EMANAČNÍ TERMICKÁ ANALÝZA A JEJÍ POUŽITÍ

Vladimír Balek

Ústav jaderného výzkumu ČSKAE, 250 68 Řež

V běžných stopovacích metodách se používají radioaktivní atomy v nepatrných koncentracích jako indikátory chemického chování prvků izotopických s radioaktivními atomy. Radioaktivní inertní plyny mohou kromě toho ještě sloužit jako univerzální indikátory stavu pevných látek a jeho změn. Inertní plyn včleněný do pevné látky může být použit pro sledování fyzikálních a chemických procesů v ní probíhajících, popřípadě ke studiu chemických interakcí pevné látky s okolím.

1. DEFINICE A PRINCIP METODY

Emanační termická analýza [1] spočívá v měření rychlosti uvolňování inertních plynů (s výhodou radioaktivních) ze vzorků pevných látek, v zadaném teplotním režimu v definovaném (plynném či kapalném) prostředí. Vzhledem k tomu, že většina studovaných látek neobsahuje přirozeně radioaktivní inertní plyn, je nutno jej do látek včlenit, tj. látky radioaktivně značkovat. Atomy inertních plynů (používají se zejména radioizotopy radonu, kryptonu a xenonu) s pevnou látkou nereagují a uvolnují se z ní v důsledku fyzikálních či chemických procesů. Základním mechanismem uvolnování inertních plynů z pevných látek je difúze. Její průběh může být ovlivňován strukturními, mechanickými, chemickými či radidiačními účinky na látku. Radioaktivita inertních plynů zajišťuje jejich snadnou detekci ve stopových koncentracích.

Na základě měření rychlosti uvolňování inertních plynů je možno zkoumat stav pevných látek, změny jejich struktury a povrchu, chemické reakce probíhající v látkách a na jejich povrchu apod. Emanační termická analýza velmi citlivě indikuje interakce pevných látek s plynným či kapalným médiem nebo jinou pevnou látkou. Z rychlosti uvolňování inertních plynů z pevných látek během jejich interakce s prostředím je možno sledovat kinetiku procesů probíhajících při této interakci. V řadě případů byly na základě emanační termické analýzy navrženy metody pro stanovení stop prvků a sloučenin obsažených v plynných a kapalných médiích.

2. RADIOAKTIVNÍ ZNAČKOVÁNÍ PEVNÝCH LÁTEK

Ke včlenění inertních radioaktivních plynů do pevných látek byla navržena celá řada způsobů [1]. Inertní plyny mohou vznikat a být včleňovány do studovaných látek např. na základě jaderných reakcí. Prakticky se využívají jaderné reakce vedoucí ke vzniku radionuklidů se vhodným poločasem rozpadu (tj. nepříliš krátkým vzhledem k době měření a nepříliš dlouhým vzhledem k dynamice tepelného zpracování vzorků během měření). V tab. I jsou uvedeny příklady používaných jaderných reakcí.

Látky, které obsahují mateřské radionuklidy typu alkalických kovů nebo alkalic-

kých zemin, lze značkovat ňapř. přímým ozářením neutrony. V jiných případech se mateřské radionuklidy adsorbují na povrchu pevných látek nebo se do nich včleňují během jejich přípravy. Např. ²²⁸Th se včlení do objemu studovaných látek během jejich přípravy spolusrážením nebo se adsorbuje na povrchu již připravených vzorků z roztoku použitého pro impregnaci. Specifická aktivita značkovaných vzorků zpravidla činí 10⁴ s⁻¹/g. Při včlenění mateřského nuklidu ²²⁸Th s relativně dlouhým poločasem rozpadu ($T_{1/2} = 1,9$ r) obsahuje vzorek prakticky stálý zdroj inertního plynu — radonu ²²⁰Rn ($T_{1/2} = 55$ s). Tento způsob značkování vzorků umožňuje provádět měření ETA opakovaně v rozmezí i několika měsíců a v režimu dynamického tepelného zpracování.

Způsob bombardování povrchu látek urychlenými ionty inertních plynů se používá především pro značkování povrchových vrstev vzorků. Množství včleněného plynu a hloubka včlenění i koncentrační profil závisejí na energii iontů plynu a na charakteru pevné látky. Tímto způsobem byla značkována celá řada zejména kompaktních vzorků, krystalů, kovových fólií apod. Uvedený způsob značkování je doprovázen zvýšenou koncentrací radiačních defektů ve značkovaných látkách. Tuto skutečnost je nutno při měření rychlosti uvolňování včleněných plynů brát v úvahu.

Typ jaderné reakce	Schéma jaderné reakce				
α-rozpad	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
β-rozpad	⁸³ Se $\xrightarrow{-\beta}$ ⁸³ Br $\xrightarrow{-\beta}$ ⁸³ Kr ¹³³ Te $\xrightarrow{-\beta}$ ¹³³ I $\xrightarrow{-\beta}$ ¹³³ Xe				
(n. α)	⁴⁰ Ca(n, α) ³⁷ Ar ⁸⁸ Sr(n, α) ^{85m} Kr ¹³⁶ Ba(n, α) ¹³³ Xθ				
(n, p)	³⁹ K(n, p) ³⁹ Ar ⁸⁵ Rb(n, p) ⁸⁵ Kr ¹³³ C _S (n, p) ¹³³ mXe				
(n, γ) a β-rozpad	$37Cl(n, \gamma) 38Cl \xrightarrow{-\beta} 38Ar$ $79Br(n, \gamma) 80Br \xrightarrow{-\beta} 80Kr$ $127I(n, \gamma) 128I \xrightarrow{-\beta} 128Xe$				
reakce štěpení (n, f)	²³⁸ U (n, f) Xe, Kr				

Tabulka I Přehled jaderných reakcí peužívaných pre tverbu inertních radiesktivních plynů v pevných látkách

Difúze inertních plynů v prostředí zvýšené teploty a tlaku se používá pro značkování pevných látek s nižším bodem tání. Takto bylo značkováno více než 200 látek, zejména kovů, slitin, anorganických a organických sloučenin.

Přímé včlenění radioaktivního plynu během přípravy vzorku nebo fázových přeměn může být s výhodou použito při značkování např. kovů nebo slitin během tuhnutí taveniny, při sublimaci pevných látek nebo polymerizaci monomerů uskutečňované v atmosféře inertního plynu. Rovněž při ohřevu látky do teplot, kdy dochází ke strukturní přeměně nebo jinému procesu přestavby mřížky (např. slinování), mohou být včleněny stopy inertního plynu z okolní atmosféry do pevné látky.

Vlastní výběr techniky pro značkování se řídí zejména charakterem značkované látky a cílem, k němuž má následující měření emanační termickou analýzou (dále ETA) vést. Např. sublimace pevných látek s následující kondenzací v atmosféře inertního plynu byla použita pro značkování látek tvořících sloučeniny typu klathrátů. Způsob vělenění mateřských radionuklidů inertního plynu se používá zejména pro anorganické látky, a to tehdy, kdy se předpokládá studium změn povrchu, slinování a jiné procesy během tepelného zpracování do vyšších teplot, kdy by mohlo dojít k vyčerpání inertního plynu včleněného bez svého mateřského radionuklidu.

Atomy inertního plynu jsou v pevných látkách nerozpustné a jsou situovány na různých defektech a nepravidelnostech mřížky.

3. UVOLŇOVÁNÍ INERTNÍCH PLYNŮ Z PEVNÝCH LÁTEK

Inertní plyn včleněný do pevné látky může být uvolněn v důsledku celé řady procesů, mezi nimiž jsou chemické reakce, fyzikální transformace, mechanické či radiační poškození struktury pevné látky, temperace radiačních či mechanických defektů a zejména v důsledku difúze plynu v pevné látce. Část atomů inertního plynu vznikajících ve vzorku jako důsledek jaderných reakcí mateřských radionuklidů se může uvolnit ze zrna pevné látky díky tzv. energii zpětného odrazu, kterou každý atom získá v okamžiku svého vzniku (80–90 keV/at). Na obr. 1 je schematicky znázorněno uvolňování atomů En zpětným odrazem a difúzí v zrnu pevné látky.

Obr. 1. Schéma uvolňování radonu ze zrna pevné látky mechanismem zpětného odrazu a difúzí.

Při matematickém popisu procesů uvolňování atomů radonu z pevné látky se rozlišují případy, kdy je plyn včleněn bez mateřského radionuklidu a kdy je včleněn mateřský radionuklid inertního plynu. Důležitá je přitom znalost distribuce inertního plynu, resp. jeho mateřského izotopu v pevné látce. Nejprve budou diskutovány případy, kdy v pevné látce nedochází ke strukturním či chemickým přeměnám, které mohou ovlivňovat uvolňování inertního plynu.

3.1. Látka značkovaná inertním plynem bez mateřského nuklidu

Jestliže inertní plyn byl včleněn do vzorku pevné látky bez mateřského nuklidu (např. iontovým bombardováním), uplatňují se při jeho uvolňování difúzní procesy, jejichž průběh závisí zejména na mechanismu difúze. Pro popis teplotní závislosti rychlosti uvolňování inertního plynu byla navržena řada vztahů [2-6]. Redhead [2] a Carter [3] předpokládali, že uvolňování plynu je reakcí 1. řádu a navrhli pro rychlost uvolňování plynu rovnici

$$-dN/dt = \nu N \exp\left(-\Delta H/RT\right),\tag{1}$$

kde N je počet atomů zachycených v jednotce povrchu, ν — konstanta, frekvence vibrací atomů v mřížce rovna 10^{-13} s⁻¹, ΔH je zdánlivá aktivační energie difúze inertního plynu v pevné látce, R — molární plynová konstanta rovna 8,3143 J K⁻¹ mol⁻¹, T — absolutní teplota.

Má-li difúzní proces, kterým se řídí uvolňování plynu, diskrétní hodnoty aktivační energie ΔH , projeví se na teplotní závislosti rychlosti uvolňování plynu maxima, přičemž teplota maxima závisí na aktivační energii procesu difúze. Tuto hodnotu je možno přímo vyčíslit z polohy maxima na experimentální křivce podle vztahu (2). Předpokládáme-li, že rychlost ohřevu je β [K s⁻¹] a ΔH nezávisí na N, lze ze vztahu (1) odvodit vztah

$$\Delta H/RT_{\max} = (\nu/\beta) \exp\left(-\Delta H/RT_{\max}\right),$$

$$\Delta H/T_{\max} = \ln\left(\nu T_{\max}/\beta\right) - 3.64.$$
 (2)

Závislost mezi ΔH a T_{max} je blízká lineární. Analogické výrazy platí pro případy různých distribučních profilů inertního plynu. Proces uvolňování inertního plynu vyvolaný temperací defektů probíhá zpravidla při teplotách nižších, než odpovídá procesu "normální" difúze inertního plynu jako příměsi mřížky pevné látky.

3.2. Látka značkovaná mateřským nuklidem inertního plynu

Jestliže je do pevné látky včleněn mateřský nuklid radioaktivního plynu, např. ²²⁸Th nebo ²²⁴Ra, vzniká spontánním radioaktivním rozpadem radon ²²⁰Rn. Látka obsahuje prakticky stálý zdroj atomů radonu. Při vzniku radonu dochází ke zpětnému odrazu atomů radonu, jehož energie se výrazně uplatňuje při uvolňování těchto atomů z pevné látky, vedle procesu difúze. Pro atomy radonu, uvolněné mechanismem zpětného odrazu z izolovaného zrna pevné látky o velikosti $a > r_0$ (kde r_0 — dolet zpětně odražených atomů radonu v pevné látce), byl odvozen vztah [7, 8].

$$E_{\rm R} = K_1 S_1, \tag{3}$$

kde $E_{\rm R}$ — rychlost uvolňování atomů radonu vztažená na rychlost jejich tvorby rozpadem radia (zvaná emanační schopnost) — pro část atomů radonu uvolněných zpětným odrazem, K_1 — teplotně nezávislá konstanta, závisející na r_0 a ϱ , S_1 — vnější povrch vzorku vztažený na jeho hmotu, ϱ — hustota vzorku. Dolet atomů radonu v pevné látce je řádově desítky nm, např. v ThO₂ činí 60 nm. Pro krystaly o velikosti $a < r_0$ vztah (3) neplatí. Pro krystaly o hraně $a = r_0$ platí, že $E_{\rm R} = 0.94$.

Pro jemně disperzní látky, kde není možno předpokládat přítomnost izolovaných zrn, je nutno vztah (3) ověřit konkrétním experimentem. V těchto případech pronikají některé z atomů radonu ze zrn pevné látky prostorem mezi zrny do sousedních zrn, čímž snižují celkovou hodnotu $E_{\mathbf{R}}$ odpovídající zpětnému odrazu. Ze sousedních zrn se mohou atomy radonu uvolnit difúzí. Pro disperzní vzorky závisí $E_{\mathbf{R}}$ na morfologii vzorku. Pro emanační schopnost E_{p} , která přísluší mechanismu difúze radonu v plynu v prostoru mezi zrny a pórech pevné látky, bylnavržen vztah [8]

$$E_p = K_2 S_2, \tag{4}$$

kde K_2 — konstanta závisející na teplotě a morfologii vzorku, S_2 — vnitřní povrch vzorku vztažený na jednotku hmoty.

Pro emanační schopnost E_S , odpovídající mechanismu difúze radonu v matrici pevné látky, platí vztah [1, 7, 8]

$$E_S = K_3 \exp\left(-\Delta H/2RT\right) S_3,\tag{5}$$

kde K_3 — teplotně nezávislá konstanta, závisející na struktuře pevné látky, ΔH — zdánlivá aktivační energie difúze inertního plynu v látce, R — molární plynová konstanta, T — teplota v absolutní stupnici, S_3 — povrch představující součet průřezů všech difúzních drah inertního plynu na povrchu zrna pevné látky (např. dislokací hranic zrn apod.).

Celkově lze sumární emanační schopnost vyjádřit

$$E = E_{\rm R} + E_p + E_S. \tag{6}$$

Na obr. 2 jsou znázorněny teplotní průběhy rychlosti uvolňování inertního plynu z pevné látky, do níž byl inertní plyn včleněn různým způsobem. Křivka 1 odpovídá případu, kdy pevná látka obsahuje inertní plyn bez mateřského nuklidu, maximum T_2 odpovídá difúzi inertního plynu (radonu) mechanismem "normální" difúze, maximum T_1 odpovídá temperaci radiačních defektů a defektů způsobených nedokonalostí povrchu. Křivky 2 a 2' odpovídají případu, kdy pevná látka obsahuje mateřský nuklid jako stálý zdroj inertního plynu (konkrétně radionuklidy ²²⁸Th a ²²⁴Ra jako zdroj ²²⁰Ra), křivka 3 byla sestrojena z hodnot křivky 2' a umožňuje výpočet aktivační energie difúze radonu v pevné látce.

Pro látky značkované pomocí mateřského radionuklidu inertního plynu lze použít hodnoty emanační schopnosti E_{20} měřené při laboratorní teplotě, zejména pro hodnocení morfologie vzorku. Hodnoty E_{20} se rovnají zpravidla součtu $E_{\mathbf{R}}$ a $(E_p)_{20}$, neboť pro většinu anorganických iontových krystalů je hodnota $(E_S)_{20}$ zanedbatelná.

Při vyšších teplotách jsou experimentální hodnoty E závislé na difúzních vlastnostech radonu v matrici pevné látky a v prostoru mezi zrny. Pro hodnotu E_T měřenou při teplotě T platí

$$E_T = E_R + (E_p)_T + (E_S)_T.$$
(7)

Ze závislosti log $(E_T - E_{20})$ na 1/T je možno získat charakteristiku difúzního procesu, který řídí uvolňování radonu z pevné látky: Pro vzorek, v němž nedochází k fázovým a chemickým přeměnám, je tento difúzní proces závislý na koncentraci a charakteru nerovnovážných defektů. Aktivační energie difúze radonu ze vzorku

odráží fyzikální stav studované látky a jeho změny. Na této závislosti se zpravidla vyskytují dvě oblasti teplot, které je možno charakterizovat lineárně. Přechod mezi lineárními úseky odpovídá oblasti tzv. Tammannovy teploty.

Obr. 2. Charakteristické křivky ETA oxidu železitého (po vyžíhání do 1300 °C) značkovaného různými technikami;

 a) bombardováním ionty ²²²Rn (křivka 1; efekt T₁ odráží proces temperace radiačních defektů, efekt T₂ odpovídá uvolňování radonu mechanismem objemové difúze,
 b) včleněním do vzorku mateřských radionuklidů ²²⁸Th a ²²⁴Ra: křivka 2 byla měřena během ohřevu vzorku do 1000 °C, křivka 2' během následujícího chlazení

vzorku konstantní rychlosti, křivka 3 představuje závislost log $(E_{-E_{20}})$ vs. 1/Tsestrojená z experimentálních idajů křivky 2'.

Jestliže v pevné látce dochází během jejího tepelného zpracování k fázovým či strukturním přeměnám, které vedou ke změně povrchu, resp. difúzních vlastností materiálu, projeví se tyto změny ve formě efektů superponovaných na základní průběh křivky ETA. Vlastní proces fázové přeměny vede zpravidla ke zvětšení emanační schopnosti látky, přičemž hodnota emanační schopnosti po ukončení tohoto procesu závisí na strukturních vlastnostech nově vzniklé fáze a jejím povrchu.

Při posuzování průběhu křivek ETA a vyhodnocování naměřených efektů je nutno brát v úvahu charakter materiálu; např. při fázové přeměně látky může dojít k porušení radioaktivní rovnováhy mezi mateřským izotopem ²²⁸Th a inertním plynem ²²⁰Ra, která se však v důsledku relativně krátkého poločasového rozpadu inertního plynu ²²⁰Rn ($T_{1/2} = 55$ s) velmi rychle ustaví. (Během pěti minut je rovnováha prakticky ustavena.)

Rychlost uvolňování inertního plynu lze sledovat buď jako množství plynu uvolněného z pevné látky za jednotku času nebo jako množství plynu zbývajícího ve studovaném vzorku (z něhož se vypočte rychlost uvolňování plynu). Druhý způsob lze použít pouze pro vzorky značkované radioaktivním plynem bez jejich mateřských radionuklidů.

Pro vzorky značkované pomocí mateřských radioizotopů inertního plynu se zpravidla vyjadřuje rychlost uvolňování plynu jako emanační schopnost, definovaná jako množství atomů inertního plynu uvolněného za jednotku času, vztažené na množství atomů inertního plynu vznikajícího za jednotku času, ve vzorku pevné látky. Rychlost uvolňování inertního plynu lze měřit přímo, pro rychlost tvorby plynu ve vzorku lze použít několik způsobů měření. (Např. měřením rychlosti uvolňování inertního plynu z roztoku po rozpuštění známé navážky značkovaného vzorku, která je úměrná rychlosti tvorby plynu, nebo metoda aktivního depozitu, či metoda srovnání se standardem).

4. MĚŘENÍ RADIOAKTIVITY INERTNÍCH PLYNŮ

Měření radioaktivity plynů lze uskutečnit pomocí detektorů radioaktivního záření. Volba detektorů závisí na druhu emitovaného záření a jeho poločasu rozpadu. Používají se Geiger-Müllerovy trubice, ionizační komory průtokové, scintilač-

Obr. 3. Průřez měřicí komůrkou zařízení pro ETA; 1 — scintilátor, 2 — fotonásobič.

ní detektory i polovodičové detektory. Pro měření alfa-radioaktivity ²²⁰Rn se s výhodou používá scintilačních nebo polovodičových detektorů, umístěných v měřicí komůrce, jejíž tvar a objem splňuje optimální podmínky pro detekci plynu při daném průtoku. Průřez měřicí komůrkou je znázorněn na obr. 3. Na obr. 4 je znázorněno zařízení pro emanační termickou analýzu, které umožňuje měření četnosti impulsů radioaktivního záření a jeho numerický či grafický záznam.

Obr. 4. Schéma zařízení pro emanační termickou analýzu 1 — zásobník nosného plynu, 2 — regulátor průtoku plynu, 3 — měřený vzorek, 4 — cela pro umístění měřeného vzorku, 5 — elektrická pec nebo termostat, 6 — regulátor teploty vzorku, 7 — měřící komůrka s detektorem (8) radioaktivního záření, 9 — průtokoměr, 10 — čítač impulsů, popř. měříč četnosti impulsů se zapisovačem. 11 — tiskací zařízení.

Současně toto zařízení umožňuje ohřev, popř. chlazení vzorků v zadaném režimu a rovnoměrné omývání vzorku nosným plynem konstantního průtoku, který unáší uvolněné atomy radioaktivního plynu ze vzorku do měřicí komůrky. Jako nosný plyn lze použít vzduch či jiné plynné médium; plyn je po průchodu měřicí komůrkou odváděn do odtahu digestoře.

Zařízení lze sestavit z jednotlivých dílů pro měření radioaktivity vyráběných v ČSSR, např. TESLOU Liberec. Firma NETZSCH (NSR) vyrábí komerční přístroj [9] pro emanační termickou analýzu jako součást přístrojové řady zařízení pro termickou analýzu, umožňující např. simultánní měření ETA spolu s diferenční termickou analýzou, termogravimetrií, analýzou plynných produktů reakce pomocí hmotového spektrometru, popř. s dilatometrií. Simultánní měření několika parametrů během zpracování vzorku umožňuje přímé porovnání získaných informací.

Z hlediska bezpečnosti práce s radioaktivními látkami je přístroj pro ETA umístěn do dobře vybavené chemické či fyzikální laboratoře s odtahem. Značkování vzorků radioaktivními izotopy se provádí v rukavicové skříni připojené na zvláštní odtah.

5. POUŽITÍ EMANAČNÍ TERMICKÉ ANALÝZY

Emanační termická analýza umožňuje získat jak přímé informace o difúzi inertních plynů v pevných látkách a transportních vlastnostech těchto látek, tak i nepřímé informace o změnách povrchu nebo podmínek pro difúzi inertních plynů v pevných látkách.

Pomocí ETA byly úspěšně studovány procesy, jako stárnutí sraženin, rekrystalizace, slinování, fázové změny 1. i 2. řádu, změny v uspořádání struktury pevných látek a koncentraci jejich defektů a další procesy, kde použití běžných metod termické analýzy neposkytuje zpravidla uspokojivé výsledky. Výhodné je použití ETA pro studium pseudoamorfních nebo amorfních látek (kde není možno použít RTG difrakce), pro sledování změn velikosti povrchu apod. Zvláště je oceňována možnost sledovat kinetiku procesů přímo v dynamických podmínkách experimentu (např. při zvýšené teplotě a ve zvoleném plynném médiu). Možnost sledovat průběh procesu v pevných látkách v podmínkách, které se blíží technologickému režimu důležitých průmyslových reakcí, je oceňována zejména v práškové metalurgii, při kalcinaci a výpalu speciálních keramických materiálů, přípravě materiálů pro jaderná paliva apod.

Pomocí emanační termické analýzy byly zkoumány změny morfologie a struktury vzorků při dehydrataci a tepelných rozkladech různých solí a minerálů, při fázových změnách vzorků kovů i iontových krystalů. ETA vhodně doplňuje svými výsledky běžné metody termické analýzy, které umožňují sledovat průběh studovaných procesů na základě jejich tepelného zabarvení (diferenční termická analýza, resp. kalorimetrie), změn hmotnosti (termogravimetrie) apod.

Pomocí ETA bylo rovněž úspěšně sledováno působení mechanických, chemických, tepelných, radiačních i jiných vlivů na povrch, popř. strukturu pevných látek. Vhodnou volbou způsobu a podmínek pro značkování vzorků (který je určujícím faktorem pro distribuci inertních plynů v objemu, resp. povrchových vrstvách vzorku), je možno z křivek ETA rozlišit procesy, které probíhají v povrchových vrstvách a v celém objemu.

Na základě hodnot difúzních parametrů (difúzního koeficientu D a aktivační energie difúze ΔH) inertních plynů studovaných ve vzorcích pomocí ETA byl charakterizován "defektní" stav struktury pevných látek, mobilita defektů a nedokonalostí struktury látek, vliv příměsí na tuto mobilitu apod. Vzhledem k tomu, že neuspořádanost a "defektní" stav struktury a povrchu pevných látek jsou rozhodující pro jejich reaktivitu, byly na základě měření ETA navrženy postupy pro hodnocení reaktivity pevných látek vůči plynným a kapalným médiím i vůči jiným pevným látkám.

Mimořádná citlivost metody ETA k interakcím povrchu pevných látek s okolím předurčuje její vhodnost především pro sledování počátečních stadií těchto interakcí. Měření rychlosti uvolňování kryptonu ⁸⁵Kr ze značkovaných vzorků látek, zvaných kryptonáty, při jejich interakci s plynným či kapalným prostředím se stalo základem pro stanovení plynných komponent a stop příměsí ve vzduchu a jiných plynných či kapalných médiích.

Emanační termická analýza nachází stále nové aplikace v chemii pevných látek, mineralogii, v různých oblastech materiálového výzkumu a materiálového inženýrství, v analytické chemii, chemii životního prostředí i kosmochemii. Dokladem stále rostoucího zájmu o použití této metody je rostoucí počet publikací o jejích aplikacích [1]. Současný přehled o aplikacích metody v různých oblastech spolu s konkrétním návodem k jejímu použití najde čtenář v souborném článku [1] nebo v monografii autorů Balek, Tölgyessy [10]. V tomto referátu bude uvedeno několik aktuálních příkladů použití emanační termické analýzy při řešení problémů chemie pevných látek a materiálového výzkumu.

5.1. Charakterizace mobility defektů struktury pevných látek

5.1.1. Vzorky značkované pomocí implantace iontů inertního plynu

Při použití iontového bombardování nebo energie zpětného odrazu pro včlenění inertních plynů do vzorků jsou atomy inertního plynu zachyceny na defektech struktury – jednak existujících před vlastním značkováním a jednak vyvolaných působením urychlených iontů plynu na pevnou látku. Během ohřevu značkovaných vzorků tímto způsobem dochází k postupnému uvolňování inertních plynů včleněných do struktury. Nejprve jsou uvolňovány atomy plynu z míst s nejmenší hodnotou aktivační energie (zachycených nejblíže povrchu) a se vzrůstající teplotou dochází postupně k uvolňování atomů plynu z míst, kde je uvolnění spojeno s překonáním větších energetických bariér. Teplotní závislost rychlosti uvolňování inertního plynu je charakterizována výraznými efekty (píky), přičemž z teploty maxim efektů je možno vypočítat energii příslušného procesu odpovědného za uvolnění plynu. Ostrým maximem se projeví temperace bodových defektů, rekrystalizace amorfních fází, tání apod.

Obr. 5. Teplotní závislost rychlosti uvolňování ⁸⁵Kr z monokrystalu korundu během ohřevu rychlostí 20 °C/min v dusíku. Vzorek byl značkován bombardováním ionty ⁸⁵Kr dávkami 5 . 10¹³ Kr cm⁻² (a) a 1,3 . 10¹⁴ Kr cm⁻² (b). U jednotlivých křivek je uvedeno procento aktivity ⁸⁵Kr, který ve vzorku zůstal po ohřevu do 1000 °C.

Silikáty č. 2, 1984

Na obr. 5 jsou ukázány teplotní závislosti [11] uvolňování ⁸⁵Kr z krystalu korundu během jeho ohřevu v dusíku rychlostí 20 °C/min. První pík v teplotním intervalu 100-375 °C přísluší atomům plynu zachycených v blízkosti povrchu, pík v intervalu 375-550 °C je zřejmě podmíněn temperací bodových defektů vyvolaných ve struktuře korundu působením iontů kryptonu. Tento efekt se na křivkách vyskytuje i při vyšších dávkách bombardujících iontů (obr. 5b), ale jeho intenzita klesá se vzrůstající energií iontů [12]. Proces, který řídí uvolňování inertního plynu v oblasti 375-550 °C, odpovídá aktivační energii $\Delta H = 228,2$ kJ mol⁻¹. Pro výpočet této hodnoty byl použit vztah, který odvodili Kelly a Matzke [5]. Vzhledem k tomu, že tato hodnota je blízká hodnotě aktivační energie pro pohyb bodových defektů v korundu, byl vysloven předpoklad o souvislosti tohoto procesu s temperací bodových defektů vyvolaných iontovým bombardováním. Pro platnost tohoto předpokladu svědčí i výsledky experimentů [13, 14] s temperací krystalů korundu ozářených rychlými neutrony. Restaurace poškozené mřížky korundu začíná při teplotách odpovídajících aktivační energii 205-243 kJ mol⁻¹.

Proces temperace bodových defektů v krystalické mřížce byl indikován pomocí ETA i na vzorcích jiných materiálů [15–17], např. KCl, KBr, Fe_2O_3 , SiO_2 . TiO_2 .

Další pík na křivkách ETA ozářeného korundu (obr. 5b) při teplotě 700–800 $^{\circ}$ C odpovídá temperaci strukturních změn (rekrystalizaci) vyvolaných iontovým bombardováním. Tento efekt byl pozorován u řady anizotropních materiálů [18–20], jako Al₂O₃, Fe₂O₃, TiO₂, U₃O₈, Ge, Si, GaAs. Byl však pozorován pouze při koncentracích, resp. dávkách bombardujících iontů, které převyšovaly 10¹⁴ atomů cm⁻². Přímý důkaz o charakteru tohoto procesu — rekrystalizaci amorfizované vrstvy korundu vlivem bombardování podali Matzke a Whitton [21] na základě mikroskopických a RTG pozorování.

Efekt na obr. 5a v oblasti teplot 800–900 °C odpovídá uvolnění ⁸⁵Kr mechanismem "normální" difúze. Tento mechanismus se uplatňuje u iontových krystalů při teplotách $0,4-0,5T_m$ (T_m – teplota tání látky v absolutní Kelvinově stupnici).

Uvedeným způsobem je možno obecně charakterizovat mobilitu defektů struktury pevných látek [22]. Na obr. 6 jsou znázorněny teplotní závislosti rychlosti uvolňování kryptonu ⁸⁵Kr z iontových krystalů KCl, KBr a KI značkovaných iontovým bombardováním ve vysokofrekvenčním výboji TESLA [11].

Obr. 6. Teplotní závislosti rychlosti uvolňování ⁸⁵Kr z monokrystalů KCl, KBr a Kí během ohřevu rychlostí 10 °C/min v dusíku. Vzorky byly značkovány iontovým bombardováním ve vysokofrekvenčním výboji vyvolaném transformátorem TESLA.

Řada autorů sledovala vliv různých faktorů (jako příměsí, radiačních dávek a koncentrace včleněného inertního plynu apod.) na průběh teplotních závislostí uvolňování inertního plynu z pevných látek. Vliv příměsí na mobilitu inertních plynů v iontových krystalech závisí na mechanismu difúze inertního plynu. Matzke [23] studoval uvolňování xenonu z ThO₂ a ThO₂ s příměsí 0,1 mol % Nb₂O₅ (s cílem zvýšení koncentrace kationtových vakancí) a ThO₂ s 0,1 a 0,5 mol % Y₂O₃ (s cílem snížení koncentrace kationtových vakancí). Felix a Müller [24] dokázali, že uvolňování argonu z KBr po ozáření neutrony je ovlivněno přítomností iontů Sr²⁺ v koncentraci 0,005 a 0,05 mol %. Pozorovaný vliv příměsí na mobilitu inertních plynů dobře souhlasí s teorií Norgetta a Lidiarda [25], která umožnuje přímou korelaci mezi difúzním koeficientem plynu D a koncentrací definovaných mřížkových poruch

$$D \approx 1/c_{\text{kat. vakance.}}$$
 (8)

Je známo, že atomy inertníh• plynu se zachycují na určitých defektech (shlucích vakancí, dislokačních smyčkách, přirozených nedokonalostech mřížky i bublinách plynu), s nimiž se při difúzi pevnou látkou setkají. Záchyt atomů inertního plynu může být v látce způsoben i radiačními vlivy na látku, které se uplatňují např. při iontovém bombardování nebo ozařování vzorků neutrony v reaktoru. Matzke [26] popsal vliv bombardování krystalů KCl různými ionty (dusíku, CO, Cl₂ a Xe) na teplotní závislost uvolňování xenonu. Felix [27, 28] experimentálně dokázal, že pohyblivost argonu v KBr ozářeném neutrony klesá s rostoucí dávkou.

Obr. 7. Teplotní závislost rychlosti uvolňování Xe z monokrystalu wolframu značkovaného iontovým bombardováním (energie iontů 400 eV) v různých krystalografických směrech.

Silikáty č. 2, 1984

Podobná závislost koeficientu difúze inertních plynů na neutronové dávce byla nalezena [29] i pro jiné iontové krystaly, jako KI, RbI, RbCl apod. Byla zjištěna též závislost rychlosti uvolňování inertního plynu z monokrystalů na krystalografickém směru včlenění iontů plynu. Ong a Elleman [30] zjistili, že krystaly CaF₂, do nichž byl Xe včleněn v rovinách rovnoběžných se směrem $\langle 111 \rangle$ a $\langle 001 \rangle$, jsou charakterizovány odlišnými teplotními závislostmi uvolňování xenonu. Aktivační energie difúze xenonu v krystalech CaF₂ ve směru $\langle 111 \rangle$ činí 337 kJ mol⁻¹ a ve směru $\langle 001 \rangle$ 289 kJ mol⁻¹. Různé hodnoty aktivační energie difúze xenonu byly nalezeny [31] pro krystaly SiO₂ značkované ve směru rovnoběžném a kolmém k ose c. Teplotní závislost rychlosti uvolňování atomů inertního plynu v krystalové mřížce.

Na obr. 7 jsou znázorněny teplotní závislosti rychlosti uvolňování xenonu ze vzorků monokrystalu W po jejich bombardování ionty Xe o energii 400 eV v různých krystalografických směrech [32].

Teplotní závislost rychlosti uvolňování inertního plynu může záviset i na druhu použitého plynu. Na obr. 8 jsou uvedeny tyto závislosti pro uvolňování různých plynů (Ne, Ar, Kr a Xe) z krystalu wolframu [33].

Obr. 9. Teplotní závislosti emanační schopnosti kalcinovaných prášků mědi (křivka 1), železa (křivka 2) a molybdenu (křivka 3). Teplota je vyjádřena jako poměr T/T_m aktuální teploty T experimentu vztažené k teplotě T_m tání kovu v absolutní Kelvinově stupnici.

Obr. 8. Teplotní závislosti rychlosti uvolňování různých inertních plynů (Ne, Ar, Kr a Xe) z monokrystalů wolframu značkovaných iontovým bombardováním dávkou 5. 10¹² iontů/cm².

Aplikace emanační termické analýzy při charakterizaci mobility defektů struktury pevných látek vyústila v novou metodu studia pevných látek, pro kterou je navrhován název [34] termodifúzní spektroskopie defektů struktury.

5.1.2. Vzorky značkované včleněním mateřských nuklidů inertního plynu

Při použití způsobu implantace iontů ke značkování vzorků látek je převážná část inertního plynu zachycena na radiačně indukovaných defektech, jejichž koncentrace závisí na použité dávce a jejichž distribuce závisí na energii implantovaných iontů. Proto, má-li být studována mobilita přirozených defektů pevných látek (jako hranice zrn, dislokační čáry a smyčky, shluky vakancí apod.), je výhodnější použít jiných způsobů značkování vzorků, např. způsobu difúze plynu do látky za zvýšeného tlaku a teploty nebo včlenění mateřských radioizotopů inertního plynu jako stálého zdroje plynu. Křivky ETA takto značkovaných vzorků jsou schopny daleko citlivěji odrážet vliv přirozených defektů struktury. Vysvěthuje se to mj. skutečností, že difúzní vzdálenost mezi dvěma sousedními defekty vyvolanými iontovým bombardováním krystalu pevné látky je daleko menší (řádově 10 nm) než průměrná vzdálenost mezi dvěma přirozeně existujícími defekty, např. hranicemi zrn — (řádově 10^3 nm). Při temperaci defektů struktury ve vzorku podrobeném iontové implantaci dochází ke "zkratovému" uvolnění včleněného inertního plynu po radiačních defektech.

Na obr. 9 jsou uvedeny křivky ETA kalcinovaných prášků vzorků [35] mědi, železa a molybdenu. Vzorky byly připraveny redukcí oxidů obsahujících stopové množství mateřského radioizotopu plynu ²²⁸Th. Vzhledem k tomu, že vzorky byly před měřením kalcinovány, došlo k temperaci většiny přirozených defektů jejich struktury. Křivky ETA charakterizují tedy mobilitu struktury vzorků odpovídající teplotám "normální" difúze. Z obr. 9 vyplývá, že ke zvýšení mobility radonu ve struktuře dochází u vzorku mědi v oblasti teplot $0.37-0.42 T_m$, u vzorku železa v oblasti $0.28-0.30 T_m$ a u vzorku molybdenu v oblasti $0.32-0.42 T_m$ (T_m — teplota tání kovu v absolutní stupnici Kelvina).

Mobilita radonu byla rovněž sledována na kalcinovaných vzorcích keramických prášků. Na obr. 10 jsou znázorněny křivky ETA vzorků ZnO a ZnO s příměsí 0,5 at % Li₂O či Ga₂O₃. Vzrůst emanační schopnosti způsobený vzrůstem mobility radonu jako příměsi v krystalové struktuře ZnO začíná ve vzorku čistého ZnO při teplotě kolem 800 °C, zatímco u vzorku ZnO dopovaného ionty Li⁺ (křivka *I*) je tento stav dosažen při značně nižších teplotách a vzrůst emanační schopnosti s teplotou je daleko intenzívnější [36]. Je známo, že přítomnost iontů Li⁺ ve struktuře ZnO vede ke vzniku "defektní" struktury oxidu charakterizované zvýšenou koncentrací aniontových vakancí a nadbytkem atomů Zn v intersticiálních polohách. Přítomnost iontů Ga³⁺ v ZnO (křivka *3*) způsobuje opačný efekt.

Pomocí ETA byl rovněž studován vliv příměsí [37, 38] (K⁺, Zn²⁺ a Al³⁺) na mobilitu radonu v mřížce kalcinovaného rutilu.

Použití ETA při charakterizaci neuspořádaného stavu struktury iontových krystalů vyvolaného nestechiometrií v důsledku vlivu různého parciálního tlaku kyslíku v atmosféře okolí ohřevu vzorku je ukázáno na obr. 11. Závislost log $(E - E_{20})$ vs. 1/T odráží neuspořádanost struktury TiO₂ při chlazení v N₂, popř. ve vzduchu. Při zahřívání, resp. chlazení vzorku TiO₂ v atmosféře dusíku, popř. vzduchu, dochází s různou intenzitou ke ztrátě atomů kyslíku a vzniku aniontových vakancí. Vzrůst koncentrace aniontových vakancí v nestechiometrickém TiO_{2-x} je indi-

Obr. 10. Teplotní závislosti rychlosti uvolňování radonu ze vzorku ZnO (křivka 1) a ZnO s příměsí 0,5 at. % Li₂O (křivka 2) a ZnO s příměsí 0,5 at. % Ga₂O₃ (křivka 3).

Obr. 11. Závislosti log (E—E₂₀) versus 1/T získané z křivek ETA vzorků TiO_{2-x} při chlazení po předchozím ohřevu v dusíku (křivka 1) a ve vzduchu (křivka 2).

600

t(°C)

800 700

1000

kován na křivkách na obr. 11 v oblasti teplot 600-850 °C poklesem aktivační energie difúze radonu z hodnoty 213,5 kJ mol⁻¹ na 50,2 kJ mol⁻¹.

Pomocí ETA byla rovněž sledována temperace defektů ZnO vyvolaných mletím nebo ozářením ionty kryptonu [39]. Na obr. 12 jsou znázorněny křivky ETA měřené během ohřevu mletého (a) a radiačně ozářeného (b) vzorku ZnO. Křivky 1 charakterizují stav látky bezprostředně po vyvolání defektů, křivky 2 charakterizují stav látky po temperaci defektů ohřevem do teplot 1000, popř. 1100 °C. Analogicky byl studován vliv mletí a mechanického namáhání na vzorky kovů [1].

Obr. 12a

Obr. 12. Křivky ETA vzorků ZnO (objemově značkovaných pomocí ²²⁸Th) a) po mletí v kulovém mlýně, b) po ozáření ionty kryptonu o energii 1 keV. Křivky 1 byly měřeny bezprostředně po mletí, popř. iontovém bombardování; křivky 2 byly měřeny během opakovaného ohřevu.

5.2. Charakterizace "aktivního" stavu povrchu a struktury materiálů

Jak vyplývá z teoretických základů emanační termické analýzy [1], rychlost uvolňování radonu či jiného inertního plynu z pevné látky může být použita k charakterizaci morfologie povrchu a struktury vzorků látek. Vzhledem k tomu, že rozdíly v morfologii povrchu a struktuře disperzních látek jsou způsobeny především vlivem přirozených defektů a nedokonalostí povrchu a struktury, lze doporučit provést značkování vzorků určených k charakterizaci jejich aktivního stavu, s použitím mateřských radioizotopů plynu (včlenění do objemu vzorků, resp. povrchových vrstev). Tento způsob byl použit k charakterizaci řady keramických prášků.

5.2.1. Aktivní stav povrchu

Měření ETA se zpravidla provádí při laboratorní teplotě nebo při teplotách vyšších, a to v režimu izotermálním nebo v neizotermálním.

5.2.1.1. Měření ETA při laboratorní teplotě

Bussière a jeho spolupracovníci [40, 41], Žabrova a Šibanova [42] a další autoři [43] charakterizovali aktivitu povrchu pomocí měření emanační schopnosti při laboratorní teplotě. Studovali vzorky NiO, γ -MnO₂, MgO, ThO₂, ZrO₂ a další. Vycházeli z předpokladu, že emanační schopnost E_{20} , měřená při laboratorní teplotě u studovaných anorganických látek iontového charakteru, je dána v podstatě pouze podílem $E_{\rm R}$ — odpovídajícím zpětně odraženým atomům radonu. Příspěvek difúze inertního plynu byl při laboratorní teplotě považován za zanedbatelný. Za tohoto předpokladu byl sledován vztah mezi hodnotami E_{20} a velikostí měrného povrchu $S_{\rm ads}$, stanovené adsorpčními metodami, např. BET. Byly uvažovány práškové vzorky látek, jejichž velikost zrna byla značně větší než dosah zpětně odražených atomů radonu. Pro vzorky látek, jejichž velikost zrna je srovnatelná nebo menší než dosah zpětně odražených atomů radonu, není teoretické opodstatnění předpokládat platnost lineárního vztahu mezi E_{20} a S_{ads} (viz vztah (3)). Přesto však byla lineární závislost mezi E_{20} a S_{ads} nalezena [41, 42] pro vzorky prášků s měrným povrchem v rozmezí od 3 do 300 m² g⁻¹. Jednalo se o vzorky MgO, ZrO₂, NiO, MnO₂. Lineární závislost však nebyla nalezena [43–45] pro práškové vzorky s menším měiným povrchem, např. pro vzorky ThO₂, Ag₂O nebo Fe₂O₃ (měrný povrch těchto vzorků se pohyboval v rozmezí 0,1 až 10 m² g⁻¹).

S cílem odstranit nesrovnalosti byl navržen nový model [46] chování radonu v disperzním vzorku materiálu, který předpokládá, že emanační schopnost E_{20} je tvořena nejen částí $E_{\rm R}$, ale i částí E_p , která odpovídá difúzi radonu v prostoru mezi zrny a v otevřených pórech naplněných vzduchem. Jestliže $E_{\rm R}$ na teplotě nezávisí, E_p je teplotně závislé (viz vztah (4)). S použitím nového modelu je možno hodnotit aktivní stav povrchu disperzních látek objektivně a existující nesrovnalosti mezi výsledky různých autorů lze vysvětlit vlivem morfologie vzorků. Parametr E_{20} odráží nejen velikost a stav povrchu jednotlivých zrn práškového materiálu, ale i agregátní stav (kompaktnost) vzorku.

Použití ETA k charakterizaci aktivního stavu povrchu práškových materiálů lze dokumentovat na výsledcích měření UO₂, ThO₂, Fe₂O₃, Al₂O₃ a dalších. Byla shledána dobrá korelace mezi experimentálně zjištěnými hodnotami E_{20} a měrným povrchem vzorků, popř. výsledky katalytické aktivity či rozpustnosti v kyselinách (pro Fe₂O₃). Při charakterizaci vlastností tepelně či mechanicky zpracovaných prášků, u nichž došlo k určitému stupni zhutnění, je možno rovněž použít hodnot E_{20} . K hodnocení stavu kalcinovaného materiálu je proto výhodnější použít hodnot emanační schopnosti měřené při vyšší teplotě, E_T (kde $T < 0.5T_m$), což umožňuje lépe rozlišit rozdíly v morfologii vzorků díky difúzi po hranicích zrn.

5.2.1.2. Měření ETA při zvýšených teplotách

Pro emanační schopnost disperzní látky, ∇ níž nedochází ke strukturním či chemickým přeměnám, lze předpokládat platnost vztahu (7). Je-li třeba charakterizovat teplotní závislost emanační schopnosti materiálu, odpovídající různým mechanismům uvolňování radonu, používá se zpravidla vztahu ($E - E_{20}$) vs. teplota, který má exponenciální charakter, nebo jeho linearizovaná forma log ($E - E_{20}$) vs. 1/T.

Hodnoty E_T odrážejí vedle velikosti a stavu povrchu při dané teplotě i účinný povrch pro difúzi inertního plynu z pevné látky (označený S_3 ve vztahu (5)).

Lze předpokládat, že hodnoty E keramických prášků odrážejí skutečný stav povrchu vzorků při zvolené teplotě a jeho aktivitu pro další zpracování. Tato informace je objektivnější než např. velikost měrného povrchu získaná adsorpčním měření při teplotě kapalného dusíku, neboť stav při této teplotě zdaleka nemusí odpovídat stavu povrchu při laboratorní teplotě. Metoda ETA umožňuje charakterizovat i stav povrchu při teplotách vyšších, které přicházejí v úvahu při reakcích v pevných látkách.

5.2.2. Aktivní stav struktury

Aktivní stav struktury materiálu je určován koncentrací neuspořádaností (defektů) struktury látky, popř. koncentrací příměsí. Jak bylo ukázáno dříve, emanační schopnost látky, měřená při vyšších teplotách, odráží tento neuspořádaný stav struktury. Pro kvantitativní hodnocení aktivity struktury materiálu lze použít hodnot aktivační energie difúze radonu v teplotním intervalu, který odpovídá difúzi příměsí, resp. difúzi po hranicích zrn. Na obr. 13 jsou znázorněny závislosti log ($E - E_{20}$) vs. 1/T pro vzorky oxidu železitého měřené během chlazení

rychlostí 2,5 °C/min po předchozím ohřevu do různé teploty. Vzorky oxidu železitého byly připraveny rozkladem gama-FeOOH a ohřevem do teploty 350, 410 a 530 °C. Při těchto teplotách, nižších než $0.5T_{\rm m}$ oxidu železitého jsou rozdíly v aktivační energii difúze radonu podmíněny především nedokonalostmi struktury (dislokacemi, hranicemi zrn apod.). Hodnoty aktivační energie $\Delta H = 25$, 35 a 55 kJ mol⁻¹ charakterizují aktivní stav struktury vzorků žíhaných do teplot 350, 410 a 530 °C. Pro výpočet hodnot ΔH byl použit vztah (9) s využitím experimentálních hodn**e**t obr. 13.

$$\begin{bmatrix} 0.2 & 5 \\ -... & -.. \\ -...$$

$$\Delta H = 38,38 \ [\log E_2 - \log E_1]/[(1/T_2) - (1/T_1)]. \tag{9}$$

Obr. 13. Závislosti log $(E - E_{20})$ vs. 1/T pro vzorky oxidu železitého připravené rozkladem γ -FeOOH a ohřevem do teplot 350 °C (křivka 1), 410 °C (křivka 2) a 500 °C (křivka 3).

Na obr. 14 jsou znázorněny závislosti log $(E - E_{20})$ vs. 1/T vzorků oxidu železitého α -Fe₂O₃ připravené [17] rozkladem Mohrovy soli, síranu železnatého, štavelanu železnatého a zásaditého uhličitanu železnatého. Vzorky byly žíhány

Obr. 14. Závislosti log (E — E₂₀) vs. 1/T pro vzorky oxidu železitého připravené z různých solí železa ohřevem do teploty 1100 °C na vzduchu; křivka 1' — rozkladem zásaditého uhličitanu, křivka 2' — rozkladem síranu, křivka 3' — rozkladem Mohrovy soli, křivka 4' — rozkladem štavelanu železnatého.

Silikáty č. 2, 1984

do teploty 1100 °C a chlazeny rychlostí 5 °C/min. Hodnoty aktivační energie difúze radonu v jednotlivých vzorcích vypočtené z křivek na obr. 14 v teplotním intervalu 600-750 °C se liší ($\Delta H = 46,06$; 79,6; 117,2 a 125,6 kJ mol⁻¹ pro vzorky oxidu připravené z Mohrovy soli, síranu železnatého, uhličitanu a šťavelanu železnatého.) Tyto hodnoty charakterizují aktivní stav struktury vzorku a jeho závislost na defektech struktury výchozích solí. Nejnižší hodnota ΔH odpovídá oxidu připravenému rozkladem Mohrovy soli, nejvyšší hodnota odpovídá oxidu připravenému rozkladem šťavelanu železnatého. Tyto závčry velmi dobře korelují s výsledky hodnocení katalytické aktivity uvedených vzorků [17], hodnocení reaktivity Fe₂O₃ ve směsi s ZnO [47] a hodnocením jeho rozpustnosti v HCl.

Rozdílné chování vzorků oxidu železitého, které byly shledány identické podle výsledků chemické a rtg analýzy, bylo popsáno již Hedvalem [48] a vysvětleno jako vliv chemické historie na reaktivitu. Podle tohoto klasika chemie pevných látek,,struktura výchozí soli zůstává ve struktuře oxidu železitého při jeho ohřevu tak dlouho, dokud pohyblivost krystalické mřížky nevzroste natolik, že je dosaženo rovnovážného stavu mřížky".

Použití ETA umožnilo kvantitativně posoudit vliv biegrafických defektů struktury na aktivní stav látky a stanovit oblast teplot, kdy je dosaženo "rovnovážného" stavu mřížky. Na obr. 14 je tato oblast teplot τ vymezena změnou směrnic přímkových úseků závislostí log ($E - E_{20}$) vs. 1/T; je nazývána oblast Tammannovy teploty. Při této teplotě lze v pevné látce předpokládat změnu mechanismu difúze radonu. Při teplotách $T < \tau$ odráži difúze radonu nerovnovážný stav mřížky, kde se na difúzi radonu kromě rovnovážných defektů podílejí nerovnovážné defekty struktury, jejichž koncentrace závisí na chemické a tepelné historii vzorku. V oblasti teplot $T > \tau$ aktivační energie ΔH difúze radonu popisuje rovnovážný stav mřížky: Pro všechny sledované vzorky oxidu byla nalezena stejná hodnota aktivační energie difúze radonu $\Delta H = 126$ kJ mol⁻¹.

Pomocí hodnot ΔH byly rovněž charakterizovány rozdíly v neuspořádaném stavu vzorků UO₂ způsobeném různými podmínkami přípravy vzorků [49] a rozdíly v neuspořádaném stavu vzorků TiO₂ způsobeném přítomností různých příměsí [37, 38].

5.3. Kontinuální sledování změn povrchu práškových vzorků

Jak vyplývá ze vztahů [4]—[6], hodnoty emanační schopnosti měřené při vyšších teplotách mohou kvantitativně indikovat změny povrchu, odpovídajícího vnitřnímu povrchu materiálu. V závislosti na teplotním intervalu měření se na hodnotách emanační schopnosti projeví dále i velikost povrchu odpovídající účinnému průřezu difúzních cest ze vzorku. Při teplotách nižších než 0,3 až 0,5 T_m $(T_m = \text{teplota tání látky v absolutní Kelvinově stupnici) lze u vzorků keramických$ $materiálů zanedbat difúzní podíl emanační schopnosti <math>E_S$ a povrch S_3 (viz vztah (5)) není nutno uvažovat. Hodnoty E_T odrážejí změny především vnitřního povrchu disperzního materiálu daného součtem povrchů jednotlivých zrn (vnější povrch vzorku S_1 je oproti hodnotám vnitřního povrchu S_2 zanedbatelný).

Na obr. 15 je uvedena křivka ETA prášků ThO₂ během ohřevu do teploty 1100 °C na vzduchu. Vzrůst emanační schopnosti v intervalu od 25 do 660 °C je připisován vzrůstu rychlosti uvolňování radonu ze vzorku v důsledku difúze z povrchových vrstev a prostoru mezi zrny a v důsledku postupného odžíhávání nepravidelností a defektů mřížky. Během tohoto ohřevu do teploty 560 °C se změní velikost měrného povrchu vzorku z 18 na 15 m² g⁻¹. Pokles emanační schopnosti v oblasti

650-900 °C odpovídá výraznému poklesu vnitřního povrchu a vyhlazení vnějšího povrchu zrn, jak to dokumentují mikrofotografie na obr. 16. Pokles hodnot měrného povrchu z 15 m² g⁻¹ (vzorek po ohřevu do 600 °C) na 4,2 m² g⁻¹ (vzorek po ohřevu do 735 °C) a dále na 2,4 m² g⁻¹ (vzorek po ohřevu do 1100 °C) je v dobrém souladu s výsledky ETA. Exponenciální vzrůst emanační schopnosti při teplotách vyšších než 900 °C na křivce ETA je způsoben difúzí radonu v krystalu. Zlom na křivce na obr. 15 indikuje počáteční fázi slinování práškového ThO₂.

Obr. 15. Křivka ETA vzorku práškového ThO₂ měřen**á** během ohřevu na vzduchu rychlostí 10 °C/min.

Obr. 16. Mikrofotografie povrchu vzorku práškového ThO₂ po ohřevu po dobu 5 minut na vzduchu při teplotě 705 °C (a) a 825 °C (b).

5.3.1. Studium kinetik**y** změn povrchu v izotermálních podmínkách

Změny povrchu a morfologie vzorku práškového materiálu nacházejí svůj odraz v hodnotách E_{20} měřených při laboratorní teplotě. Na obr. 17 jsou tyto hodnoty vyneseny v závislosti na teplotě a době žíhání. Při analýze hodnot E_{20} ve vztahu s měrným povrchem S_{ads} nebyla však v celém rozsahu hodnot měrného povrchu

Obr. 17. Hodnoty emanační schopnosti E_{20} měřené při laboratorní teplotě vzorků ThO₂ žíhaných po dobu 5–60 minut při teplotách 705–825 °C.

nalezena lineární závislost [8]. Lineární závislost byla zjištěna pro hodnoty měrného povrchu v oblastech $2,4-5,5 \text{ m}^2 \text{ g}^{-1}$ a $14-18 \text{ m}^2 \text{ g}^{-1}$. Proto nelze hodnot E_{20} použít jednoznačně k hodnocení změn povrchu práškového materiálu Th Θ_2 během ohřevu v celém rozsahu hodnot povrchu. Balek [8] navrhl způsob studia kinetiky změn povrchu práškového materiálu na základě hodnot E_T a hodnot E_{20} . Z těchto hodnot se vypočte hodnota

$$\Delta E_p = E_T - E_{20}. \tag{10}$$

Hodnoty ΔE_p lze použít k charakterizaci změn vnitřního měrného povrchu, ve smyslu vztahu (4). Na obr. 18 jsou uvedeny závislosti E na čase měřené během ohřevu vzorků ThO₂ při teplotách 705, 735, 780 a 825 °C a závislosti log ΔE_p na log t. Závislost na obr. 18b vyhovuje vztahu log $E_p = n \log t + K_2$, tedy s využitím vztahu (4)

$$\Delta E_p \sim S_2 = \text{konst. } t^n, \tag{11}$$

kde n = 0,64. Parametr S_2 popisuje efektivní velikost povrchu vzorku. Charakter lineárních závislostí na obr. 18b umožnuje konstatovat, že změny povrchu práškového ThO₂ v oblasti teplot 705-825 °C jsou řízeny stejným mechanismem. Vzhledem k tomu, že tato teplotní oblast odpovídá hodnotám $0,29-0,32T_m$, předpokládá se mechanismus difúze po hranicích zrn.

Navržený způsob pro studium kinetiky změn povrchu během izotermálního ohřevu lze použít i pro jiné práškové materiály. Výhoda tohoto způsobu spočívá především v možnosti kontinuálně sledovat změny povrchu vzorků v podmínkách vysoké teploty, bez nutnosti ohřev přerušovat a vzorek ochlazovat, což je nutné

Obr. 18. a) Křivky ETA vzorků ThO₂ měřené izotermálně při teplotách 705, 735, 780 a 825 °C na vzduchu;

b) závislosti log ($E - E_{20}$) vs. log času získané pomocí hodnot E na obr. 18a a hodnot E_{20} na obr. 17.

při měření povrchu pomocí adsorpčních metod. Přerušení ohřevu a ochlazování vzorku může navíc vést k systematickým chybám a k nevratným změnám ve vzorku.

5.3.2. Studium kinetiky změn povrchu vzorků v podmínkách neizotermálního ohřevu

Při neizotermálním ohřevu disperzního vzorku se pokles velikosti povrchu projeví, jak bylo ukázáno na obr. 15, poklesem emanační schopnosti. Na základě modelu navrženého Křížem a Balkem [50] je možno emanační schopnost disperzního vzorku pevné látky, v němž dochází ke změnám povrchu (slinování), popsat vztahem

$$E = K_s S_0 T^n r_0^m \exp\left[-\frac{5K_p}{2\beta} \cdot \frac{RT^2}{Q+2RT} \exp\left(-Q/RT\right)\right], \qquad (12)$$

kde E – emanační schopnost vzorku, K_s – konstanta charakterizující použitý radioaktivní plyn, dolet atomů plynu v pevné fázi, S_0 – velikost měrného povrchu před začátkem ohřevu, T – teplota (n = 1/2), r_0 – počáteční poloměr pórů (m = 3/2), K_p – konstanta charakterizující proces slinování, β – rychlost ohřevu, R – molární plynová konstanta, Q – zdánlivá aktivační energie procesu slinování.

Ze vztahu (12) vyplývá, že měřením průběhu teplotní závislosti emanační schopnosti vzorku při různých rychlostech ohřevu je možno získat základní kinetické charakteristiky procesu slinování. Na obr. 19 jsou znázorněny křivky ETA vzorků oxidu železitého (α -Fe₂ \bullet_3 , Bayferrox, BAYER, NSR) měřené při ohřevu do 1300 °C na vzduchu různou rychlostí. V souladu s teoretickým předpokladem dochází k posunu teploty zlomu na křivkách směrem k vyšším teplotám při vzrůstající rychlosti ohřevu. Posun je výraznější pro větší rychlosti ohřevu. Pro vyšší rychlosti ohřevu se současně na křivkách projevuje další efekt, způsobený pravděpodobně vyhojování mřížkových defektů. Při relativně menších rychlostech ohřevu toto vyhojování nastává plynule.

S využitím vztahu (12) byly pro studovaný materiál stanoveny hodnoty kon-

Obr. 19. Křivky ETA vzorku práškového oxidu železitého α-Fe₂O₃ (Bayferrox, Bayer, NSR) měřené během ohřevu na vzduchu rychlostmi 2,5 °C/min (křivka 1), 5 °C/min (křivka 2), 10 °C/min (křivka 3) a 16 °C/min (křivka 4).

Obr. 20. Křivky ETA oxidu železitého α -Fe₂O₃ (typ 1360 WF, Bayer, NSR) měřené během ohřevu na vzduchu rychlostí 5 °C/min. Křivka 1 — vzorek ve formě tablety, křivka 2 — vzorek ve formě prášku, křivka 1' — dilato metrické měření vzorku ve formě tablety.

stant $K_{\mathcal{P}}$ a Q,které charakterizují proces slinování [51]. K výpočtu bylo použito upraveného vztahu

$$\ln T_{\max} + \varphi \frac{1}{T_{\max}} = \psi - \ln \beta, \qquad (13)$$

kde T_{\max} – teplota zlomu na křivce, $\varphi = Q/2R$, $\psi = \ln [10K_pQ/R 3^{1/2}]$, β – rychlost ohřevu ve stupních K/min.

Hodnoty $K_p = 3,41 \cdot 10^4$, $Q = 214,5 \text{ kJ mol}^{-1} (51,2 \text{ kcal mol}^{-1})$.

5.3.3. Hodnocení slinovatelnosti sypaných a lisovaných keramických prášků

Na obr. 20 jsou znázorněny křivky ETA vzorku oxidu železitého ve formě tablety (křivka 1) a prášku (křivka 2) při ohřevu na vzduchu konstantní rychlostí 5 °C/min. Pro vzorek ve formě tablety (tlak 375 MPa/cm²) je současně uvedena křivka dilatometrická (křivka 1'). Ze srovnání křivek ETA a dilatometrického měření na lisované tabletě vzorku vyplývá, že teplota zlomu na křivce ETA souhlasí s teplotou odpovídající největší rychlosti lineárního smrštění vzorku. To dokumentuje správnost hodnocení slinovatelnosti pomocí ETA. Pomocí této metody je možno sledovat průběh slinování nejen vzorků ve formě tabletek, ale i volně sypaných prášků, kdy metody dilatometrické není možno použít. Křivky 1 a 2 na obr. 20 ukazují rozdíl mezi chováním práškového a lisovaného vzorku téhož materiálu. Posun mezi teplotami zlomu na křivkách ETA je u vzorku tablety o 155 °C směrem k nižším teplotám.

Metoda ETA umožňuje současně ocenit stupeň kompaktizace vzorků na základě intenzity poklesu emanační schopnosti v důsledku slinování. Kvantitativně je možno tuto kompaktizaci [52] rozlišit pomocí parametru $(E_{\max} - E_{\min})/E_{\max}$, kde E_{\max} je hodnota relativní emanační schopnosti při teplotě zlomu, E_{\min} je hodnota E při teplotě minima. U studovaného vzorku oxidu železitého je hodnota tohoto parametru pro vzorek ve formě prášku 43 % hodnoty stanovené pro vzorek ve formě tablety. Rozdíly ve stupni kompaktizace dosažené slinováním vzorku oxidu železitého ve formě prášku a tablety byly potvrzeny studiem mikrostruktury slinutých vzorků.

Z uvedených výsledků vyplývá vhodnost emanační termické analýzy pro hodnocení slinovatelnosti keramických prášků i výlisků, a to přímo v podmínkách ohřevu v požadované atmosféře a kontinuálně, tj. bez nutnosti přerušení ohřevu vzorku a jeho ochlazení.

Na základě výsledků ETA je možno objektivizovat charakterizaci aktivního povrchu disperzních materiálů běžnými metodami. Použití emanační schopnosti jako parametru k hodnocení slinovatelnosti práškových materiálů je vhodné zejména v oblasti teplot, kdy dochází ke změnám kvality povrchu vzorků a teplot a kdy dochází ke změnám textury a mikrostruktury vzorků v důsledku zhutňování. Metoda našla použití při studiu kinetiky slinování různých keramických prášků a vlivu různých faktorů na tento proces [51, 52].

5.4. Změny morfologie a struktury gelových materiálů

Použití ETA k charakterizaci a popisu morfologických změn látek v disperzním stavu je zvláště výhodné pro látky gelového charakteru. Takto byly například kontinuálně sledovány změny morfologie vzorků diurananů amonných během jejich sušení, během ohřevu v redukční atmosféře [53] apod. Na obr. 21 je znázorněna křivka ETA silikagelu, typ PORASIL A (Waters, USA), během ohřevu na vzduchu [54]. Současně jsou uvedeny hodnoty měrného povrchu a celkového objemu pórů vzorků žíhaných do vybraných teplot s izotermální výdrží 4 hodiny. Efekt na křivce 1 v oblasti 25–200 °C odpovídá desorpci vody ze vzorku. Růst emanační schopnosti v oblasti 200–900 °C je podmíněn difúzí radonu v pórech. Změna intenzity růstu E do 500 °C výše indikuje otevírání mikropórů, jak se uvádí v dostupné

Obr. 21. Výsledky ETA (křivka 1) a hodnoty měrného povrchu (křivka 2) a celkové porozity (křivka 3) vzorků Silikagelu (typ Porasil A Watson, USA) žíhaných na vzduchu. Hodnoty na křivkách 2 a 3 odpovídají vlastnostem vzorků žíhaných do vybraných teplot s výdrží 4 hodiny, křivka 1 byla měřena během ohřevu rychlostí 5 °C/min na vzduchu.

literatuře [55], o průměru 0,7 nm. Změny pórovitosti v oblasti mikropórů, jejichž velikost je srovnatelná s průměrem atomů radonu (d = 0,4 nm), jsou tedy pomocí ETA citlivě indikovány, zatímco rtuťová pórozimetrie o pórech této velikosti informace neposkytuje. Jak ukazuje křivka 3 na obr. 21, celkový objem pórů u vzorků žíhaných na teploty vyšší než 600 °C se zmenšuje. Podobně klesá i velikost měrného povrchu (křivka 2). Prudký pokles emanační schopnosti v oblasti 900 až 1000 °C souvisí s krystalizací původně amorfního silikagelu na α -cristobalit.

Měření ETA umožnuje získat informace zejména o změnách pórovitosti v oblasti gelových pórů, o změnách povrchu i struktury studovaných látek přímo v podmínkách jejich sušení, popř. tepelného zpracování. Pomocí ETA byla studována rovněž tepelná stabilita jiných materiálů, jako TiO_2 , UO_2 připravených ve formě kuliček metodou sol—gel [56]. Byly charakterizovány vlastnosti vzorků uranylového zerogelu [57] připraveného želatinací roztoku dusičnanu uranylu s želatinačními příměsemi. Technologie přípravy materiálu tzv. vnitřní želatinací spočívá v želatinaci roztoku, promytí gelu, jeho sušení a kalcinaci. Při tepelném zpracování materiálu v redukční atmosféře dochází ke změnám morfologie a struktury xerogelu, které výrazně ovlivnují výsledné vlastnosti kalcinovaného materiálu. Diferenční termická analýza a termogravimetrie nejsou k těmto změnám citlivé.

Jak vyplývá z křivek na obr. 22, proces rekrystalizace gelu v oblasti teplot 600–1000 °C je indikován poklesem emanační schopnosti beze změny rozměrů vzorku ve tvaru kuličky. Slinování vzorku, které nastává od teplot 1000 °C výše, již indikuje dilatometrická křivka. Na křivce ETA (křivka 1, obr. 22) dochází v této oblasti nejprve k růstu emanační schopnosti v důsledku difúze radonu v materiálu. Postupné zhutňování vzorku vede k brzdční růstu E a později k výraznému poklesu E, což se projeví na křivce ETA výrazným efektem. Tento efekt charakterizuje oblast intenzívního slinování vzorku UO₂. Po ukončení ohřevu vzorku UO₂ do 1400 °C v redukční atmosféře bylo dosaženo 97,7 % teor. hustoty UO₂.

Pomocí ETA byl sledován vliv různé koncentrace želatinačních přísad, různé koncentrace uranu ve výchozím roztoku i vliv činidla použitého pro promytí gelu na změny morfologie a struktury během kalcinace xerogelu [57]. Na obr. 23 jsou znázorněny průběhy křivek ETA během izotermálního ohřevu v redukční atmosféře při teplotě 1200 °C dvou vzorků UO_2 , které se lišily pouze koncentrací U (VI)

Obr. 22. Výsledky ETA (křivka 1) a dilatometrické měření (křivka 2) xerogelu UO₂ naměření během ohřevu rychlostí 5 °C/min v argonu +5 % vodíku.

Obr. 23. Výsledky ETA vzorků xerogelu UO_2 získané během izotermálního ohřevu při teplotě 1200 °C v atmosféře argon +5% vodíku. Vzorky se lišily koncentrací U (VI) ve výchozím roztoku: 1,366 mol U (VI) na litr (křivka I) a 1,525 mol U (VI) na litr (křivka 2).

ve výchozím roztoku. Vzorek 1 byl připraven z výchozího roztoku o koncentraci 1,366 mol U (VI)/l, vzorek 2 z roztoku o koncentraci 1,525 mol U (VI)/l. Odpovídající hustoty vzorků 1 a 2 dosažené po jejich ohřevu do teplot 1200 °C během 2 hodin jsou 78,6% a 94,5% teor. hustoty. Výsledky ETA byly plně potvrzeny měřením hustot kalcinovaných vzorků.

Podobným způsobem byly charakterizovány rozdíly chování vzorků uranylo-

vých xerogelů způsobené vlivem různých želatinačních přísad ve výchozím roztoku a vlivem promytí gelu roztokem amoniaku či destilované vody [53, 57].

ETA byla navržena jako metoda pro rychlou operativní kontrolu vlastností meziproduktů během výroby keramického jaderného paliva na bázi UO_2 . Vyniká vysoká citlivost metody ke změnám morfologie a struktury.

Ověřovací zkoušky ukázaly možnost použití ETA při charakterizaci vlastností meziproduktů výroby elektrotechnické keramiky nebo při sledování změn morfologie a struktury vzorků uhlí [58] různého původu.

5.5. Fázové přeměny v pevných látkách

Jednotlivé metody používané k charakterizaci a popisu fázových změn v pevných látkách poskytují různé pohledy na tento proces. Změny na křivkách ETA odpovídající fázovým přeměnám indikují stav povrchu a neuspořádanost struktury látek, a jejich změny, způsobené fázovými přeměnami. Změny povrchu či růst neuspořádanosti struktury se projeví na emanační schopnosti zpravidla daleko dříve, než fázovou změnu zaregistruje křivka DTA nebo rtg difrakční analýza.

Fázová přeměna se na křivce ETA zpravidla projeví skokovou změnou. V souvislosti s touto přeměnou se v látce otevírají nové difúzní cesty pro atomy radonu a emanační schopnost zpočátku roste, až dosáhne maxima a klesá k hodnotě, která odpovídá stavu neuspořádanosti struktury látky po fázové přeměně. Za předpokladu, že fázové rozhraní mezi původní a nově vznikající fází je rovněž difúzní cestou pro uvolňování radonu ze mřížky, lze příspěvek E_c fázové přeměny k celkové emanační schopnosti látky vyjádřit vztahem

$$E_c = \xi_t (1 - \xi_t) v_c k_c, \tag{14}$$

kde ξ_t — stupeň fázové přeměny, $\xi_t \in \langle 0, 1 \rangle$, v_c — rychlost postupného pohybu fázového rozhraní vzorkem a k_c — konstanta charakterizující typ fázové přeměny.

Intenzita efektu na křivce ETA bývá zvýšena vzhledem k tomu, že během fázové přeměny dochází k narušení radioaktivní rovnováhy mezi radonem a jeho mateřským radionuklidem, což vede k tomu, že se uvolňují i ty atomy radonu, které by při zachování rovnovážného stavu zůstaly zachyceny v mřížce.

Volbou způsobu značkování pevné látky lze dosáhnout toho, že vzorek je značkován v celém objemu nebo je na jeho povrchu, popř. na určitých částech povrchu vzorku. To umožnuje získat informace o lokálním chování vzorku během fázové přeměny. Na konkrétních příkladech budou ukázány možnosti použití ETA v této oblasti. Na obr. 24 jsou znázorněny křivky ETA a DTA vzorků KCl při ohřevu rychlostí 10 °C/min. Křivky ETA ukazují [59] na rozdílné chování práškového a přetaveného vzorku v oblasti blízké tání KCl. Na křivce 2 se v oblasti teplot 770–775 °C, tj. těsně před vlastním táním práškového vzorku KCl, projevuje výrazný pokles emanační schopnosti podmíněný odžiháváním neuspořádaností povrchu a otavováním povrchu zrn. Následující vzrůst emanační schopnosti odráží vlastní proces tání KCl. Podobný pokles E se neobjevuje na křivce kompaktního vzorku KCl (křivka 3), získaného ochlazením taveniny. Popisovaný efekt před vlastním tavením byl pozorován [60, 61] na práškových vzorcích Na₂CO₃, Li₂CO₃ a vzorcích některých minerálů.

Efekty na křivkách ETA spojené s procesy probíhajícími na povrchu vzorků, byly pozorovány i při studiu jiných fázových přeměn. Např. při studiu skelného přechodu a rekrystalizaci skla [62] o složení Ge_{0.25}Te_{0.60}Se_{0.15} křivky ETA indikují

počátek skelného přechodu a počátek rekrystalizace při teplotách o několik desítek stupnů níže, než křivky DTA. Tabulka II shrnuje teploty počátku a konce fázových přeměn odečtené z křivek ETA a DTA.

Pomocí ETA byla rovněž studována [63] rekrystalizace skla o složení 2 PbO. SiO₂ v rozmezí teplot 400-600 °C. V tomto rozmezí teplot dochází ke dvěma fázím krystalizace: do teploty 410 °C je stabilní polyanionická struktura skla 2 PbO. SiO₂.

Obr. 24. Výsledky DTA (křivka 1) a ETA (křivka 2) práškového vzorku KCl během ohřevu rychlostí 5 °C/min. Křivka 3 znázorňuje výsledky ETA kompaktního (přetaveného) vzorku KCl během opakovaného ohřevu rychlostí 5 °C/min.

Výsledky	· ETA a	a DTA	systému	Geo,	25Teo	60Se0,15
----------	---------	-------	---------	------	-------	----------

Fázová p	řeměna	Teplota efektu na křivce ETA °C	Teplota efektu na křivce DTA °C
skelný přechod	začátek konec	170 197	182 207
rekrystalizace	počátek změn na povrchu (temperace defektů)	240	_
	počátek změn v objemu vzorku	283	283

Pro oblast 410–430 °C je charakteristická přechodná krystalická struktura, která se mění v monoanionickou strukturu [Pb₂O]. [Si₄O₁₂]. V oblasti teplot 467–610 °C se předpokládá existence vysokoteplotní modifikace [Pb₂O]. [SiO₃]. Křivky ETA měřené v izotermických podmínkách při 425 a 520 °C charakterizují intenzitu přeměn struktury v důsledku zmíněných fází krystalizace. Intenzívnější pokles emanační schopnosti vzorku při teplotě 425 °C než při teplotě 520 °C svědčí o tom, že první fáze krystalizace znamená hlubší zásah do struktury než fáze druhá.

Fázová transformace $\gamma - \alpha \operatorname{Al}_2O_3$ se projevuje v oblasti 1250-1300 °C exotermickým efektem na křivce DTA a efektem na křivce ETA. Jak známo, přítomnost fázových transformací může urychlit proces slinování vzorků materiálu. Pomocí ETA byl sledován [64] vliv fázové transformace $\gamma - \alpha \operatorname{Al}_2O_3$ na proces slinování práškových vzorků oxidu hlinitého. Intenzita poklesu emanační schopnosti na obr. 25 dokumentuje intenzitu zhutňování Al_2O_3 při žíhání vzorku v izotermických podmínkách v rozmezí teplot 1200-1400 °C. Při teplotě 1250 °C je intenzita

Obr. 25. Křivky ETA měřené během izotermálního ohřevu vzorků práškového γ-Al₂O₃ na vzduchu při teplotách 1200, 1250, 1300 a 1400 °C.

poklesu emanační schopnosti zvýšena vlivem fázové transformace. Mikrofotografie vzorků Al_2O_3 žíhaných při daných teplotách po dobu 2 hodin potvrzují výsledky měření ETA.

ETA byla rovněž použita k identifikaci charakteru strukturních přeměn iontových krystalů [65]. Na obr. 26 jsou uvedeny křivky teplotní závislosti emanační schopnosti a elektrické vodivosti krystalů Bi_2O_3 (a) a $Bi_2O_3 + 25\%$ Y_2O_3 (b). V čistém materiálu Bi_2O_3 dochází při teplotě 717 °C k fázové transformaci charakterizované změnou struktury z monoklinické na tetragonální soustavu. Tato transformace je spojena se vznikem iontové vodivosti (skoková změna elektrické vodivosti je někdy nazývána vznikem iontové supravodivosti). Ve vzorku $Bi_2O_3 + 25\%$ Y_2O_3 nastala stabilizace monoklinické fáze a v daném teplotním intervalu dochází pouze k plynulému nárůstu elektrické vodivosti s teplotou. Křivky ETA na obr. 26a, b ukazují rozdíly v chování uvedených dvou vzorků z hlediska změn struktury.

Možnost indikovat pomocí ETA fázové přeměny byla využita i k sestrojení fázových diagramů u řady systémů [66], jako např. KCl—CaCl₂ nebo CaO—Fe₂O₃. Výhodné je použití metody pro systémy amorfních nebo pseudoamorfních látek, kde nelze použít rtg difrakční analýzu. Z takových systémů studovaných pomocí ETA lze uvést [67, 68], např. NaBeF₃—NaPO₃ nebo Na^TeF₃—KPO₃ nebo H₂P₂O₇-karbamid.

Obr. 26. Teplotní závislosti emanační schopnosti (křivky 2) a elektrické vodivosti (křivky 1) vzorků Bi_2O_3 (a) a $Bi_2O_3 + 25 % Y_2O_3$ (b).

5.6. Tepelný rozklad a dehydratace pevných látek

Pomocí emanační termické analýzy byla studována dehydratace solí s krystalovou vodou, rozklad hydroxidů kovů i tepelné chování zeolitů [1]. Byl studován tepelný rozklad různých karbonátů, šťavelanů, dusičnanů, síranů a jiných sloučenin [1].

ETA, jako jedna z metod termické analýzy, umožnuje stanovit teplotní intervaly, v nichž za daných experimentálních podmínek dochází k tepelnému rozkladu studovaných látek [69]. Interpretace efektů křivek ETA se provádí zpravidla s pomocí výsledků DTA, termogravimetrie, rentgenové difrakční analýzy, hodnot měrného povrchu apod. V řadě prací byly křivky ETA měřeny na zařízení umožňujícím simultánní měření ETA, DTA, TG, resp. dilatometrie či detekce plynných produktů – produktů rozkladu pevných látek. Křivky ETA odrážejí změny povrchu a struktury látek během tepelného rozkladu a v souvislosti s ním. Tyto informace nelze získat přímo jinou metodou termické analýzy. Na obr. 27 jsou znázorněny křivky ETA, DTA a TG získané při rozkladu šťavelanu železnatého . 2 H₂O na vzduchu [70]. Dvojitý efekt při teplotách 180–220 °C na křivkách DTA a ETA odpovídá dehydrataci vzorku. Disociace bezvodého šťavelanu začíná při 350 °C. Tento proces je indikován efektem na křivce ETA i DTA a zmenšením objemu vzorku. FeO a Fe vznikající při disociaci se oxidují na Fe $_{3}O_{4}$, který se dále mění na Fe_2O_3 . V oblasti teplot 500-670 °C byla pomocí rtg difrakční analýzy potvrzena přítomnost a-Fe₂O₃. Uvedené procesy jsou indikovány všemi uvedenými křivkami termické analýzy. Rekrystalizace disperzního α -Fe₂O₃, k níž dochází v oblasti 700-830 °C, je však indikována pouze křivkou ETA, resp. zmenšením rozměrů vzorku na křivce dilatometrické.

Z uvedených výsledků na obr. 27 vyplývá, že kombinace běžných metod s ETA umožňuje komplexně ocenit proces tepelného rozkladu pevných látek, aktivní stav struktury produktů rozkladu bezprostředně při jejich vzniku a změny aktivního stavu těchto produktů v průběhu dalšího ohřevu, popř. chlazení.

Obr. 27. Výsledky komplexní emanační termické analýzy vzorku práškového šťavelanu železnatého. 2H₂O. Během ohřevu na vzduchu rychlostí 10 °C/min byly získány křivka ETA (1), křivka DTA (3) a závislost lineárního rozměru mírně kompaktizovaného vzorku 4, během opakovaného ohřevu vzorku byla získána křivka ETA (2).

Na obr. 28 jsou znázorněny křivky ETA získané při tepelném rozkladu propionátu thoričitého [71]. Během ohřevu výchozího materiálu v podmínkách růstu teploty (křivka 1) a v podmínkách izotermálního ohřevu při 300, 400 a 500 °C (křivky 2-4) je možno pomocí změn emanační schopnosti sledovat změny struktury a povrchu přímo v podmínkách tepelného rozkladu. Hodnoty emanační schopnosti E_{20} charakterizují morfologii meziproduktů rozkladu. Ohřev meziproduktů rozkladu do vyšších teplot (křivky 5 a 6) v podmínkách růstu teploty konstantní rychlostí umožňuje získat charakteristiku změn neuspořádaného stavu struktury oxidu připraveného rozkladem výchozí soli do 300 a 500 °C.

Pomocí simultánního měření ETA, DTA a TG byl sledován [72] tepelný rozklad hydroxidu thoričitého bez příměsi a s příměsí 0,01 a 0,08 mol. % Ca²⁺. Pomocí TA byl dále charakterizován stav neuspořádanosti takto připraveného oxidu thoričitého. Bylo zjištěno, že 0,08 mol. % Ca²⁺ vede ke vzrůstu neuspořádaného stavu oxidu a znamená rovněž vzrůst tepelné stability aktivního oxidu.

Na obr. 29 jsou uvedeny [73] křivky DTA a ETA vzorku $CuSO_4$. H_2O připraveného tepelným rozkladem $CuSO_4$. 5 H_2O . Křivka DTA ukazuje na oblast teplot, kdy dochází k uvolnění poslední molekuly vody. Na křivce ETA je možno sledovat změny struktury související s touto dehydratací. Na uvedeném příkladě (bylo

Obr. 28. Teplotní závislosti emanační schopnosti práškového vzorku propionátu thoričitého během ohřevu na vzduchu;

a) konstantní rychlostí 6 °C/min (křivka 1), b) v izotermálních podmínkách při 300 °C (křivka 2), 400 °C (křivka 3) a 500 °C (křivka 4).

c) konstantní rychlostí 6 °C/min meziproduktů rozkladu výchozí soli připravených ohřevem do 300 °C (křivka 5) a 500 °C (křivka 6).

Obr. 29. Výsledky ETA (křivka 2) a DTA (křivka 1) vzorku CuSO₄. H₂O (připraveného tepelným rozkladem CuSO₄. 5 H₂O) získané během ohřevu na vzduchu rychlostí 6 °C/min. Vzorek byl značkován pomocí bombardování ionty radonu.

použito povrchového značkování vzorku atomy radonu pomocí iontového bombardování), maximum na křivce ETA kolem 200 °C udává teplotní oblast, kdy dochází ke změně struktury v povrchové vrstvě vzorku. Navíc, při nižších teplotách, je na křivce ETA patrný efekt související s temperací defektů struktury zachovaných z výchozí soli.

Pomocí ETA byla studována příprava řady adsorbentů, katalyzátorů a jiných speciálních materiálů [40-47], [70-72], jejichž vlastnosti závisejí na neuspořá-

daném stavu struktury. Výhoda použití ETA spočívá v možnosti hodnotit aktivní stav materiálů připravených tepelným rozkladem výchozích surovin bezprostředně po jejich vzniku za zvýšené teploty, a to bez nutnosti přerušovat ohřev a vzorek chladit.

5.7. Interakce pevná fáze-plyn

Z praktického hlediska nejdůležitější reakce tohoto typu je oxidace a redukce pevných látek.

5.7.1. Redukce a oxidace pevných látek. Studium koroze

Quet a spol. [74] studovali reakci NiO + $H_2 \rightarrow Ni + H_2O$. Pomocí ETA a měřením koncentrace unikající vody bylo možno získat údaje o kinetice reakce. Vzorek NiO byl značkován metodou zpětného odrazu atomy radonu ²²²Rn. Na obr. 30a jsou uvedeny křivka ETA a záznam z čidla teplotně vodivostního detektoru. Na obou křivkách je v teplotním intervalu 230-330 °C pík odpovídající reakci redukce NiO. Při studiu kinetiky této reakce byl vzorek NiO izotermálně zahříván v proudu vodíku při teplotách v uvedeném rozmezí. Výšky efektů na křivkách uvolnění vody jsou přímo úměrné maximální rychlosti reakce $(d\alpha/dt)_{max}$, kde α je stupen přeměny v čase t. Podobně výšky píků na křivkách ETA byly považovány za úměrné maximální rychlosti E_{max} při dané teplotě. Obrázek 30b ukazuje závislost obou těchto parametrů na 1/T. Z podobnosti závislostí bylo doporučeno používat metodu ETA pro sledování kinetiky uvedené reakce. Zdánlivá aktivační energie reakce, vypočtená ze směrnice obou závislostí, činí 117,2 kJ mol⁻¹.

Obr. 30a. Výsledky ETA (křivka 2) a rychlosti uvolňování vody (křivka 1) během ohřevu vzorku NiO v atmosféře vodíku rychlostí 5 °C/min.
30b. Výsledky izotermálního studia kinetiky redukce NiO ve vodíku v intervalu 230—300 °C získané z křivek ETA (1) a křivek rychlosti uvolňování vody (2).

Použití ETA ke studiu interakce pevná fáze-plyn je zvláště cenné v případě reakcí pevných látek s průmyslovými plyny, jako jsou uhlovodíky, jejichž reakční produkty lze velmi obtížně detekovat.

Chleck [75] studoval pomocí ETA oxidaci povrchu mědi značkované atomy ⁸⁵Kr na vzduchu a stanovil rychlost této reakce a její koncentrační a teplotní závislost. Matzke [76] nalezl na základě studia uvolňování ¹³³Xe teplotní závislost růstu oxidové vrstvy na oceli, Ti, Ni a Cu.

Mezi další významné reakce tohoto typu patří interakce materiálů s agresívním plynem v okolním prostředí. Na základě ETA byla navržena metoda pro hodnocení chemické odolnosti keramických materiálů, omítek a betonu vůči agresívnímu plynnému prostředí [77]. Interakce pevná látka—plyn nalezly použití i v analytické chemii. Byla vypracována řada postupů [10] pro stanovení stop plynů a par ve vzduchu a jiných plynných médiích. Princip těchto postupů spočívá v uvolňování atomů kryptonu ⁸⁵Kr z povrchu vhodné chemické látky. Množství uvolněného ⁸⁵Kr je přímo uměrné koncentraci látky, která je stanovována. Tyto postupy nacházejí použití v chemii životního prostředí [10], [78], [79], např. při stanovení ozónu, kyslíku, SO₂, F₂, Cl₂, NO, NH₂, HF, CO, H₂S a H₂. Některé z navržených metod [80, 81] byly použity v kosmických sondách pro stanovení složení atmosféry Marsu a Venuše.

5.7.2. Využití ETA v heterogenní katalýze

Heterogenní katalytické reakce lze považovat za zvláštní druh interakce pevná fáze—plyn na povrchu pevné fáze. Emanační termická analýza byla použita k sledování různých katalytických reakcí. Např. Jech [82] sledoval uvolňování radonu

Obr. 31. Rychlost uvolňování radonu měřená během interakce ZrO2 a MgO s parami acetonu při teplotě 300–400 °C.

Silikáty č. 2, 1984

²²²Rn z platinové fólie během interakce směsi vodíku a kyslíku na jejím povrchu. Zvýšená rychlost uvolňování radonu během počáteční fáze katalytické reakce byla připsána redukci chemisorbovaného kyslíku jako počátečnímu stadiu katalytické reakce. Žabrova a spol. [83] sledovali pomocí ETA průběh interakce par acetonu v proudu dusíku na povrchu katalyzátoru ZrO2 a MgO značkovaných pomocí ²²⁸Th. Výsledky jsou uvedeny na obr. 31. Na křivce ETA měřené při teplotě 300 °C se interakce par acetonu s povrchem ZrO₂ a MgO projeví různým způsobem. U ZrO₂ vede k poklesu emanační schopnosti, u MgO k jejímu vzrůstu. Různý charakter křivek ETA byl vysvětlen různým charakterem interakce. Autoři [83] předpokládali, že vzrůst emanační schopnosti MgO při interakci je doprovázen částečným rozkladem acetonu. Po přerušení dodávky par acetonu k povrchu katalyzátoru emanační schopnost opět klesá. Regenerace katalyzátoru žíháním na vzduchu je doprovázena vzrůstem emanační schopnosti. Při této regeneraci byl pozorován vzrůst teploty v povrchové vrstvě vzorku, související zřejmě s exotermním charakterem reakce. Bekman a spol. [84] sledovali katalytické reakce různých typů. Jejich výsledky potvrdily hypotézu o selektivitě aktivních center na povrchu katalyzátorů pro určité typy reakcí.

5.8. Interakce pevná fáze-kapalina

5.8.1. Hodnocení odolnosti materiálů vůči agresívním kapalinám

Na využití ETA je založena řada postupů pro sledování odolnosti materiálů vůči působení agresívních kapalin. Jesenák aspol. [85] navrhli způsob pro hodnocení chemické odolnosti skel, založený na měření úbytku ⁸⁵Kr včleněného do jejich povrchu. Na obr. 32a jsou znázorněny časové závislosti poklesu aktivity ⁸⁵Kr z různých skel během působení 1 M HCl. Na fázovém rozhraní sklo-kyselina dochází k výměně kationtů alkalických kovů za ionty H⁺, přičemž se tvoří kyselina křemičitá. Tento proces je vyjádřen vztahem

 $[sklo - Me^+ (^{85}Kr)]_{p. l.} + H^+ \rightarrow [sklo - H^+]_{roz} + Me^+ + {}^{85}Kr \uparrow . \quad (15)$

Obr. 32. Hodnocení odolnosti skel vůči kyselým a alkalickým roztokům. Časové závislosti poklesu radioaktivity ⁸⁵Kr v důsledku koroze povrchu vzorků různých skel v 1 M roztoku HCl (a) a 1 M roztoku NaOH (b): 1 — křemenné sklo, 2 — jenské sklo, 3 — Sial, 4 — tabulové sklo.

Po jedné hodině kontaktu povrchu skla s 1 M HCl relativní úbytek aktivity ⁸⁵Kr činí 2 % u vzorku křemenného skla, 5 % u vzorku skla jenského, 6 % u skla Sial a 10,3 % u skla tabulového. Nejméně odolné je tedy sklo tabulové. Stejné pořadí v odolnosti skel zůstává i při dlouhých časech kontaktu skla s roztokem kyseliny.

Zásadité roztoky působí na vzorky skla tak, že rozrušují silikátovou strukturu skla a rozpouštějí některé komponenty. Časové závislosti poklesu aktivity ⁸⁵Kr ze vzorků různých skel v kontaktu s 1 M NaOH jsou znázorněny na obr. 32b. Během jediné minuty působení roztoku je možno rozlišit odolnost jednotlivých skel vůči působení 1 M NaOH. Po deseti minutách poklesla aktivita ⁸⁵Kr u skla křemenného o 16 %, u skla Sial o 26 %, u skla jenského o 32 % a vzorku skla tabulového o 41 %. Tyto závěry odpovídají výsledkům běžných metod, které však jsou daleko náročnější na čas.

ETA může být použita ke studiu korozních procesů, způsobujících změny povrchu nebo poškozujících strukturu studovaných látek. Byla použita k hodnocení účinnosti protikorozních a ochranných nátěrů. Např. na povrchu vzorku chráněného různými antikorozními nátěry lze pozorovat vliv korozních prostředí pomocí běžných metod během několika měsíců, zatímco pomocí ETA se výsledek získá během několika hodin [86].

Dohnálek a Balck [87] vypracovali způsob hodnocení odolnosti stavebních materiálů vůči působcní agresivních médií. Způsob spočívá v kontinuálním měření rychlosti uvolňování radonu z materiálů předem značkovaných impregnací povrchu pomocí ²²⁸Th. Na obr. 33 jsou znázorněny časové závislosti rychlosti uvolňování radonu při testování dvou vzorků cementového kamene, lišících se poměrem v/c, v roztocích 0,2 % a 1 % HNO₃.

Obr. 33. Testování odolnosti zatvrdlé cementové kaše vůči zředěnému roztoku kyseliny dusičné. Časové závislosti rychlosti uvolňování radonu pro dva vzorky zatvrdlé cementové kaše.
Křivky 1 a 2 odpovídají chování vzorků A a B v 0,2%ním HNO3, křivky 3 a 4 v 1%ní HNO3. Vzorky se lišily poměrem voda : cement při přípravě výchozí cementové kaše: pro vzorek A v/c = 0,27, pro vzorek B v/c = 0,55.

5.8.2. Studium hydratace

Z křivek ETA měřených v konkrétních podmínkách modelujících podmínky pro hydrataci látek byly získány informace např. o hydrataci $CaSO_4 . 0.5 H_2O$, [88], hydrataci trikalciumsilikátu [89] a hydrataci cementu [90]. Na obr. 34 jsou uvedeny výsledky ziskané během hydratace Portlandského cementu PC-400 při teplotě 20 °C. Pro srovnání jsou uvedeny křivky ETA (1), časové závislosti plastické pevnosti suspenze cementu s vodou (2) a množství uvolňovaného hydratovaného tepla (3).

Obr. 34. Křivka ETA (1), závislost plastické pevnosti (2) a závislost uvolňování hydratačního tepla (3) ze vzorku tuhnoucí cementové kaše (PC 400, v/c = 0,3) během hydratace při 20 °C na vzduchu.

Křivka ETA odráží průběh hydratace jednotlivých slínkových minerálů, které jsou složkami cementu. V prvních minutách po zamísení cementu s vodou dochází ke krátkodobému intenzívnímu vzrůstu emanační schopnosti, který odpovídá hydrataci aluminátů vápenatých. V intervalu tzv. indukční periody, který následuje, se předpokládá praktické zastavení hydratačních reakcí následkem vytvoření pro vodu neprostupné vrstvy hydratačních produktů na povrchu zrn cementu. V tomto intervalu je emanační rychlost vzorku poměině nízká a konstantní. Její hodnota odráží morfologii cementové suspenze. Po skončení indukční periody se emanační rychlost postupně zvyšuje. Tento vzrůst odpovídá hydratační reakci silikátů vápenatých. Vznikající hydratační produkty vzájemně interagují, což ve svém důsledku vede ke změnám fyzikálněmechanických vlastností suspenze a k jejímu tuhnutí (křivka 2, obr. 34). Vzájemná interakce hydratačních produktů slínkových minerálů během hydratace a jejich rekrystalizace se projevuje na křivce ETA efekty. V diskutované etapě hydratace dosahuje emanační rychlost největšího vzrůstu, postupně klesá zhutňováním struktury cementové pasty a zpomalováním hydratačních reakcí. Maximum uvolňování hydratačního tepla (křivka 3, obr. 34) je v souladu se změnami na křivce ETA, umožňující navíc rozlišit jednotlivé reakce hydratačního procesu. V navazující etapě, kde se emanační schopnost vzorku cementové pasty dále snižuje, lze předpokládat další zhutňování struktury cementové pasty, resp. cementového kamene. Změny mikrostruktury, které křivka ETA odráží, jsou především v oblasti mikropórů.

Balek a Dohnálek [91] navrhli hodnocení jednotlivých fází hydratace cementu na základě průběhu emanační schopnosti cementové pasty. Podle nárůstu emanační schopnosti v etapě po skončení indukční periody navrhují posuzovat rychlost hydratace cementu v daných podmínkách a podle rychlosti poklesu emanační schopnosti navrhují posuzovat rychlost tvorby hutné struktury cementového ka-

mene v pozdější etapě. Obě etapy hydratace mají zásadní význam pro tvorbu fyzikálněmechanických vlastností cementového kamene. Informace získané pomocí ETA poskytují nový pohled na formování struktury zatvrdlé cementové kaše. Výsledky ETA lze rovněž využít k operativnímu hodnocení vlastností různých cementů pro hydrataci v daných podmínkách [92].

Metoda byla použita ke sledování vlivu příměsí (sádrovce) na hydrataci Portlandského slínku [93] a vlivu zvýšené teploty na hydrataci cementu [94, 95]. Na obr. 35 jsou znázorněny křivky ETA měřené během hydratace Portlandského cementu PC 400 při teplotách 35, 45 a 85 °C. Matematickým zpracováním těchto křivek

Obr. 35. Výsledky ETA vzorků tuhnoucí cementové kaše (PC 400 v/c = 0,3) během hydratace při teplotách 35 (křivka 3), 45 (křivka 2) a 65 °C (křivka 1) na vzduchu.

byly získány parametry pro charakterizaci průběhu změn struktury během hydratace cementu i jejich teplotní závislosti. Uvedené výsledky dokumentují možnost získání cenných informací pomocí ETA o chování cementu během režimu, který odpovídá technologii propařovaného betonu.

Interakce řady pevných látek značkovaných pomocí ⁸⁵Kr našly použití v analytické chemii, např. pro stanovení stop vody \mathbf{v} organických kapalinách [96]. Pevné látky značené radioaktivním kryptonem (zvané kryptonáty) jsou používány i jako indikátory pro radiometrické titrace [78, 79].

5.9. Interakce pevná fáze-pevná fáze

Příkladem sledování průběhu interakce mezi dvěma pevnými látkami pomocí ETA je obrázek 36, znázorňující křivky ETA, DTA a dilatometrie reakční směsi ZnO—Fe₂O₃ při ohřevu konstantní rychlostí na vzduchu [97]. Vzorky reakční směsi byly připraveny smícháním výchozích komponent, přičemž ZnO byl značkován v objemu pomocí ²²⁸Th. Ze srovnání výsledků uvedených na obr. 36 vyplývá možnost použití ETA ke sledování zmíněné interakce dvou pevných látek. Z prací řady autorů [98–100] je známo, že v oblasti teplot 250–400 °C se na nejaktivnějších místech povrchu obou práškových komponent, vzájemně homogenizovaných, tvoří vrstvička reakčního produktu. Tato fáze interakce je indikována pouze na křivce ETA (křivka 3, obr. 36). Na křivkách DTA (křivka 2) a dilatometrické křivce (křivka 1) žádné efekty v této oblasti nebyly pozorovány. Z výsledků chemické analýzy vyplynulo, že při teplotě 400 °C došlo k reakci méně než 1 % ZnO, při teplotě 500 °C činí stupeň proreagování 1,5 %. Slabý exotermický efekt v oblasti teplot 680-750 °C odpovídá reakci tvorby feritu v objemu, která je doprovázena zvětšením objemu směsi až o 5 %. Na křivce ETA dochází v intervalu 660-790 °C

Obr. 36. Výsledky komplexní emanační termické analýzy směsi ZnO-Fe₂O₃ v mol poměru 1 : 1 během ohřevu rychlostí 10 °C/min na vzduchu. Křivka 1 — dilatometrické měření, křivka 2 — DTA, křivka 3 — ETA, křivka 4 — ETA během opakovaného ohřevu. Stupeň zreagovaného ZnO v reakční směsi po zahřátí do vybraných teplot je uveden v procentech.

ke vzrůstu emanační schopnosti, který indikuje intezívní přestavbu struktury vzorku. Pokles E v oblasti teplot 800-880 °C odráží proces uspořádávání struktury reakčního produktu a jeho stabilizaci. Zmenšování rozměru vzorku v důsledku slinování feritu popisuje křivka 1 od teploty 1000 °C. Na křivce ETA lze v oblasti teplot nad 900 °C pozorovat vzrůst emanační schopnosti způsobený difúzí radonu v reakčním produktu. Křivka ETA měřená během opakovaného ohřevu reakčního produktu na vzduchu (křivka 4, obr. 36) ukazuje, že tvorba feritu během prvního ohřevu byla dokončena; exponenciální vzrůst emanační schopnosti s teplotou charakterizuje stav struktury reakčního produktu.

Citlivost ETA k tvorbě reakčních produktů na povrchu reagujících vzorků lze zvýšit použitím povrchového značkování [97]. V literatuře jsou dále popsány příklady studia interakcí dvou nebo několika pevných látek, jako např. SiO₂—CaCO₃, Al₂O₃—CaCO₃, CuO—Fe₂O₃ [101, 102] nebo ZnO—Al₂O₃ [103], UO₂—ZrO₂—CaO [104], U₃O₈—TiO₂ a U₃O₈—ZrO₂ [105], CaO—SiO₂ [106].

5.9.1. Hodnocení reaktivity vzorků Fe₂O₃ ve směsi při výrobě feritů

Z efektů na křivce ETA na obr. 36 je zřejmé, že emanační schopnost citlivě odráží změny struktury, k nimž dochází během tvorby feritu z výchozích komponent. Průběh emanační schopnosti a jeho vzrůst, popř. pokles, závisí na reaktivitě jednotlivých složek v daném prostředí (zejména plynném médiu). Teplota zlomu na křivce ETA reakční směsi ZnO—Fe₂O₃ byla navržena jako orientační parametr pro hodnocení reaktivity komponent této reakční směsi. Na obr. 37 jsou znázorněny křivky ETA směsí ZnO—Fe₂O₃, kde ZnO byl značkován v objemu pomocí ²²⁸Th a nelišil se ve studovaných směsích, zatímco Fe₂O₃ byl připraven při různých teplotách (700 – křivka *I*, 900 – křivka *2* a 1100 °C – křivka *3*). U obr. 37 je potvrzen fakt, že vzorky Fe₂O₃ připravené při vyšší teplotě ztrácejí na reaktivitě ve směsi se ZnO.

Obr. 37. Křivky ETA vzorků reakční směsi ZnO-Fe₂O₃ v mol poměru 1 : 1 měřené během ohřevu na vzduchu rychlostí 10 °C/min. Ve směsích byl použit standardní ZnO objemově značkovaný pomoci ²²⁸Th. Vzorky Fe₂O₃ ve směsích byly připraveny rozkladem zásaditého uhličitanu železa a lišily se teplotou vyžíhání: do 700 °C (křivka 1), do 900 °C (křivka 2) a do 1100 °C (křivka 3).

Navržený způsob [107] hodnocení reaktivity oxidu železitého byl použit i pro hodnocení komerčních vzorků dodaných pod názvy "pro ferity", "PPG" a "p. a". Zatímco vzorek označený "pro ferity" lze hodnotit podle teploty zlomu na křivce ETA jako nejreaktivnější, vzorek označený "p. a" lze hodnotit jako nejméně reaktivní. V tabulce III jsou uvedeny teploty zlomů na křivce ETA, použité pro hodnocení reaktivity vzorků Fe_2O_3 ve směsi se ZnO a hodnoty měrného povrchu vzorků Fe_2O_3 stanovené adsorpční metodou. Mezi těmito parametry pro komerční vzorky nebyla shledána žádná souvislost. Zdá se, že kromě chemické a tepelné historie reaktivitu těchto vzorků ovlivňují příměsi.

Výhodou navrženého způsobu použití ETA je možnost hodnotit reaktivitu vzorku přímo v uvažované reakční směsi a v podmínkách, které jsou pro tvorbu reakčního produktu předepsány technologií. Uvedený příklad ukázal, že výsledky hodnocení na základě ETA u komerčních vzorků mohou býti objektivně správnější než výsledky měření měrného povrchu, které nemohou postihnout všechny faktory, na nichž reaktivita vzorků při vysoké teplotě závisí.

Balek a Doruška [108] porovnávali reaktivitu 2 komerčních vzorků oxidu železitého ve směsi s oxidem zinečnatým. Oba vzorky oxidu železitého dodané firmou BAYER A. G. byly deklarovány jako identické (velikost měrného povrchu pro

Emanační termická analýza a její použití

Označení vzorku	Měrný povrch m²g ⁻¹	Tepleta efektu na křivce ETA °C
pro ferity (SSSR)	3,8	720
P. P. G. (SSSR)	14,8	880
p. a. (SSSR)	7,8	920

Tabulka III	
Hodnocení reaktivity komerčních vzorků F	e ₂ O ₃
$\mathbf{v}\mathbf{e} \ \mathbf{sm}\mathbf{\check{e}si} \ \mathbf{se} \ \mathbf{ZnO}$	

vzorek 1 byla 2,61 m² g⁻¹, pro vzorek 2 — 2,59 m² g⁻¹). Použití dodaných vzorků pro výrobu feritů typu H 21 ve Výzkumném ústavu práškové metalurgie, Šumperk, však vedlo k produktům s rozdílnými magnetickými parametry [108]. Na obr. 38 jsou uvedeny křivky ETA těchto reakčních směsí ZnO—Fe₂O₃, kde ZnO byl značkován impregnací povrchu prášku pomocí roztoku obsahujícího ²²⁸Th a ²²⁴Ra.

Obr. 38. Porovnání reaktivity dvou průmyslových vzorků Fe₂O₃ na základě křivek ETA směsí ZnO—Fe₂O₃ během ohřevu na vzduchu rychlostí 5 °C/min. Reakční směsi byly připraveny ze standardního vzorku ZnO značkovaného impregnací povrchu pomocí ²²⁸Th a komerčních vzorků Fe₂O₃.

Křivka 1 (charakterizuje směs obsahující vzorek Fe_2O_3 číslo 1) vykazuje nárůst emanační schopnosti, odpovídající interakci práškových komponent směsi, při teplotě o 185 °C nižší než křivka 2 (charakterizuje směs se vzorkem Fe_2O_3 č. 2). Z toho lze usuzovat na větší počáteční reaktivitu vzorku Fe_2O_3 č. 1 ve směsi se ZnO.

Z charakteru poklesu emanační schopnosti na křivkách ETA v oblasti teplot 600–950 °C, kdy dochází k uspořádávání struktury reakčního produktu, lze soudit,

že reakční produkt vzniklý z výchozí směsi obsahující Fe_2O_3 č. 1 má větší aktivitu k uspořádávání struktury vzniklého feritu v daných podmínkách. Z křivky 2 na obr. 38 je patrno, že uspořádávání struktury meziproduktu feritu vzniklého z reakční směsi s Fe_2O_3 č. 2 probíhá ve dvou stupních.

Pomocí ETA bylo dále sledováno chování takto připravených vzorků kalcinátu Zn-feritu během výpalu v definované atmosféře $N_2 + 10 \% O_2$ při konstantní teplotě 1300 °C. Křivky I a 2 na obr. 39, získané přímým měřením ETA odpovídajících vzorků kaleinátu Zn-feritu charakterizují průběh zhutňování struktury tohoto meziproduktu během výpalu. Relativně vyšší intenzita změn struktury odpovídá kaleinátu připravenému z reakční směsi s Fe₂O₃ č. 1. Tyto výsledky byly potvrzeny technologickými testy [109].

Obr. 39. Porovnání reaktivity dvou průmyslových vzorků Fe₂O₃ v kalcinátu Zn-feritu během jeho výpalu při 1300 °C v atmosíéře dusíku + 10 % O₂ na základě křivek ETA. Vzorky kalcinátu byly připraveny ohřevem reakční směsi konstantní rychlostí 5 °C/min na vzduchu (viz obr. 38).

Uvedený příklad dokumentuje schopnost ETA rozlišit chování dvou vzorků oxidu železitého, které byly pomocí běžných metod, jako např. stanovení měrného povrchu, charakterizovány jako identické. Přitom rozdíly v chování vzorků je možno zjistit během sledování reakce tvorby feritu resp. výpalu pomocí ETA přímo v podmínkách blízkých technologickým. Použití ETA k charakterizaci vlastností výchozích surovin pro výrobu speciálních keramických materiálů a vlastností jejich meziproduktů v řadě případů přispělo k optimalizaci technologického procesu a ke snížení rozptylu v hodnotách výsledných parametrů výrobků.

6. PERSPEKTIVY EMANAČNÍ TERMICKÉ ANALÝZY

První cílevědomé studium vlastností pevné látky na základě uvolňování radiové emanace uskutečnil Hahn [110] před více než 60 lety. Radioaktivitu tehdy měřil pomocí ionizační komory s elektroskopem s vizuálním odečítáním. Od té doby se z radiové emanace (radonu) a ostatních inertních radioaktivních plynů stali uznávaní pomocníci základního i aplikovaného výzkumu. S jejich pomocí byly studovány problémy anorganické, fyzikální a koloidní chemie, fyziky a chemie pevných látek a řady dalších vědních disciplín. Přispěly k řešení důležitých otázek materiálového výzkumu, metalurgie, chemické technologie i chemie životního prostředí.

Emanační termická analýza, založená na měření radioaktivních inertních plynů uvolňovaných z pevných látek, byla přijata mezinárodním sdružením pro termickou analýzu jako jedna z metod termické analýzy [111]. Rostoucí zájem o problematiku spojenou s použitím inertních radioaktivních plynů a zvláště ETA dokazuje počet publikací v letech 1950-1980. V období 1950-1960 bylo publikováno v této oblasti 215 prací, v období let 1961–1970 930 prací a v období 1970–1980 více než 1300 prací. Díky konkrétním požadavkům praxe se rozšiřují oblasti aplikace metody. Např. příprava nových materiálů s definovanými vlastnostmi vyžaduje přísný výběr výchozích surovin a kontrolu meziproduktů v jednotlivých technologických uzlech. Emanační termická analýza byla úspěšně použita k operativní kontrole surovin i meziproduktů k výrobě speciálních anorganických materiálů. Našla použití i jako citlivá sonda indikující stav neuspořádanosti, popř. defekty struktury pevných látek. Může být použita k získání informací o vlastnostech třeba jen určité části vzorku, např. povrchových vrstev nebo objemu vzorků, vhodnou volbou podmínek pro včlenění inertního plynu. Mimořádná citlivost metody k interakci pevných látek s plyny či kapalinami je základem postupů pro stanovení stopových množství agresívních složek ve vzduchu, vodě či jiných médiích. S rostoucím významem vhodných metod detekce a analýzy škodlivých složek životního prostředí se bude rozšiřovat i použití těchto postupů. Lze předpokládat, že emanační termická analýza se bude i v budoucnu uplatňovat při řešení konkrétních otázek chemického a materiálového výzkumu. Předpokladem širokého rozvoje metody je spolehlivě fungující automatická aparatura. Tento předpoklad zajišťuje firma NETZSCH (NSR), která vyrábí automatické zařízení [9] pro ETA v čs. licenci. Přístroj pro ETA je možno sestavit i z dílů vyráběných v ČSSR v rámci výrobního programu k. p. TESLA.

Literatura

- [1] Balek V.: Emanation Thermal Analysis (monografie časopisu Thermochimica Acta, 22, 1978), str. 1-156.
- [2] Redhead P. A.: Vacuum 12, 203 (1962).
- [3] Carter G.: Vacuum 12, 245 (1962).
- [4] Norgett M. D., Lidiard A. B.: Phil. Mag. 18, 1193 (1968).
- [5] Kelly R., Matzke Hj.: J. Nucl. Mat 20, 171 (1966).
- [6] Gaus H.: Z. Naturforsch. 20a, 1298 (1965).
- [7] Flügge S., Zimens K. E.: Z. physik. Chem. B42, 179 (1939).
- [8] Balek V.: J. Mat. Sci. 17 1269 (1982).
 [9] Emmerich W. D., Balek V.: High Temp.-High Pressures 5, 67 (1973).
- [10] Balek V., Tölgyessy J.: Emanation Thermal Analysis... Akadémiai Kiadó-Elsevier 1984.
 [11] Jech Č., Kelly R.: Proc. Brit. Ceram. Soc. 9, 243 (1967).
- [12] Kelly R., Ruedl E., phys. stat. sol. 13, 55 (1966).
- [13] Martino D. G.: J. Phys. Chem. Sol. 10, 64 (1959).
 [14] Heckman B. S., Walker D.: J. Nucl. Mat. 18 197 (1966).
- [15] Kelly R.: Can. J. Chem. 39, 664 (1961).
- [16] Matzke Hj.: Z. Naturforsch. 22a, 507 (1967).
- [17] Balek V.: Z. anorg. Chem. 380, 82 (1971).
- [18] Kelly R., Matzke Hj.: J. Nucl. Mat. 17, 179 (1965).
- [19] Jech Č., Kelly R.: J. Phys. Chem. Sol. 39, 465 (1969).
- [20] Kornelsen E. V., Sinha M. K.: J. appl. Phys. 39, 4546 (1968).
- [21] Matzke Hj., Whitton J. L.: Can. J. Phys. 44, 995 (1966).
- [22] Kelly R., Jech Č., Matzke Hj.: phys. stat. sol. 25, 641 (1968).
- [23] Matzke Hj.: J. Nucl. Mat 21, 190 (1967).

- [24] Felix F. W., Müller M.: phys. stat. sol. 46 265 (1971).
- [25] Norgett M. D., Lidiard A. B.: IAEA Symposium on Radiation Damage of Reactor Materials, Vol. 1., str. 61, IAEA, Videň 1969.
- [26] Matzke Hj.: J. Nucl. Mat. 30, 107 (1969).
- [27] Felix F. W.: Report Hahn-Meitner Institut, Berlin HMI-B 93, 1970.
- [28] Felix F. W.: J. phys. (Paris) 34, C9-149 (1973).
- [29] Felix F. W., Müller M.: Ind. J. Pure Appl. Phys. 14, 249 (1976).
- [30] Ong A. S., Elleman T. S.: J. Nucl. Mat. 42, 191 (1972).
- [31] Matzke Hj. in B. Navinšek (Ed.) Physics of Ionized Gases, str. 326, Institut Jozef Stefan Ljubljana, Yugoslavia 1970.
- [32] Kornelsen E. V., Sinha M. K.: Appl. Phys. Lett. 9, 112 (1966).
- [33] Kornelsen E. V., Sinha M. K.: J. appl. phys. 39, 4546 (1968).
- [34] Bekman I. N., Balek V.: Thermochim. Acta, v tisku.
- [35] Schreiner H.: Öster. Chem. Ztg. 53, 233 (1952).
- [36] Žabrova G. M., Šibanova M. D.: Uspechi Chimii 36, 1466 (1967).
- [37] Balek V. in I. Buzás (Ed.) Thermal Analysis, Vol. 2, str. 551, Akadémiai Budapest 1975.
- [38] Balek V.: Farbe u. Lack 85, 251 (1979).
- [39] Balek V.: J. Radioanal. Chem. 2. 315 (1969).
- [40] Courdier F., Bussière P., Imelik B.: C. R. Acad. Sci 264C, 1625 (1967).
- [41] Quet C., Bussière P.: C. R. Acad. Sci 280C, 859 (1975).
- [42] Žabrova G. M., Šibanova M. D.: Kinet. Kataliz 2, 668 (1961).
- [43] Balek V., Vachuška J., Vobořil M.: Report ÚJV Řež 1975, 3631-M.
- [44] Skladzien S. B.: Report Argonne Nat. Laboratory ANL-6335 (1961).
- [45] Lagier J. C., Bussière P., Prettre M.: C. R. Acad. Sci 267, 277 (1967).
- [46] Balek V. in B. Miller (Ed.) Thermal Analysis, Vol. 1, str. 371, Willey Ý Sons, N.Y. 1982.
- [47] Balek V.: J. appl. Chem. (London) 20, 73 (1970).
- [48] Hedvall J. A.: Solid State Chemistry. Elsevier, Amsterdam, 1969.
- [49] Balek V., Vobořil M. in I. Buzás (Ed.) Thermal Analysis, Vol. 3, str. 555, Akadémiai Kiadó 1974.
- [50] Kříž J., Balek V., Habersberger K.: Sborník 9. celost. konf. o termické analýze THERMA-NAL 1982, str. 143.
- [51] Balek V.: Silikáty, 27, 257 (1983).
- [52] Balek V., Landsperský H., Doruška J.: Sborník 9. celost. konf. o termické analýze THER-MANAL 1982, str. 71.
- [53] Balek V., Landsperský H., Vobořil M.: Radiochem. Radioanal. Lett. 28, 289 (1977).
- [54] Feltl L., Balek V.: Šborník 9. celost. konf. o termické analýze THERMANAL 1982, str. 99.
- [55] Nichols L. B., Thorb J. M.: Trans. Far. Soc. 66, 1741 (1970).
- [56] Balek V.: Jaderná energie 29, 2 (1983).
- [57] Balek V., Vobořil M., Baran V.: Nucl. Technol. 50, 53 (1980).
- [58] Balek V., Medek J.: Fuel, v tisku.
- [59] Zaborenko K. B., Močalova Ju. Z.: Radiochimija 10, 123 (1968).
- [60] Balek V., Habersberger K. in H. G. Wiedemann (Ed.) Thermal Analysis, Vol. 2, str. 501 Birkhäuser Verlag, Basel 1972.
- [61] Emmerich W. D., Balek V., ibid, Vol. 1, str. 475.
- [62] Bordas S., Geli M., Balek V., Vobořil M. in H. G. Wiedemann (Ed.) Thermal analysis, Vol. 1, str. 403, Birkhäuser Verlag, Basel 1980.
- [63] Balek V., Götz J. in J. Götz (Ed.) Vol. 3, str. 351, Prod. XI. Int. Congress on Glass, House of Technology, Prague.
- [64] Balek V., Vobořil M.: Výzkumná zpráva, **Ů**JV-4727-M (1978).
- [65] Balek V., Jakeš D.: Sborník 9. celost. konf. o termické analýze, str. 67, Vysoké Tatry 1982.
- [66] Zaborenko K. B., Poljakov V. P., Šorošev J. G.: Radiochimija 7, 324 a 329 (1965).
- [67] Levina M. E., Šeršev B. S., Zaborenko K. B.: Radiochimyja 7, 480 (1965).
- [68] Čechovskich A. I., Nitzold D., Zaborenko K. B., Volfkovič S. I.: Žur. neorg. chim. 11, 1948 (1966).
- [69] Balek V.: Chemické listy 58, 1201 (1964).
- [70] Balek V.: J. Mat. Sci. 5, 166 (1970).
- [71] Thätner R., Zaborenko K. B.: Vestnik Mosk. Universit. Ser. Chim. str. 54, (1966).
- [72] Balek V.: Thermochim. Acta, v tisku.
- [73] Zaborenko K. B., Balek V.: Žur. neorg. Chim. 14, 1469 (1969).
- [74] Quet C., Bussière P., Fretty R.: C. R. Acad. Sci 275C, 1071 (1972).
- [75] Chleck D. J., Cucchiara .: Int. J. Appl. Rad. Isot. 14, 599 (1963).

- [76] Matzke Hj.: Int. J. Appl. Radiat. Isot. 27, 27 (1976).
- [77] Balek V., Dohnálek J.: Proc. int. confon durability of building materials, Espoo, Finland, 1984.
- [78] Tölgyessy J., Varga Š.: Talanta 17, 659 (1970).
- [79] Tölgyessy J., Varga Š.: Nukleárná analytická chémia, Alfa, Bratislava 1976.
- [80] Chleck D. J.: Trans. Am. Nucl. Soc. 5, 278 (1969).
- [81] Wilkins P. E.: Atompraxis 12, 391 (1966).
- [82] Jech C.: Proc. 2nd Int. Congres on Catalysis, str. 2285, Paris 1961.
- [83] Žabrova G. M., Roginskij S. Z., Šibanova M. D.: Kinet. Katal. 6, 1018 (1965).
- [84] Bekman I. N.: Thermochim. Acta, v tisku.
- [85] Jesenák V., Tölgyessy J., Varga Š., Síleš B.: Silikáty 15, 65 (1971).
- [86] Chleck D. J., Maehl R., Cucchiara O.: USAEC Report, Parrametrics Inc. N.Y. 2757-3 1963.
- [87] Dohnálek J., Balek V.: Silikáty 26, 363 (1982).
- [88] Jech C.: Int. J. Appl. Radiat. Isot. 8, 179 (1065).
- [89] Balek V., Thermochim. Acta 72, 147 (1984).
- [90] Balek V., Dohnálek J.: Silikáty 26, 231 (1982).
- [91] Balek V., Dohnálek J.: Cement and Concr. Res., 13, 1, (1983).
- [92] Balek V., Dohnálek J.: Autr. osvědčení 214332.
- [93] Balek V., Šatava V., Dohnálek J.: Proc. Int. Congress on the Chemistry of Cement, Vol. 3., Th VI — str. 83, Paris 1980. [94] Balek V., Dohnálek J.: J. Mat. Sci 17, 2281 (1982).
- [95] Balek V., Dohnálek J., Emmerich W. D. in H. G. Wiedemann (Ed.) Thermal Analysis Vol. 1, str. 375, Birkhäuser Verlag, Basel 1980.
- [96] Chleck D. J.: Radiochemical Methods of Analysis, str. 273, IAEA Vídeň 1965.
- [97] Balek V.: J. Amer. Ceram. Soc. 53, 540 (1970).
- [98] Hüttig G. F.: Z. Elektrochem. 41, 52 (1935).
- [99] Fricke R., Dürr W.: Z. Elektrochem. 45, 254 (1939).
- [100] Beretka J., Ridge M. J.: Nature (London) 216, 973 (1967).
- [101] Jagitsch R.: Monatsh. Chem. 68, 1 (1936).
- [102] Jagitsch R., Maschin A.: Monatsh. Chem. 68, 101 (1936).
 [103] Hüttig G. F., Wörl H., Weitzer H. H.: Z. anorg. Chem. 283, 207 (1956).
 [104] Ichiba S.: J. Nucl. Sci. Technol. 2, 163 (1965).
- [105] Wolf G., Ochs L., Strassmann F.: in Radioisotopes in Scientific Research, UNESCO Conf. Paris 1957, Vol. 1, str. 516, Pergamon Press, London 1958.
- [106] Zaborenko K. B., Thätner R., Melichov L. L.: lzv. Vyšš. Učebnych Zav. Ser. Chim. 3, 288 (1966).
- [107] Balek V.: J. Thermal Anal. 12, 111 (1977).
- [108] Balek V., Doruška J.: Silikáty, v tisku.
- [109] Balek V., Doruška J., Vobořil M.: Pokroky v prášk. met s. 35 (1981).
- [110] Hahn O.: Ann. Chem. 440, 121 (1924).
- [111] Mackenzie R. C.: Předmluva ke knize Balek V., Tölgyessy J., Emanation Thermal Analysis, Akadémiai Kiadó Elsevier, 1984.

CRYSTALS — GROWTH. PROPERTIES AND APPLICATIONS (Kryštály pestovanie, vlastnosti a použitie), diel 7. Editor H. C. Freyhardt. Springer-Verlag Berlin, Heidelberg, New York, 1982. 148 str., 82 obr., 23 tab., cena 98, - DM.

Siedmy dielsérie o pokrokoch v oblasti postovanja kryštálov, ich vlastností a použitia (recenzia predošlého dielu: Silikáty 27, 84 (1983) je venovaný jednak analytickým metódam, jednak príprave monokryštálov materiálov s vysokým bodom topenia. Obsahuje štyri prehľadné referáty:

1. W. Neumann, M. Pasemann, J. Heydenreich: Vysokorozlišovacia elektrónová mikroskopia kryštálov, 46 strán, 155 odkazov.

2. K. Yagi, K. Takayanagi, G. Honjo: In-situ UHV elektrónová mikroskopia povrchov, 28 strán, 82 odkazov.

3. G. S. Knapp, P. Georgopoulos: EXAFS štúdium kryštalických materiálov, 31 strán, 46 odkazov.

4. E. V. Savickij, G. S. Burchanov, V. M. Kirillova: Monokryštály žiaruvzdorných a vzácnych kovov, zliatín a zlúčenín, 42 strán, 133 odkazov.