely, the inequality w0 � W<1, < We must be satisfied.

(29)
(30)

Holding W<1, and We constant, ev depends only on w0 as a variable. It can be seenfrom (28) that ev increases as w0 decreases and at w0 = O reaches its maximum valueevmax = (we - W<1,)-1. This means that, for We and Wct given, the lifetime of grainsincreases as the portion of SiO2 introduced by sand decreases. The lifetime is shortestwhen the entire content of silica is introduced only by sand and longest for an isolatedgrain in a melt of ultimate composition. 
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It is usual that the entire amount of SiO:i is introduced into the glass only by sand. 
In such a case w0 = Wa and 

(28a) 

where .Jť"(W) = (1 + W) Sť(W). In this case, holding we constant, w, and conse­
quently t1, increases to infinity as the difference We -Wa is nearing zero. The func­
tions :l'(W) and .Jť"(W) are plotted in Fig. 2. 

The value of We - wa is very sensitive to the batch homogeneity. If the density 
of grains increases in some place, an increase of wa, w and t1 results in the same place. 
Wheri in some place wa reaches or even exceeds We , the mixture passes from class 
(iiic) into (iiib) or (iiia) in which the grains cannot be dissolved at any finite time. The 
situation can be improved by the increase of temperature, for We and a increase. 

o 2 4 6 
w 

8 

l!'ig. 2. Plot oj the functions 2'(W) defined by (29) and .x"(W) = (J + W) 2'(W). 

What happens when the sand contains grains of different sizes? Let N be the 
number of classes containing identical grains. If a is independent of r0 , equation (7) 
remains valid with Ws = L Wsi, where Wst is the mass fraction of class i relative to 
the mixture. We can see from this equation that until some grains do not disappear, 
the rate of dissolution is the same for each class. If the small grains do not begin to 
disappear before reaching the stationary stage, then, by (15), the dissolution rate 
does not depend any longer on Ws which means that the grains dissolve independently 
of each other. The lifetime of the large grains is thus not a:ffected by the presence 
of the small ones and the batch-free time is the same as if it would contain only the 
largest grains. When. very fine grains which can be dissolved even in the initial 
period (see equation (26)) are present, the remaining grains are then dissolved in 
a melt containing already a part of the entire amount of SiO2 and, as it has been 
explained above, their lifetime increases to a certain extent. The influence of the melt 
composition on transport properties (diffusion coefficient and viscosity) should also 
be taken into account. 

In summary, the lifetime of sand grains can be reduced by 

a) adding fining agents,
b) raising temperature,
c) increasing batch homogeneity,
d) removing the largest and the smallest grains.
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KINETICKÁ ROVNICE PRO INTERAKCI MEZI ZRNITÝM MATERIÁLEM 
A KAPALINOU S APLIKACÍ NA TAVENÍ SKLA 

Pavel Hrma 

Společná laboratoř pro chemii a technologii silikátii, ČSA V a VŠCHT, Praha 

V článku jsou diskutovány děje, které se podílejí na řízení rozpouštění FJÍskových zrn při tavení 
11kla. Pozornost je věnována vlivu čeřiv (speciálně síranu sodného), bublin a různých typů prou­
dění skloviny (nucené proudění, volné proudění, povrchové proudění v okolí bublin pfichycených 
k zrnům). Byla odvozena rovnice (10), která popisuje obecný děj rozpouštění nebo růstu zrn 
rovnoměrně rozptýlených v kapalině: rp je proměnná definovaná rovnicemi (4), (5), (6) a (9), 
w,(t) je hmotnostní podíl zrn (např. písku) ve směsi v čase t, w0 = w8(0) je počáteční hmotnostní 
podíl zrn ve směsi, wa je hmotnostní podíl složky odpovídající materiálu zrn (např. SiO2) ve směsi 
a w, je rovnovážný hmotnostní podíl této složky v kapalině. Je-li známa závislost koeficientu 
přestupu hmotnosti a na čase, lze integrací rovnice (10) vypočítat průběh rozpouštění. Jsou-I! 
k dispozici experimentální data o průběhu rozpouštění, lze z nich pomocí (10) určit a jako funkci 
času. Aproximační funkce a(t) pro rozpouštění písku při tavení skla je vyjádřena rovnicemi (16) 
a (17), kde a0, aD a� jsou koeficienty závislé na teplotě a složení skloviny; a0 odpovídá rychlost­
nímu koeficientu povrchové chemické reakce, aD podílu D/o (D je difúzní koeficient a r5 tlouštka 
koncentrační vrstvy) a :►.: charakterizuje rychlost přechodu z reakčního na difúzní režim. Kine­
tickou rovnicí pro rozpouštění písku lze potom psát ve tvaru (24) nebo pro ízotermní podmínky 
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