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An equation is derived for the kinetics of dissolution or growth of uniform
solid grains uniformly dispersed in a liguid. The conditions under which sand
dissolves during glass melting are discussed and a simple formula for the pertinent
mass transfer coefficient is suggested. Some factors governing the lifetime of
silica grains are analyzed.

INTRODUCTION

A necessary basis for any optimization of glassmaking is a comprehension of the
glass melting to a degree where it may be described mathematically. An important
part of the overall batch melting process is the dissolution of sand. The purpose of the
present contribution is to provide a framework for the description of its kinetics.

Thedissolution of silica sand during the melting of glass batch is extremely complex
because it may involve a number of processes. For the purpose of further treatment
it can be divided into the following stages:

1. the initial stage — controlled by a surface reaction,

2. the transient stage — combined control by surface reaction and non-steady
diffusion occurs,

3. the stationary stage — convective diffusion is rate controlling,

4. the grains disappearing stage — the diffusion is accelerated by spherical effect,

5. melt homogenization.

Although we are going to treat of the melting process as general, in this section
we shall discuss the case of soda-lime-silica glass.

1. The initial stage. At the first contact of sand with the carbonate melt the material
of the grains is being consumed by a chemical reaction. In the presence of sodium
sulphate a sulphate-rich liquid is formed and, due to its low surface tension, it readily
wets the surfaces of grains [1]. Sagek [2a] has experimentally proved that in the
initial period the rate at which sulphate reacts with silica is lower than that of the
carbonate (sodium sulphate reacts with silica below its decomposition temperature)
and so the rate of sand dissolution decreases with increase of sodium sulphate con-
centration.

2. The transient stage. The silica-rich melt forms a concentration boundary layer
around the grains, the thickness of which increases with time. This increase is limited
b

a) free and forced macroscopic convection,

b) free buoyancy convection due to non-uniform density,

c) forced and free convection due to the effect of gas bubbles.

Convection ad c) is the most effective one. It can take place as a result of a number
of different mechanisms:
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i) Since a bubble attached to a sand grain is situated in a non-uniform concentra-
tion field, a non-uniform surface tension arises on its surface so that free surface
convection can be induced. Grain dissolution can thus be intensively accelerated
at the three phase boundary, similarly to the familiar case of upward drilling of
a refractory brick. It is unlikely to apply this mechanism to silica sand for the glass
surface tension depends only slightly on silica concentration.

ii) Provided that the concentration of the fining agent as well as temperature
are sufficiently high the bubbles grow rapidly. Since the contact angle between a silica
grain and the nelt is small the bubbles break away easily from the grain surfaces
and ascend upwards. Just after breaking away they spheroidize and, at the same
time, the concentration of melt at their surfaces becomes uniform due to the effect of
surface convection. As a consequence of these two effects the bubbles are driven
abruptly away from the grains bringing about a turbulence in their boundary layers.
The grain dissolution is thus intensively promoted. This behaviour of bubbles was
directly observed by Némec [3]. A protective effect of the bubbles is also imaginable,
however, when not increasing bubbles are attached to grains for a given period.

iii) The ascendent bubbles stir the grain-melt mixture thus liniting the boundary
layer growth. The bubbles can either destroy the clusters of grains or, on the contrary,
add to aglomerate the grains by preferring those paths through the melt at which
the viscosity is lower. It seems probable that the latter effect operates at lower
temperatures when the bubbles are formed by the decomposition of carbonates
while the former one is due to the bubbles resulting from the refining. The flotation
of grains by the attached bubbles has been often observed, too.

The shape of grains can change during dissolution. The initially irregular grains
can be spheroidized by bubble-free dissolution owing to the fact that dissolution rate
increases with increasing surface curvature. The bubbles, however, can produce
a geometric instability of grains owing to surface convection or surface protection
as explained.

3. The stationary stage. In this stage the effect of diffusion and convection on the
dissolution rate are mutually balanced. The more intensive the convection the
earlier it sets in. Naturally, the name ‘‘stationary” is justified only when the con-
vection pattern does not change with time.

4. The stage of the disappearing of grains. At the very end of dissolution the dif-
fusive resistance drops down to zero owing to the spherical symmetry of a grain [4].
The dissolution is then again governed by the surface reaction.

5. The stage of melt homogenization. After complete dissolution of all grains the
melt refines for the bubbles can no longer be nucleated. The non-uniformity in the
melt composition is gradually smoothed by diffusion as analyzed by Cooper [5].
It is interesting to note that the effect of bubbles can be very different — they can
both accelerate and retard or even stop the dissolution of the sand grains. Which
effect prevails depends on the melting conditions, particularly on the temperature.
It is obvious that the dissolution process can become more complex when the temper-
ature changes with time in an intricate way as in the case of glass-melting in both
classical and electric tank furnaces.

The following section deals with the growth or dissolution of a grain material in
a liquid in a more general way. It is only assumed that the grains are uniform in
sizes and shapes and uniformly dispersed in the mixture. As the mechanism of the
mass transfer in such a mixture can be very complicated or even unknown, the
approach to the problem is not based on field equations of continua but rather on
defining a mass transfer coefficient subject only to the requirement that it must be
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reduced to the rate constant of a chemical reaction or D/§ (D is diffusion coefficient
and ¢ boundary layer thickness) in trivial cases. As a result of this section a differential
equation is established which enables to calculate the grain size as a function of time,
if the mass transfer coefficient as a function of time is known.

In the last two sections the mass transfer coefficient for the case of the sand dis-
solution in a melt is being discussed. In the first of them a relation correlating the
results of crucible experiments is suggested. In the last section the batch-free time,
e.i. the lifetime of sand grains is discussed regarding possibilities of accelerating the
sand dissolution.

KINETIC EQUATION FOR THE INTERACTION BETWEEN GRAINS
, AND A LIQUID

Let us consider such a mixture of solid grains and a liquid where the grains of
uniform sizes and shapes are uniformly distributed in space and soluble in the liquid,
thus forming one of the liquid components (component 4). If the liquid is over-
saturated with 4, the grains are increasing in size; in the opposite case the dissolution
of the grains proceeds.

An effective radius 7 of a grain can be defined by

4
ws =3 T 73005, (1)

where w; is the mass fraction of solid in the mixture, n the number of grains in a unit
mass of the mixture and g, the solid density. The rate of change of the solid concentr-
ation can be measured as the rate of change of 7. It seems useful to define the mass
transfer coefficient o« by the equation

dyr = ol(wy, — we), (2)

where wy, is the mean and w, the saturated mass fraction of 4 in the liquid and d;
denotes the time derivative. wy, can be expressed from the mass balance of A

wg = ws + (1 — ws) W, 3)

where wg is the mass fraction of 4 in the mixture.
Denoting by wo the mass fraction of solid in the mixture at time ¢ = 0, it follows
from (1) that

7 = 7o(ws/wo)1/3, (4)

where 7¢ is the effective grain radius at { = 0. Equation (4) rests upon the assumption
that the number of grains is constant during the process.

The mass fraction w; of the solid in the equilibrium mixture is given by the
relation

Wy = (Wg — we)[(1 — we); (5)

indeed, if w; = wy, it follows from (3) and (5) that wy, = w,. The corresponding
effective grain radius is

77 = ro(ws/wo) /3. 6)

According to the value of wy the mixtures may be divided into the following
classes:
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(1) wr > wo, the grains increase in sizes,
(if) wy = wp, the grains do not change, the mixture is at equilibrium,
(iii) wy < wp, the grains decrease in sizes,
(a) wye (0, wp), the grains never disappear,
(b) wy =0, the grains disappear and a saturated solution results,
(c) wy <O, the grains diappear and the liquid remains unsaturated.

In clases (i)—(iiib) the process.leads to a mixture of liquid saturated with A and
solid of the mass fraction wy. In class (iiic) it would be necessary to add the mass
| wy | of A to every unit mass of the mixture to saturate it.

Using (3) and (5) equation (2) can be rewritten

der = a(l — we) (wy — ws)[(1 — wy). (7)
By (4) and (6) we have
dr = o(wg — wy) (1] — 13)/(r} — wrr®). (8)
Introducing a substitution
L@ = (L —we) (722w + 7) for r; = 0, (9a)

6
3712 tan-1(3-12(2F + 1)))) forry £ 0,  (9b)

@ = (rsfro) (1 — we)'(F + (Lwy — 1) (iln (1 — 7)1 —Fp) +

where 7 = r/ry and 7 = r[ry, equation (8) becomes
dep = afro- (10)
Substitutions (9a) and (9b) eliminate effects of changes of boundary surface,
liquid volume and liquid composition on the rate of dissolution or crystalization.
Coefficient a describes only the effects of diffusion, convection, surface reaction, and
the change of grain shapes during the process. A similar substitution was introduced
by Hixson and Crowell [6] in 1931. Their analysis, however, was based on a different

starting point, because they have considered the liquid volume as a constant.
Integration of (10) yields

p(F) — (1) = ft o difro (11a)
or ’
@(F) — @(ro) =’Jtoc dtfr. (11b)
TFor large ¢t we can deduce from (11), (9) and (5) the approximations '
r = kt=112, for r; =0, (12a)
r =171 & exp (—bi)), for ry # 0, (12b)

where k = 732(2wo(l — we) 0teo) 12, b = 3(0teo/15) (Wa — we) (1 — we)/(1 — wa),
and o = lim a.
t—

In the mixtures of class (iiic) the solid is completely dissolved in a finite time ;.
Developing (9b) into a Taylor series in the neighbourhood of » = 0, we get

PR S HU T € IR L |
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where B
@(0) = —(/8 |/3) (r4/ro) (1 — wy)/(we — wa).
If t; — ¢ = o(tr), then
T = a(we — wa) (tr — t) + o). (14)

For a constant « equation (14) represents the model of a sphere shrinking with a
constant rate. As seen from the last term it holds up to the relatively large values
of 7. For very small r, however, « is not constant as will be discussed in the follow-
ing sections. Relation (14) without its last term also results from the equation

dir = —o(we — wa), (15)

which follows from (7) or (8) for ws = o(1® or 7 = o(rg). If, moreover, wy = o(1),
(15) describes the whole dissolution process.

THE ISOTHERMAL DISSOLUTION

It follows from above given reamarks that the sand dissolution during the glass
melting is too complicated for exact analysis. On the other hand the semiempirical
approach based on the mass transfer coefficient defined by equation (2) is relatively
easy. The dissolution of grains is then described by a simple equation (11b). It does
not suffice to determine the overall dissolution kinetics alone and it must be supple-
mented by a relation for « appropriate to the given mixture. It is also possible to
determine « experimentally as a function of time and temperature. Typical plots of
v = (@(7) — @(70)) 70 vs. ¢t established by isothermal melting experiments [2] are
shown in Fig. 1. According to (10) the mass transfer coefficient «(f) = dsy is equal
to the slope of the curve correlating the experimental points. At ¢ = 0, the mass
transfer coefficient oo represents the rate of the surface reaction between a grain
and the ambient melt. For ¢ > 0 the total resistance o~ can be given as the sum of
resistance due to surface reaction and that due to diffusion:

ol = o1 4 ol (16)

The value of az?! gradually increases in the transient stage. This behaviour can be
described by

ozl = apt(l — exp (—xt)), (17)
where % and op are constants. In the stationary stage the slope of the curve in Fig. 1

is oy = (eg! + opl)~t. The introduction of (16) and (17) into (11b) gives after
integration

= oyt -+ (/) In (atofoty — (ctaforg — 1) exp (—et)). (18)

This equation correlates the experimental data using only three coefficients, oo, %,
and «y, each of them is related to one of the melting stages, i.e. initial, transient, and
stationary, respectively. For a cursory estimation of these coefficients the following
relations may be useful

wo = (ay/x) In (axofry), (19)
% = t71 In (2 — exp (—wpolocs), (20)

where o and ¢, are defined in Fig. 1.
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If segregation or aglomeration phenomena occur, the sand dissolution can be
retarded or even suppresed as it is shown by curve 3 in Fig. 1. If no such phenomena
take place, « remains constant during the stationary stage until the grain size becomes

comparable to the concentration boundary layer thickness, 6. Then the final stage
sets in and

og! = aplr(r + 0). (21)
The substitution of (21) into (15) and integration leads to the equation
r— (1 — agfoe) O1n (1 -+ 1/8) = arslwve — wa) (i — 1), (22)
which for » = o(ro) is simplified to
T = op(we — wgq) (¢ — ). (23)

By (13) we can see that d;p ly—o = o, thus at its very end the dissolution is again
controlled by the surface reaction.
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Fig. 1. The time-dependence of @ for isothermal crucible melting. In the final stage the dissolution

rate of silica particles is accelerated due to the spherical effect as it ts shown by curve 2. However,

a retardation of dissolution s also possible under some circumstances—see curve 3. It can result from

segregation or aglomeration of grains or from the lowering the convection efficiency (due to viscosity

tncrease, bubbles disappearing etc.). Line 1 is an extrapolation from the stationary stage and does not
correspond to any real situation.

Since the initial heating rate of a sample is limited by heat conduction (and also
due to endothermal effect of chemical reactions), the initial dissolution rate of grains
is controlled by heat supply into the mixture. An isothermal melting is, therefore,
not possible at the very beginning of the process. For slightly nonisothermal melting,
where the sequence of dissolution mechanisms remains unchanged, equation (18)
can be generalized to

14
Y= g (@r (1) + (s (T) 7 — owo(T)7?) exp (—=(T') )2 dt. (24)

This equation rests upon the assumption that oo, ar, and x» are known functions of
temperature which depends on time.
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THE LIFETIME OF GRAINS

When segregation or aglomeration does not sake place, then, neglecting the
acceleration of dissolution at very small r, the isothermal lifetime of grains can be
expressed by (18) as

ty = %1In (1 + (og/0) (xPp (e rom) — 1)), 29)

where w = @(0) — @(7)). At glass melting temperatures o > oty. Further simplifica-
tions result for small and large 7ow. In the former case

ty = o lrow, ’ (26)

which is equivalent the grains being completely dissolved in the initial stage by
chemical reaction alone. In the latter case, by (19), we obtain

tr = oy Hrow — o). (27)

This represents the most frequent case, an illustration of which is shown in Fig. 1
(curve I1).

Assuming that o does not depend on 7, in both cases, the lifetime increases with ry
linearly. This assumption, however, can be violated in practise for the initial surface
reactivity and the hydrodynamic interaction among grains, melt and bubbles (especial-
Iy in the presence of refining agents) can be affected by the initial grain size.

Equation (27) is appropriate to show the effect of fining agents. Below its de-
composition temperature a fining agent (particularly| sulphate) can inhibit the
surface reaction and so increase ty. Above its decomposition temperature it enhances
the diffusive mass transfer thus reducing ¢;.

The quantity w depends only on the composition of the mixture and can be ex-
pressed using (9b), (14), (5) and (6) as

o = (1 —we)™! (1 — wa)/(we — wa)) L(W) —1), (28)
where
L(W) = Ww-13 (% In ((1 4+ W3)3/(1 + W)) + 3-12nl
+ 3-1/2 tan=1 (W1/3 31/2 (2 — W1/3)‘1))

1 1
=1_ZW+7W2—"" (29)
W = wo(l — we)/(We — wa), (30)

C___{lfOI‘ W > 8,

0 for W < 8.

Definitely, the inequality wo = wa < we must be satisfied.

Holding wg and w, constant, w depends only on w, as a variable. It can be seen
from (28) that w increases as wy decreases and at wy = 0 reaches its maximum value
®Wmax = (we — wg)~1. This means that, for w, and wy given, the lifetime of grains
increases as the portion of SiO; introduced by sand decreases. The lifetime is shortest
when the entire content of silica is introduced only by sand and longest for an isolated
grain in a melt of ultimate composition.
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It is usual that the entire amount of 8iO, is introduced into the glass only by sand.
In such a case wy = wg and

w = w1 — we) 1 A (W) — we), (28a)

where (W) = (1 + W) L(W). In this case, holding w, constant, @, and conse-
quently ¢r, increases to infinity as the difference w, — wq is nearing zero. The func-
tions (W) and o (W) are plotted in Fig. 2.

The value of w, — wq is very sensitive to the batch homogeneity. If the density
of grains increases in some place, an increase of wg, @ and ts results in the same place.
When in some place wg reaches or even exceeds we, the mixture passes from class
(iiic) into (iiib) or (iiia) in which the grains cannot be dissolved at any finite time. The
situation can be improved by the increase of temperature, for w, and « increase.

£
10+

Fig. 2. Plot of the functions L(W) defined by (29) and X (W) = (1 + W) L(W).

What happens when the sand contains grains of different sizes? Let IV be the
number of classes containing identical grains. If « is independent of 7y, equation (7)
remains valid with ws = Z ws;, where wg; is the mass fraction of class ¢ relative to
the mixture. We can see from this equation that until some grains do not disappear,
the rate of dissolution is the same for each class. If the small grains do not begin to
disappear before reaching the stationary stage, then, by (15), the dissolution rate
does not depend any longer on ws which means that the grains dissolve independently
of each other. The lifetime of the large grains is thus not affected by the presence
of the small ones and the batch-free time is the same as if it would contain only the
largest grains. When very fine grains which can be dissolved even in the initial
period (see equation (26)) are present, the remaining grains are then dissolved in
a melt containing already a part of the entire amount of SiO, and, as it has been
explained above, theirlifetimeincreases to a certain extent. The influence of the melt
composition on transport properties (diffusion coefficient and viscosity) should also
be taken into account.

In summary, the lifetime of sand grains can be reduced by

a) adding fining agents,

b) raising temperature,

¢) increasing batch homogeneity,

d) removing the largest and the smallest grains.

14 Silik4ty & 1, 1980
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KINETICKA ROVNICE PRO INTERAKCI MEZI ZRNITYM MATERIALEM
A KAPALINOU S APLIKACI NA TAVENT SKLA

Pavel Hrma

Spoleénd laboratof pro chemii a technologii silikitie CSAV a VSCHT, Praha

V &lanku jsou diskutovény dé&je, které se podileji na Fizeni rozpougténi piskovych zrn pti taveni
skla. I’ozornost je vénovéna vlivu Cefiv (speciélné siranu sodného), bublin a rtiznych typt prou-
déni skloviny (nucené proudéni, volné proudéni, povrchové proudéni v okoli bublin pfichycenyjch
k zrntim). Byla odvozena rovnice (10), kterd popisuje obecny dé&j rozpoudténi nebo riustu zrn
rovnomérné rozptylenych v kapaling: ¢ je proménné definovand rovnicemi (4), (5), (6) a (9),
w;(t) je hmotnostni podil zrn (napf. pisku) ve smési v Case ¢, wy = w,(0) je poéateini hmotnostni
podil zrn ve smési, wq je hmotnostni podil slozky odpovidajici materidlu zrn (napf. SiO,) ve smési
a w, je rovnovazny hmotnostni podil této slozky v kapaling. Je-li zndma zévislost koeficientu
prestupu hmotnosti « na Gase, lze integraci rovnice (10) vypoéitat prub&h rozpoudténi. Jsou-1f
k dispozici experimentélni data o prib&hu rozpousténi, lze z nich pomoci (10) uréit « jako funkef
¢asu. Aproximacni funkce «(t) pro rozpousténi pisku pri taveni skla je vyjéddiena rovnicemf (16)
a (17), kde «o, ap a x jsou koeficienty zdvislé na teplot& a slozeni skloviny; «o odpovidé rychlost-
nimu koeficientu povrchové chemické reakce, ap podilu D[d (D je diftizni koeficient a § tloustka
koncentraéni vrstvy) a x charakterizuje rychlost prechodu z reakéniho na difdzni rezim. Kine-
tickou rovnici pro rozpoudténi pisku lze potom psat ve tvaru (24) nebo pro izotermni podminky
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ve tvaru (18). Technologicky duleZitou veli¢inou je celkové doba rozpoudtdni piskovych zrn. Lze
ji poditat ze vztahu (27) (pro izotermni situaci), v némz «r a o jsou definovény na obr. 1 a w je
definovano vztahy (28) az (30). Zavérem je diskutovéan vliv ruznych faktortt na dobu rozpoudt&ni.
Lze ji zkratit vy38im pridavkem &efiv, zvydenim teploty, zvydenim homogenity vsdzky a odstra-
n&nim nejvétiich a nejmensich zrn pisku.

Obr. 1. Zdvislost yp na Sase pro izotermické taveni v kelimku. V konecném obdobt se rozpousténi kie-
menngjch zrn urychlt ndsledkem sférického efektu (krivka 2). Segregace a aglomerace zrn nebo
snifent intenzity proudéni (zvydenim wiskozity, vymizenim bublin apod.) mohou naopak
zpomalit rozpoustént (kfivka 3). Primka 1 je extrapolact z obdobi wstdleného rozpoustént
a neodpovidd skuteéné situac.

Obr. 2. Graf funkce L (W) definované vztahem (29) a A (W) = (1 + W) L(W).

KNHETUUYECKOE VPABHEHME OJA B3AUMOIEMCTBHUSA
MEROY B3EPHUCTBIM MATEPUAJIOM U MUIOKOCTBIO
C OPUMEHEHUWEM HJf BAPRI CTERJA

ITaBex I'pma

06was aabopamopus vumuu u mernosozul cusuramoe YCAH u XTH, Ipaza

B npexmaraemoif padoTe paccMaTpHUBAIOTCS MPOICCCEH, TPHHIMAION[NE yJyacTie Ha yIpas-
JIGHHII PAcTBOPEHHEM ITeCOUHBIX 3epel HpHM Bapke cTeraa. Ocoboe BHAMAHHE YEIsIETCST
BIUSHMIO OCBeTJIHTENel (MMEHHO cyJb(aTy HaTpis), IY3HIPKOB M Pa3HBIX THIOB IPOTOKA
cTeRJIOMAcCHl (BRIBYK/IEHHOE TeueHie, cBOOOJHOe TeueHHe, IOBepXHOCTHOEe TeueHHe B 6im-
30CTH IY3BIPKOB, OPMIMIIINXCS K 3epHaM). Buuto BriBegeno ypasmenne (10), xoTopoe omm-
criBaer o0IuIi MpoIece PacTBOPCHIIS Wl POCTA 3ePeH, PABHOMEPHO PAaCHpEe/e/IeHHBIX B MK
KOCTH, Tie ¢ — LepeMeHHasd, onpejeigeMas ypasHeHusaMu (4), (5), (6) i (9), ws(t) — monsa
Beca 3epeH (HAIp. IecKa) B CMECU BO BDEMEHII £, wo = w; (0) — MCXO/HAs TOIIA 3ePeH B CMECH,
wq — MOJIA Beca KOMIIOHEHTA, OTBevYaloNas MaTepHasy 3epeH (Hamp. SiO;) B cMecH M we —
PAaBHOBECHASI JIOJISI Beca STOT0 KOMIOHEHTa B JKHIKOCTH. Iiciim ma3BecTHA 3aBHCHMOCTDL KO-
QurenTa Maccolepeayll ¢ 0T BpeMeHIi, To nHrerpamieif ypasuenus (10) MoxHO pacunraTh
X0j1 pacTBOpeHHA. Pacmonaras sKcIepMMeHTaIbHLIMEA JaHHBIME OTHOCHTEIHHO XO[a PacTBO-
PEHHsI, MOJKHO Ha UX OCHOBAHHHM M ¢ noMOIKI0 (10) ompenesaTh « Kak (YHKINIO BDEMEeHU.
QyHKIMs ANIPOKCUMAINH « (f) AJIS PAcTBOPERHs IlecKa IPH BapKe CTEKJIA BEIPAKAETCH
ypasueHnsinn (16) m (17), rae oo, wp U % — KODOUIMEHTH, 3aBHCHMLIC OT TeMIIEPaTypPHI
I cocTaBa CTEKIOMACCHL; oo OTBeYaeT ROdPQUINIECHTY CKROPOCTH XMMHAYECKOH peaKkmuy Ha I0-
BepxHOCTH, ap 10e D[S (D — woaunuent pudysnn i 6 — TONIIHA KOHIEHTPATHORHOTO
CJI051) M 2 XapaKTepHu3yeT CKOPOCTH IIEPeXojia OT PeREMa PeaKIui K pexRuMy nu@ysum.
B TaroM ciiydae RIHETHYCCKOE ypaBHEHHEe MOKHO 3aIicaTh B Buje (24) MM i M30TePMI-
vyeckux yesropuii B Buje (18). G rexHoIornuecKoil TOUKH 3peHHA Ba;KHOM BeJIMUHHON ABIIACTCA
of1ee BpeMsi PACcTBOPEHHs IIECOYHBIX 3epeH. MOKHO ero OIpeesiTh Ha OCHOBAHHU OTHO-
nresst (27) (JUIs B130TePMHUICCKOT0 IONIOJI0KEHUS), B KOTOPOII &t M o OIPeiesIAIoTes: Ha puc. 1
u o ompepeisdercs orHomeHmsaMn (28)—(30). B saxiioueHme paccMaTpHBAaeTCd BIMAHIE
pasHBIX ()AKTOPOB Ha BpeMs DpacTBOPeHUs. LKro MOKHO yMeHBIIHTH OOJLIIeil JobaBKOM
ocBeTIIHTeleH, IOBBILICHIIEM TEMIEPATYPHI, IIOBLIIICHUEM I'OMOIeHHOCTH HIMXTHI M ycCTpaHe-
HueM HamOOJBIINX M HAMMCHLIINX 3€PeH IIeCKA.

Puc. 1. Basucumocmv p om épemenit 04 uzomepmuueckoll aprl ¢ mueae. B okonuameavrot
(fase pacmeoperue Eeapyeeuix seper Yckopaemes 6 pesyavmame c@epunecroeo sPgderma
(rpusasn 2). Ceepezayus u aaaiomepayus zeper UAU NOHUINCCHUE UHMEHCUBHOCILU
mevenus (nosviueruesm éazrocmu, yoasenuem nYswiproe w m. 0.) mozym Haobopom
gamedaumsv pacmeopenue (kpusas 3). IIpamas 1 asasemcs skcmpanoasyued, om-
HOCAWETCA K 6DEMEHU NOCMOAHH020 PACINEOPEHUS U HE omeewaem JeicmeumenbHomy
noA0IACCHUIO.

Puc. 2. I'pagpur. pynryuu £ (W), onpedeanemoti omuowenuem (29) u X (W) = (1 + W)
Z (W)
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