Krátké původní sdělení

DETERMINATION OF THE MIXING ENTHALPY OF SOLID SOLUTIONS IN THE SYSTEM Y₂O₃—Nd₂O₃

PJOTR ALEKSEYEVICH TICHONOV, IVO PROKS*, LADISLAV KOSA*

Institute of the Chemistry of Silicates, Academy of Sciences of the USSR, nab. Makarova 2, 199 164 Leningrad B-164

*Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská cesta 5, 809 34 Bratislava

Received 4. 2. 1981

Experimentally established heats of solution of Y_2O_3 , Nd_2O_3 and of three solid solutions in the system $Y_2O_3-Nd_2O_3$ in nitric acid (vol. ratio $HNO_3:H_2O=1:1$) at 298 K were used for determining the enthalpy of mixing for the formation of solid solutions in this system. All the specimens, the heats of solutions of which were measured, had a body-centered cubic lattice. The non-zero values of the enthalpy of mixing have shown, that the solid solutions in the system $Y_2O_3-Nd_2O_3$ are non-ideal.

INTRODUCTION

The present study had the aim to determine the values of the enthalpy of mixing due to the formation of solid solutions in the system Y_2O_3 — Nd_2O_3 , which is significant for a better understanding of the chemistry of lanthanides and yttrium. The value of this quantity is a criterion for the determination of the thermodynamic character of these phases.

EXPERIMENTAL

The determination of the enthalpy of mixing of solid solutions in the system Y_2O_3 — Nd_2O_3 was based on measurement of the heats of solution of the pure components Y_2O_3 and Nd_2O_3 and of three solid solutions having the composition (the numbers in brackets are numerical values of mole fractions in percent of pure components Y_2O_3 and Nd_2O_3 in the respective solid solution): $Y_2O_3(75)$ — $Nd_2O_3(25)$, $Y_2O_3(50)$ — $Nd_2O_3(50)$ and $Y_2O_3(30)$ — $Nd_2O_3(70)$ in dilute HNO₃ (in vol. ratio 1 : 1) at 298 K.

The specimens were prepared from yttrium oxide (mark ITO-1) containing 99.96 wt. % Y_2O_3 , and neodymium oxide (mark NO-SS) cotaining 99.99 wt. % Nd_2O_3 , as follows: The calculated mixture of the oxides was dissolved in dilute HNO_3 (in vol. ratio 1:2) at 80 °C. Hydrates of the oxides were precipitated by introducing the acid solution into a concentrated aqueous ammonia solution (pH > 10). The precipitate, which was probably a solid solution of the oxide hydrates, was dried at 200 °C for four hours, and then fired for three hours in air at 600 °C, thus yielding the respective solid solution of oxides with the given composition. All the solid solution specimens used in the measurements of the heat of solution had a body-centered cubic lattice characteristic of rare earth oxides (the so-called C-structure [1]).

The heats of solution of the individual specimens were determined in the solution calorimeter, described in [2] together with the respective measuring procedure.

Silikáty č. 2, 1982 165

RESULTS

Using X-ray diffraction data, the lattice parameters a of the cubic solid solutions in the system Y_2O_3 —Nd₂O₃ were determined; a plot of their dependence on composition is shown in Fig. 1.

The heats of solution $(\Delta H_{sol,\varphi})$ determined for Y_2O_3 , Nd_2O_3 and for three solid solutions as mean values of two or three measurement for each specimen are listed in Table I (φ is a designation of arithmetic mean) with a maximum relative error of 2.8%.

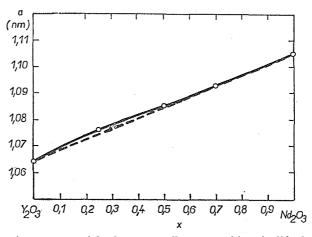


Fig. 1. Dependence of parameter a of the elementary cell on composition of solid solution in the system Y_2O_3 .

Composition of solid solution	$\frac{\Delta H_{\text{sol},\varphi}}{\text{kJ mol}^{-1}}$	$\frac{\Delta H_{\text{sol,id}}}{\text{kJ mol}^{-1}}$	$\frac{\Delta H_{\text{mix}}}{\text{kJ mol}^{-1}}$
$\begin{array}{c} Y_2 O_3 \\ Y_2 O_3 (75) - N d_2 O_3 (25) \\ Y_2 O_3 (50) - N d_2 O_3 (50) \\ Y_2 O_3 (30) - N d_2 O_3 (70) \\ N d_2 O_3 \end{array}$	$\begin{array}{r} -364.6 \\ -377.4 \\ -377.7 \\ -323.5 \\ -325.6 \end{array}$	-364.6 -354.9 -345.1 -337.3 -325.6	$0 \\ 22.5 \\ 32.6 \\ -13.8 \\ 0$

Table I

The enthalpy of mixing values for the formation of solid solutions, $\Delta H_{\rm mix}$, were determined from the differences ($\Delta H_{\rm sol,id} - \Delta H_{\rm sol,\varphi}$) for the specimens of the respective compositions. $\Delta H_{\rm sol,id}$ is the value of the heat of solution of an ideal solution of a given composition given by the equation

$$\Delta H_{\rm sol,id} = (1-x) \, \Delta H_{\rm sol,Y_2O_3,\varphi} + x \, \Delta H_{\rm sol,Nd_2O_3,\varphi} \tag{1}$$

where x is the mole fraction of Nd_2O_3 in the respective specimen. The values of $\Delta H_{\rm sol,id}$ and $\Delta H_{\rm mix}$ are likewise listed in Table I.

Whereas the concentration dependence of the lattice parameter is almost linear throughout the entire range (Fig. 1), the ΔH_{mix} values first increase with increasing

166 Sülkáty č. 2, 1982

 $\mathrm{Nd_2O_3}$ content in solid solution with $\mathrm{Y_2O_3}$ (the composition range 0—50 mole % $\mathrm{Nd_2O_3}$) thereafter showing a decrease (the composition range 50—70 mole % $\mathrm{Nd_2O_3}$) (Table I). The relatively great errors involved in the determination of ΔH_{mix} do not affect the character of the dependence. The concentration dependence of the enthalpy of mixing for the system $\mathrm{Y_2O_3}$ — $\mathrm{Nd_2O_3}$ thus indicate, that the solid solutions of its components are non-ideal. The non-ideality of the solid solutions of this system may be the result of formation of ordered solid solutions arising at the considerable difference in the ionic radii: $r(^{\mathrm{VI}}\mathrm{Y}^{3+}) = 0.090 \,\mathrm{nm}, \ r(^{\mathrm{VI}}\mathrm{Nd}^{3+}) = 0.0983 \,\mathrm{nm}$ [3]; the same behaviour is exhibited, for instance, by the systems $\mathrm{La_2O_3}$ — $\mathrm{Dy_2O_3}$, $\mathrm{La_2O_3}$ — $\mathrm{Er_2O_3}$, $\mathrm{La_2O_3}$ — $\mathrm{Yb_2O_3}$ [4].

References

- [1] Tichonov P. A., Kuznecov A. K., Zhikharova E. F., Merezhinskij K. J., Juneev B. N.: Zh. neorg. chimii 22, 1057 (1977).
- [2] Proks I., Eliášová M., Pach L., Zlatovský I.: Chem. Zvesti 21, 908 (1967).
- [3] Shannon R. D.: Acta Crystallogr. A32, 751 (1976).
- [4] Badie J. M., Coutures J., Rouanet A., Foëx M.: Coll. Int. du CNRS No. 205, 439-446 (1972).

STANOVENIE ZMIEŠAVACEJ ENTALPIE TUHÝCH ROZTOKOV SÚSTAVY Y₂O₃--Nd₂O₃

Pjotr Aleksejevič Tichonov, Ivo Proks*, Ladislav Kosa*

Ústav chémie silikátov AV ZSSR, Leningrad *Ústav anorganickej chémie SAV, Bratislava

Pripravili sa tri tuhé roztoky sústavy $Y_2O_3 - Nd_2O_3$, Y_2O_3 a Nd_2O_3 s kubickou, priestorovo centrovanou mriožkou, ktorej odpovedá približne lineárna závislosť mriožkového parametru od koncentrácie. V kalorimetri pre meranie rozpúšťacích tepiel sa namerali ich rozpúšťacie teplá v kyseline dusičnej (1:1) pri teplote 298 K. Z hodnět zmiešavacej entalpie pri vzniku tuhých roztokov sústavy $Y_2O_3 - Nd_2O_3$ vyplynulo, že tuhé roztoky tejto sústavy vykazujú neideálne chovanie.

Obr. 1. Závislosť parametra a elementárnej bunky od zloženia tuhého roztoku sústavy Y₂O₃ - Nd₂O₃.

ОПРЕДЕЛЕНИЕ ЭНТАЛЬПИИ СМЕШИВАНИЯ ТВЁРДЫХ РАСТВОРОВ СИСТЕМЫ У₂O₃—Nd₂O₃

П. А. Тихонов, Иво Проке*, Ладислав Коса*

*Институт химии силикатов АН СССР, Ленинград В 164 Институт неврганической химии САН, Братислава

Были получены три твёрдые раствора системы У₂О₃—Nd₂О₃, У₂О₃ и Nd₂О₃ с кубической объёмноцентрированиой решеткой, которой соответствует приблизительно линейная зависимость параметра решетки от концентрации. С помощью калориметра для определения тежлоты растворения, измеряли их теплоты растворения в азотной кислото (объёмное соотношение Н NO₃: H₂O = 1:1) при температуре 298 К. Из величин энтальпии смешивания при образовании твёрдых растворов системы У₂О₃—Nd₂О₃ следует, что твёрдые растворы данной системы имеют неидеальное поведение.

Рис. 1. Зависимость параметра а элементарной ячейки решетки от состава твёрдого раствора системы V_2O_3 — Nd_2O_3 .