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An equation jo·r the corrosion pi-ofile evolution oj horizontal glass furnace 
sidewalls has been established. The non-itniform vertical temperature distri
bution and strany temperature dependence oj viscosity, diffusion coefficient a,nd 
rejractory solubility in glass melt are taken into account. The effect oj cooling 
on the corrosion rate as well as on the lije-time oj sidewall blocks is also analysecJ, 
and the cooling regime minimizing the energy loss during a given fiirnace 
campaign is being discussed. 

1. INTRODUCTION

The fiux-Jine corrosion of current refractories is considerably faster at glass-melting 
temperatures than that below the glass level. Accordingly, the corrosion below the 
glass level would not seem to be paid special attention to. However, this is not the 
case when the cooling is taken into account. If the wall thickness has been conaider
ably reduced owing to the developed corrosion, the cooling inay essentially diminiah 
the temperature of the inner wall surface. But from a certain temperature down, 
the corrosion at the glass Jeve] (flux-line corrosion) becómes slower than that below 
it, as it is apparent from a number of experimental observations. An excellent 
aurvey of experimental results is given by A. Smrček [l], who found out that the 
rate of corrosion is related to the viscosity of glass as follows: 

jµa = conat., {l.l) 

where i ia the corrosion rate, µ the dynamic viscosity and a the corrosion index. 
For the flux-line corrosion ci = 3, whereas for the corrosion below the glass Jeve! 
a= 3/2. The consequence of the greater index of the fiux-line corrosion ia that 
it is damped more effectively by cooling, as it is seen from Fig. 1 and 2. In case of 
zirconia-alumina-silica refractory and the Float glass both types of corrosion reach 
the same rate at 1390 °0 (Fig.2). The significance of the corrosion below the glass level 
cannot be thus underestimated, for it is this corrosion that determinés the life-time 
of the cooled walls. 

The first works analysing the corrosion process by the transport phenomena 
theory were published by Barret [2] and Cooper [3], who pointed out that the dis
solution of refractories in a glass melt is governed by the diffusion in the moving 
concentration layer. The motion of a liquid in the concentration layer may be driven 
either by the outer flo,v*) or by the buoyancy forces resulting from the density 

I 
• ' '

; . • .' .. ., 
.*) The outer flow is meant to be thé f!ow of a glass melt ouťo'f the boundary layer (i.e., the flów 

driven by the pull current and temperatura bnyoancý.forces). Smrček [ 4] calis' it thé te'clmological 
flow: • ·, • • ' 
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Fig. 1. The time-dependence oj the coolecl wall thickness for the jlux-line corrosion (s) ancl the cor
rosion below the glass Zevel (cl). At the beginning the jlitx line corrosion is jaster, but, at ct certain wall 
lhickness, the rate oj both types oj corrosioil becomes equal clue to damping by cooling. Fina/ly, the 

wall is corroclecl through owing to the ejject oj the corrosion below the glass Zevel. 
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Fig. 2. The tcmperature-depenclence oj the rnte oj the jlux-line corrosion (s) ancl the corrosion beZow 
the glass level (d) oj a zirconia-alumina-silica rejractory by the Float glass melt. At temperature� 
beneath 1390 °0 the flux-line corrosion is slower, above this temperature the ratio oj both corrosio» 

rates is reverse. 

differences due to the concentration gradient. Both driving machanisms operate 
in case of the corrosion of vertical glassf urnace walls. By Smrček [4], the buoyancy 
flow is aupressed as the glass melt with higher content of the dissolved defractory 
material (concentration layer) is being beld on the wall by its surface roughness and 
the dissolution is mainly controlled by the outer floow. However, on the places with 
less intensive outer flow the buoyancy flow can prevail. This case has been recently 
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analysed by Hrma and Tesař [5]. Though their model does not take into account 
the effect of the technological fl.ow, it makes possible, owing to its simplicity, an easy 
analysis of various factors effecting both the corrosion rate and the shape of corrosion 
profile. Besides the temperature distribution inside the furnace, it is the regime of 
cooling the walls, the homogeneity of blocks, etc. 

The relations representing the mathematical model for the simulation of the cor
rosion profile evolution of glass furnace sidewalls during the whole furnace campaign 
are briefly given in the following section of this contribution. They start from the 
boundary layer theory and rest on the assumptions that the direct effect of the tech
nological flow upon the conosion is negligible and that the upward-drilling corrosion 
does not arise. They express both the effect of local conditions (temperature) and the 
protective effect of corrosin products fl.owing down the wall upon the corrosion rate. 

The predictions of corrosion is possible, if necessary data are known such as mate
rial properties of glass melt, transport coefficients, etc. The simple approximation 
relations for estimating such data (Arrhenius equation for the viscosity, Stokes
Einstein relation for the diffusion coefficient, Smrček's relation for the flux-line 
corrosion rate) are dealing with in Sect; 3. The next two sections discuss the appli
cations to simple situations such as the initial corrosion rate (when the inner surface 
of the wall can be considered as vertical-Sect. 4) and the region closely below the 
glass Jeve! (where the temperature is usually highest and so the walls are most 
likely to be corroded-through-Sect. 5). In Sect. 5, the effect of cooling upon the life
time of wall is discussed in greater detail. Sect. 6 is confined to the question of energy 
losses, which is. a very important standpoint for the cooling optimization. 

2. BASIC RELATIONS

In 1881 Lorenz published the analysis of the heat transfer from the vertical surface 
with the temperature T0 into the quiescent liquid with the temperatme T w, At 
a steady state the heat transfer is controlled by the buoyancy convection along the 
surface, and Lorenz described it by the relation that can be briefly written in the form 
NNu, = 0,411Nh.t,, where NNu, is the local Nusselt number and Nnn., is the 
local Rayleigh number. Later on, it was found out by more exact analysis that the 
original Lorenz relation should be substituted by the expression N Nu, = 
= F(Nrr)Nil,:,, where the coefficient F is a function of the Prandtl Jiumber, 
Nrr• If Nrr-+ oo, then [6] F = 0,5028. Substituting the Nusselt mnnber by the 
Sherwood number, the Rayleigh number for the heat transfer by that for the mass 
transfer and the Prandtl number by the Schmidt number, we get an analogous. 
expression for the mass transfer from the isothermal vertical surface. Particularly, 
for Nsc = 11/D-+ oo 

where 
Nsh, = 0.5028Ni{;,, 

Nsh, = (ewlew) (1- Cw)xj/[(Cw - Cw) D], 

NRa, = {J(Ow - Coo)gx3/vD, 

(2.1) 

(2.2) 

(2.3) 

ew is the density of the dissolved wall, ew - the density of the ambient liquid, 
Ow - the equilibrium volume fraction of the solid in the liquid, Ooo - the volume 
fraction of the solid in the bulk, x - the distance from the leading edge, j - the 
velocity of the interface related to the wall (the dissolution rate ), v - the kinematic 
viscosity, D - the diffusion coefficient, fJ -·the concentration expansion coefficient, .. 
and g - the gravity acceleration. 
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The relation (2.1) fits satisfactorily the situation from Nsc = 102 up, so it can be 
applied to the dissolution of refractories in glass melts, where the Schmidt number 
reaches the values 1010 and even inore. When v and D depend on the volume fraction 
of the solid, O, the relation (2.1) leads to accepta-ble resu1ts, if the values of v and D 
for the mean concentration are used. 

The dissolution of gláss furnace side walls occurs in nonuniform temperature 
fields. The temperature differences between the bath surface and the bottom usually 
reaches over 100 K. Among the physical properties of the system, the temperature 
ma.inly effects v, D and Cw , The oase of constant v and D and temperature-dependent 
Cw can be easily derived from the analysis of nonisothermal heat transfer that was 
published by Kao, Domoto and Elrod [7]. After a small arrangement of their ori
ginal relation we have 

where A is a constant and 
(2.4) 

(2.5) J. = (Cw - Ooo)/(Ow - Ooo),

The brackets < ) denote the mean value de:fined as 
X 

('1p) = x-1 J 'f/Jdx. 
o 

In a more general oase, when both Cw, v, and D are temperature-dependent, we have 
to introduce into (2.4) the expression [8] 

J. = (Ow - O)Dv-1/3/((0w - O)Dv-1/3). (2.6) 

Owing to the flux-line corrosion, the distance from the leading edge, x, is difficult 
to define. Taking the origin of the x-coordinate arbitrarily, (2.1) becomes 

Ns11• = 0.5028(1 + Xr/x)-1l4N}l�., (2.7) 

where Xr is the effective distance of the origin from the hypothetical leading edge. 
If we know the volume of the dissolved substance, Qr, passing from thé region 
above the odgin to that below it in a time unit, then Xr can be expressed a.s follows [8]: 

Xr = 1. 7046Q1'3D-; 1(vr//3g)l/3(0�r - 000)-5/3, (2.8) 

where Cwr, vr and Dr are the values of Cw, v and D at x = O. 
The equation (2.7) can be generalized for the oase of temperature-dependent trans

port coefficients. Then the following expression must ve introduced into the equa
tion (2.4): 

A = (Cw - Coo)Dv-1 13x[ ((Cw - Coo)Dv-113)x + (Cwr - Ooo)Drvr-1/3xrJ-1. (2.9)

For Xr = O, (2.9) turns into (f.6), an� for D = Dr, v = Vr and Cw = Cwr, (2.9) 
reduces to A= (1 + xr/x)-1, which is the coefficient in the equation (2.7). 

Introduoing (2.2) and (2.3) into (2.4) we get for j the expression: 

j = 0.5028(ewlew) (Ow - Ooo)S/4 (1- Ow)-1D3/4 (J.{3g/xv)l/4, (2.10) 

This equation may be further arranged substituting for A and Xr from (2.8) and (2.9): 

j = 0.4400(ewlew) (Cw - 000)3 12(1- Cw)-1(Cwr - Ooo)1l6 X
X D(f3g/vQr)lf3 (l + r)-1/4, (2.11) 
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= 0.5866Q;-413((:Jg)1l3(0wr - 000)2/3 J (Cw - Ooo)Dv-113 dx. 
o 

(2.12) 

Let us denote the corrosion, i.e. the distance of. the interface from its original 
position, as Y. The relations (2.10) up to (2.12) are analogous with those for heat 
transfer, where the interface is assumed to be horizontal at jl,ny time. As a consequence 

W 9 

G 

7 

Fig. 3. The interface s between the glass melt G and tlw u:all W ia representcd by the junction Y(x). 
The tangent to the interface at the point A makes an angle IX with the gravity acceleration vector. 
The ho,·izontal rale oj wall dissolvtion is denoted Yt = dY/dt = j/cos IX, where j is the dissolution 

rate in the normal direction. 

of the dissolution process, the interface, however, is being deformed, and hence. the 
angle o:: = arctg Y x, whei:e Y x = a Y ;ax, differs from zero. Therefore g in (2.11)
and (2.12) should be substituted by the expression g cos o::= g(l + Y;)-112. Then 
j in (2.11) means the dissolution rate in the direction perpendicularly to the interface 
(Fig. 3). The dissolution rate in the horizontal direction is Yt = 3Y/3t = j/cos o::, 
and so 

where"f
f
'J.d 

Yt = 0.4400(ewlew)(Ow- 000)312(1- Ow)-1 (0wr- Ooo)1l6 X 
X D({:Jg/vQ;.)l/3(1 + Yx)1l3(l + r)-1/4, 

. X 

(2.13) 

r = 0.5866Q;-4t3((:Jg)I/3 (Owr -{C'00)2/3 (1 +� Y x)-1/6 J (Ow - C00)Dv-1/3dx. (2.14)
' 

o 

The equation (2.13) with regard to (2.14) is an integrodifferential equation for thé 
time. evolution of the corrosion profile, i.e., for the function Y(x, t,). In equations 
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(2.13) and (2.14) all the qauntities, exc'ept for .Qw, are functions of the temperature 
T,(x, t) = T(x, Y) at the interface between the wall and glass melt. If this tempera
ture and the wall density distribution, ew(x, y); where y is the horizontal coordinate, 
are lmown,. the equation (2.13) can be solved. The necessary assumption is, of course, 
ťhat all the. pertinent material parameters for the relevant temperature interval are 
available. 

3. CONSTITUTIVE RELATIONS 

The temperature functions of the viscosity, diffusivity, and equilibrium concen
tratiori are expressed hy the constitutive (material) relations. 

In a relatively wide temperature range, the viscosity satisfies the Arrhenius 
equation 

(3.1) 

where K, and 0 are constants. We shall call the constant 0 as the characteristic 
temperature of glass melt for viscosity (its product with the gas constant is the acti
vation energy). 

There is a lack of experimental data for the temperature dependence of the dif
fusion coefficient corresponding to the mutual penetration of glass melt and dissolved 
refractory. Oishi, Terai and Ueda [9] found out that for the self-diffusion coefficient 
of oxygen ions in glass melts the Stokes-Einstein relation 

vD = kT/le, (3.2) 

is valid at higher temperatures, where k is the Boltzmann constant and l =
= 2.8 . 10-10 m is the effective size of the diffusing particle. On the assumption 
that for the mutual penetration of glass melt and refractory the diffusion of oxygen 
ions is rate-controlling, (3.2) may be used as an estimation of the diffusion coefficient 
in equations (2.13) and (2.14). Connecting (3.2) with (3.1) and substituting the 
temperature in (3.2) by its mean value for the pertinent interval, we obtain 

(3.3) 

where KD = kTmea.n!Kv.Ql, 

The liquidus curve of perfect binary mixtures can be described by the following 
thermodynamic equation 

(3.4) 

where Xe is the equilibrium molar fraction of a constituent, the latent heat of melting 
,i.nd melting temperature of which are !iH M and TM, respectively. This relation 
suggests that the temperature dependence of Ow .may be aproximated by 

(3.5) 

where b and Ke are constants. 

Locating the origin of the x-coordinate closely below the glass level; the dependence 
of Qr of the temperature may be expressed by (I.I}, for Qr = 2Rj

8, where Ris the half
height. of meniscus. So we get the equation. 

(3.6) 
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where KQ = 2Rjo8'1'�, jo8 is the flux-line corrosion rate corresponding to the arbitra
rily chosen viscosity of glass melt, v0• The rate of flux-line corrosion may be also
calculated from the relation [10] 

(3.�) 

where cr is the surface tension. The concentration dependence of cr may be approxi
mated by the linear function 

<1r = <1oo[l + y(Owr - Ooo)], (3.8) 

where y is the concentration coefficient for surface ten8ion. Then 
Qr = 0.76{0wr -000)4/3(D2ycr00R/µ)1/3, (3.9) 

Neglecting the temperatura dependence of R and <100 and U8Íllg the relation y =
= K„e-d@/T, where K„ and d are constant8, then, by (3.1), (3.3), and (3.5) and qµ 
the as8umption that Ooo = O, the equation (3.6) is valid again with KQ = 0,76 X 
X K4aK1JC„K;1(crooRlew)1l3 and 

4 1 
a = 

3 
b +

3 
d + 1. (3.10) 

Denoting ji= 0.4400KY3KD(fJg/KQKv)1l3 and r1 = l.333ji/KQ, the equations
(2.13) and (2.14) can be rewritten as 

Yt = ji(l + Yx)lf3(1-Kce-b@/T,)-lexp(-0(ni/T,s -n2/T,r))(l + r)-114
, (3.11) 

where 

r = r1(1 + Y z)-116 J exp(-0(n3/T, -n4/Ttr))dx, 

1 1 
n2 = -6

b + 3
a, 

2 4 
n4 = -

3
b +

3
a. 

(3.12) 

(3.13) 

When Ti= Ttr, i.e., x = O, (3.10) has to turn into (1.1), 80 n1 + n2 = 3/2. As a= 3, 
we get from (3.10) and (3.13) b = 0,7 and d = 3,2. Thu8 we have the following 
values for n, : n1 = 2.383, n2 = 0.883, n3 = 2.03, and n4 = 3.53. 

4. INITIAL CORROSION

At the beginning, i.e., at t = O, the wall is vertical everywhere, 80 Y z = O. The
value of the corro8ion rate for t = O and x = O Í8 given by the relation (2.11), if we 
take r = O, Ow = Owr = Owo, D = D0, v = v0, and Qr =;=_ Q0, the index o being 
related to x = O and t = O: 

io = Yt(O, O) 
= 0,4400(ewolewo) (Owo -Ooo)5l3 (1- Owo)-1Do(fJg/voQo)1l3

• ((4.1)

Assuming that (!w � (!wo, Owo � 1 (low refractory solubility) and ew = .1.?wo (homo
geneous wall), then by connecting (2.11) and (4.1) we get for t = O 

j(x, O) = j0I'3f2
<p(l + x;-1 J I'<pdx)-1/4, 

o 
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,where the following notation was introduced:
I'== (Ow - Ooo)/(Owo -Ooo),

<p = (v/vo)-113(D/Do)-
'Using the relations (3.1), (3.3) and (3.5), then, for 000 = O, we have

I'= exp[-b0(T; I -TwI)]and
<p = exp [-: 0(T,1 -TwI)]

·íntroducing (3.1), (3.3), (3.5) and (3.6) into (4.1) yields
fo = i1(l - Owo)-1exp(-m0/Tto),where 1 

1n = 3 (5b -a + 4).

(4.3)

(4.4)

(4.5)
The relations (4.2) up to (4.5) prescribe an 'initial corrosion rate profile to an arbitrarytemperature profile Ti(x, O).*) 

6. CORROSION EVOLUTION AT X= CONST.
Let us assume that the wall is homogeneous and the interface is nearly vertical during the whole process, so Y x can be omitted in (2.13). Since the origin of x-coordinate can be chosen arbitrarily, we take x = O, hence r = o; and thus the expression with the integral disappears. The equation (2.13) then reduces to 

ir = Yt(O, t)
= Ó,4400(ew,lewo) (1- Ow,)-1 (Ow, - Ooo)5l3D,({3g/v,Q,)1l3

. 

This equation:can be put into the fonri
Ye = io{(Y),

.where j0 = Ye(O, O) is defined by (4.1) and
f =irfjo 

(5.1) 

(5.2)

= (ewrlewo)[(Owr - Ooo)/(Owo - Ooo)]5l3 [(l -Owo)/(1-Ow,)] X
X (D,/Do)(v,Q,/voQo)-113

• (5.3)
U 000 = O, ew,:� ewo, Ow /4'; I and the relations (3.1), (3.3), (3.5) and (3.6) operate,

. j, = Yt = jo exp(-m0(T;.ť-TióI)), (5.4)

where m is given by (4.5). Note that the relation (3.6) with a= 3 is valid only on the assumption that thepoint x = O is Jocated closeJy, below the g�ass level. This. point is, fortunately, the
*) Initial oorrosion rates were oaloulat_ed by (4.2) in [5], where the assurnption was used thatGw does not depended on the ternperature, so b = O, m. = 1/3 and I'= 1. Relation (4.2) was

rewr,itten by rneans of the diuiensionless �ux-Ii,ne soui:o\) q .= ( : x,/L) 
3/4 , where L is the basin

depth.
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most interesting for: our purposes in most cases, as the teniperatúre' reaches here 
its maximum value a'nd thus the time of the complete corrosion of the-wall is minimal. 

The temperature of the inner wall surface is a function of hoth position and time, 
i.e.,

Tt = T(x, Y(x, t)), (5.5) 

so Ttr = T[O, Y(O, t)l and Tio = 'l'[O, Y(O, O)] = T(O, Y0). The function (5.5) can 
be obtained from the equation for steady onedimensional heat flow through a slab: 

where Tg 
is the temperature of the glass melt far from the wall, Te the temperature 

of the outer wall surface, T m the temperature of cooling medium, ,a, and <X.e are the 
heat transfer coefficients, k the mean thermal conductivity of the wall and Y w =
= Y0 - Y the wall thiékhess. From the equations (5.6) we get after the elimination 
of Te and q (see also [4] and [11]): 

T, = Tg - (Tg - Tm)ka, 1[(a, 1 + a; 1)k + Y0 - Y]-1
. (5.7) 

. In this equation the temperature of glass melt may be regarded as a function of the 
depth below the glass level (at a steady state Tg 

does not depend on t), while the amb
ient temperature, the glass/wall heat transfer coefficient, the thermal conductivity of 
the wall and its initial thickness may be considered constant. The important para
meter, which can be controlled by cooling or insulation of the outer surface, is the 
heat transfer coefficient <X.e, that can be a function of position and time, i.e., 

<X.e = <X.e(X, t). (5.8) 

Assuming <X.e independent of time (which means that the cooling does not change 
during the furnace performance) the equation (5.4) can be integrated. To this end the 
following auxiliary quantities are useful: 

a1 = Yo + k(a; 1 + a; 1T111/T
g
), 

zo = m0k(ata1)-1T;- 1(1-T111/Tg), (5.9) 

z= zo/(1- Y/a1). (5.10) 

Using (5.1) the equation (5.4) turns into the form 

Yt = foexp(-zo/(ai/Y - 1)). (5.11) 

Introducing the substitutions (5.9) and intergating we get 

t = to J z-2eZdz, (5.12) 
Zo 

where 

The equation (5.12) expresses the time necessary for corrosion to reach the value 
Y = a1(1- z0/z). The complete corrosion of the wall comes about when Y = Y0• 

It. <X.e = O, (5.4) can be integrated with the result 

.Y = jot; 

Silikáty č, •2, :rnso 

(5.14) 

105 



P. Hrma:

�xample. The glass level temperature Tg(0) = 1760 K, the ambient temperatura 
. T m == ,300 K, the characteristic glass melt tempera ture for the viscosity 0 =
.--:- 2 .  J04 K, the initial .wall thickness Y0 = 0.3 m, its thermal conductivity k = 

= 4.70 W/mK and the glass/wall heat transfer coefficient exi = 815 W/m7K. For 
Ť:heinitial corrosion the relatiori (4.4\ is valied with Cwo � 1. In case of the flux-line 
corrosion m = 3 and ii = 1.97 x 1013 m/month and in case of the corrosion below 
·the glass level m = 3/2 and ji = 2.88 X 105 m/month. Our task is to find out the time
:for the c9mplete corrosion of the wall at the glass level and closely below it in de
pendence of the cooling intensity, exe, being independent of time.

If the wall is insulated, ex8 = O, then, by (5.7) Tt = Tg and from (4.4) and (5.14) 
we get for the complete corrosion time ts,in = O. 75 months*) at the glass level and 
tit,ín = 26.33 months bdow it. For exe i= O it is necessary to carry out the integration 

'of (5.12). From (5.13) we have 

tos = 5.301 months, t0a = 7.157 months 

and from (5.9) and (5.10) we obtain the following expressions for the integration 
}imits: 

Zos = bs/(c1 + ex;- 1), Z1s = bs/(c2 + ex;- 1), 

zoa = ba/(c1 + ex;-1), zlit = ba/(c2 + ex;-1), 

where b8 = 3.47 X 10-2, ba= 1.74 X 10-2, c1 = 6.40 x 10-2, c2 = 2.09 X 10-4 and the 
upper limit of integration is denoted by the index 1. 

1000 

[monlhs] 

100 

10 100 1000 

cxefW. n'i2K-1]'

.Fig. 4. The time oj the complete corrosion oj the wall by the flux-line corrosion (s) and the, corrosio,� 
below the glaas Zevel (d) in dependence oj the wall/ambient heat transfer coefjicient; if a, < 126 W/m2K, 
fhe wall is corroded through at the flux line, whereas if <Xe > 126 W/m2K, the corroBion below the glas11 • Zevel ultimately prevails. 

*) Thís result ís not realistíc, since the flux-line corrosion slows down as a result of ac
:oumillated corrosion products when the flux line cut b.ecomes deep enough. 
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The result is drawn in Fig. 4 .. It is apparent that the life-time of wall increases 
with the intensity of cooling. When o:e < 126 W/m2K, the life-time of the wall is 
determined by the flux-line corrosion, whereas when ixe > 126 W/m2K it is limited 
by the corrosion below the glass level. 

6. RELATION BETWEEN THE CORROSION RATE AND HEAT

LOSSES 

The equation (5.4) may be put into the form 
jr = j0exp[-m@(T;1 -Ti')], (6.1) 

wbere j0 is the corrosion rate at the temperature T,r = T0, i.e., the corrosion rate 
of the insulated wall (or the adiabatio corrosion rate). By introducing the dimen-

sionless variables J = jr/jg and 0 = m8/T0 we get (6.1) in the fonn 

7 = exp[0(1- Tg/Tir)]. (5.2) 

The heat flux through the wall is expressed by (5.6)i. Using the dimensionless 
variable q = qfixtTg, it can be rewritten as 

q = l -Tirl Tu· (6.3) 
Joining (6.2) and (6.3) we have the relation

q = (1 -0/ln 1)-1, (6.4) 

from which it is apparent (see Fig. 5) that a substantial reduction of the corrosion 
rate can be achieved, but is always accompanied by considerable losses of heat. 

Eliminating Ti and Te from (5·.6)i,2,3 we get 

o 

q = U(Tg -T111), (6.5) 

0,2 • 0,4 0,6 0,8 10 
. . -1 
lr-19 

Fig. 5. The heat lossea by cooling vs. the corrosion reduction ratio. The curve nitmbers cor
respond to the Jollowing values oj @/Tg: 16(1), 18(2), 20(3). An ejfective reduction oj corrosion rate 

(in comparison with the adiabatic oase) is accompaned by substa.ntional héat,losses. 
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P.Hi·ma:

(Jme. 1 II 4). Hpu anamrne 1rnppos1m 11op; ypoBHeM c 110MOilJJ,JO MeTop;a 11orpanuqaoro CJIOJI 
.OIW3b!BaeTCJI neo6xop;I1MJ,JM Y'IHTb!BUTJ, TO, 'ITO: a) TeM11epaTypa CT0HJIOMaCCbl 3aBHCI1T OT 
BepTIIIWJibHOfI 1rnopp;11HaTbl, OT T0Jllf.\11HJ,I CT0Hbl H OT HHT0HCHBHOCTH OXJiamp;emrn H 6) HOacp
cJml\H0HT p;:iúpcpyanH, DH3HOCTb CTeIWOMaCCbl II paCTDOpHMOCTb orney11opHoro MaTepHaJia 
CHJibHO 3aBHCllT OT TeM11epaTypu. Eem! 3Tll 3aBHCHMOCTH HM0JOT BHJ]; cpyHHlJHH Appemrn 
(ypaBH0HHe (3.1) 11 (3.5)) H ecm1 crrpaBep;JIHDO J];Jlll CHOpOCTli 1wppoan11 Ha ypomrn OTHOilleHJrn 
CMp'IeHa (3.6), TO pa3BHTHe 11pocp1-JJI/l H0pp03HH OlIHCbJBUeTCll HHTerpop;mpcpepeHl(HUJlbHbIM 
ypaBH0HI10M (3. '11), Bb!pamaJOIIJHM OTHOIII0HH0 MeJHp;y c1rnpocno 1rnpp03HH B orrpep;eJieHHOM 
M0CTe CTeHbl OT TeMrrepaTypu B 3TOM M0CTe H OT pacrrpep;eJiemrn TeMrrepaTyp Bb!Ill0 3TOro 
M0CTa (yrrOMllHYTOe pacrrpep;eJieHHe p;efICTnyeT nocpep;CTBOM 3ílllJHTHOro BJillHHHH CT0HUJOII(HX 
11pop;yI{TOB 1wppoam1). B ypaBH0HH0 (3.11) BXOJ];HT TaJGHe IrnppeI,lJHH HCHpHDJieHnll CT0Hbl 
nplI paamrrofr 1rnppo3Hl1 (pHC . 3). Bm1MUHH0 YA0JIH0TCll ABYM c11eJ�HaJibHb!M CJiyqamr. 
HepBb!M llDJill0TCll onpe,ri.eJieune HCXO]];HOI'O IIJlOCpHJIH 1rnpp03HH - OTHOIIIeHHe (4.2), BTOpb!M 
- xop; l{Opp03Hll B 06Jiacn1 110)]; CUMLIM M0HHCJ{OM ypomrn - OTHO!lI01'1'.!Ie (5.4). TeMirnpaTypy 
npep;eJia MeIBJW cTeHJIOMaccof1 n cTeHoH pac•rnrnm1 c 110MOllJbJO 6aJiaHca (5.6). Ecm1 crrnpocn, 
OXJialHJ];0HHll no Dce npe�rn xop;a 110'1H lIOCTOllHHa, TO 3UBHCTIMOCTb TOJlllJHHbl OT Bp0M0HH 0
)l;UHa OTH0lll0IUI0M (5.9)-(5.13). Cpm, CJiym6u rretrn B 3UBHCHMOCTH OT HHT0HCHÍllIOCTH 
oxJialÍ,)];0HHll rrplIBO)l;HTCll na puc. 4, J,13 !{OTOporo DHJJ:HO, 'lTO OXJIUlHJJ:0IU!0M MOJHHO BJl0MJI 
rrpoHoppoi:i;HpOBUH11H 3Híl'JH'f0JibHO yBeJIH'IHTb, HO TOJibHO 3a C'IeT 60JibllIHX aaTpaT Te11Jia 
(p11c. 5). Ho-repH T0JJJia rrpH )l;UHHOM cpo1,:e CJ1ym6r,1 11e•rn MOJHHO MHHHM113HpODUTb D TOM 
cJiyqae, ecm1 YJJ:U0TCll 11pe)l;OTBpaTI1Tb pea1we JJOHIJiReIUie TOJIII\HHbl CT0Hbl 1rnppoaneŘ 
(pHC. 6). 

Puc. 1. Baaucu.,11.ocmb mo.11,u1unu ox.11,a:ncéJae.1ioií. cmenbi om ape,iieriu; s - 1wppoau.<i na ypoa1-1,e, 
d - 1wppoaun noéJ ypoene.11 .. Hoppoaun 1-1,a ypoane onaablaaemcn c1-1,a,w.11,a 60.11,ee 6bicmpoií. 
no cpae1-ienwo c noppoaueií. noéJ ypoa1-1,e,1-1., 1-to a peay.11,bmame ox.11,ai1céJe1-1,un aa.1teéJ.11,nemcn 
1-taC1no.11,b1w, •tmo npu onpeéJe.11,e1-tHoii nio.11,u+u.1-1,e cnieHbt o6a auéJa ,wppoauu pae1-tbt éJpye 
éJpyey no ae.w•1.u1-te. Jipo1,oppoéJupoaanu.e cme1-1,bi auauaaemc.q, éJeiícmaue.H h·oppoauu 
noéJ ypoa1-te1>t. 

Puc. 2. 3aaucu;,wcmb c1.opocmu 1;oppoauu na ypoane (s) u noéJ ypoa1-1e1>t (d) a.11,10.Holfu.p1wHcu.11,u-
1.am1-toeo oe1-ieynopHoeo .�wmepuana cme1;.11,01,wcco1'í, Float om me,1inepamypb1-. Iiui1ce 
me;,rnepamypu 1390 °C noppoau.q, na. ypoa1-te npome,rnem .. 1ieéJ.11,e1-tHee, abiiae ee onuiowe-
1-1,ue cnopocmeií. o6ou.x au.Boe 1;oppoa1m 06pam1-to. 

Puc. 3, Cme1;.11,o,1wcca C om cmenbi T,V oméJe.11,e1-ta npeéJe.11,01,i s, abipai1cemtbi,1t if;yni;4u.ea Y(x). 
Hacame.11,bHan r. npeéJe.11,y o6paaoabwaem a mo•ine A c aer.mopo,1t epaawna4uo1-1,noeo 

yc1,ope1-1,u.q, yeo.11, a = arctg d:V/dx. I'opuao1-ima.11,b1um c1;opocmb y6bi.11,u cme1tbi Yt = 
= dY/dt = i/cos a (i - c1wpocmb y6bi.11,u cme1ibt a 1-tanpaMe1-1,1m 1-top.1ta.11,bi). 

Puc. 4. BpeMn npoKoppoéJupoaa1-mn cmeHbL noppoaueií. 1-ta ypoa1-1,e (s) u noéJ ypoane.-11 (d) a aa
aucu;,wcmu om Koaif;if;u1fue1-1,ma men.11,onepeéJa"'u 1,wi1céJy cme1-toi'í, u cpeéJoff. llpu CY.e = 
= 126 am/,11,2 I{ cmena nponoppoéJupyemcn ,;oppoaueii na ypoa1-1,e, npu cx, > 126 am/.1i2H 
1,oppoaueií. noéJ ypoa1-te1>t. 

Puc. 5. · llomepu men.11,a ox.11,ai1céJe1-tueM e ·aaaucu.1t0cmu om cme1ie1-1,u 1io1-tu,1ceHun c1wpocmu 
1wppoauu (no· cpaa1-te1-1,u,o a aéJua6amu•iecnoií ,;oppoaueií.) é}.11,n cMéJy 1ou+ux ať.11,U'l,UH, 
@JT g: 16(1), 18(2), 20(3). 9if;if;e1,mua1-1,oe 1io1-tuJ1crnue noppoauu .1t0J1CH0 no.11,y"'umb 
mo.11,bi.o ua-aa 60J1,b1UUX nomep men.11,a. 

Puc. 6. Baeucu.1wcmb U om Yw (x: é).11,n paaHbiX a,) a am (.1i2H): 10(1), 102(2), 10-(3). lfHmťH
cuaHoe ox.11,aJ1céJe1me npu 1-te60.11,buwii momt1-une cmeHu 6bl8btaaem abicoKue ae.11,wiu.1-t U,
a c.11,eéJoaame.11,bHO, ebico,;ue nomepu men.11,a. 
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