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Mathematical modelling was used to describe the course of convective drying
of a ceramic body. The procedure is based on the assumption that the ceramic
body comprises a binary mixture of incompressible components in which the
moisture transfer is due to diffusion and heat conduction. The respective
balance and constitutive equationsare solved for theinitial and boundary cond:-
tions defining the operation of convective body drying. Solutions of the equations
provided models of convective body drying both involving and not involving
thermodiffusion.

INTRODUCTION

Operations involving water transfer in a saturated ceramic mix are typical of
classical ceramic technology. The course of these operations can be studied and
described in two ways. The first is the experimental method based on empirical
determination of parameters and their dependence on various mutually
variable quantities. This procedure is demanding as regards the number of
experiments and does not always lead to optimum parameters of the operation in
question. The second procedure, that of mathematical modelling, is based on
determining the principle of the operation being described and on mathe-
matical description of its course with defined materials. In a simplified way,
the procedure can be summarized into the following points [1]:

1. Derivation of elementary balance and constitutive equations and determi-
nation of their material constants provide a general model of the description.

2. On the basis of an analysis of the technological operation one obtains the
initial and boundary conditions necessary for the resolving of the transfer
equations.

3. Resolving of the equations provides a mathematical description of the course
of the technological operation.

4. A comparison of the model with experiment will show whether the simpli-
fying assumptions and the choice of initial and boundary conditions were
suitable.

The present study has the aim to demonstrate application of the procedure
mentioned above for obtaining and verifying a mathematical model of convective
drying of plate-shaped ceramic bodies in a medium of constant parameters,
and to determine the effect of thermodiffusion on water transfer in the course
of drying.
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F. Oujiii, J. Havrda:
Balance and constitutive equations

The saturated ceramic mix is defined as a binary isotropic mixture of incom-
pressible components (ceramic material and water) involving simultaneous trans-
fer of moisture and heat. The moisture and heat balance can be expressed by
the following equations [2]:

%C — —div h, (1)
DT . '
__Dt_ = —le q, (2)

where—D— = 68—t+ u grad represents substantial differentiation of the quantity

Dt
being balanced, h is the moisture flux by volume, q is the heat flux density,
C is the moisture content by volume, 7' is temperature and u is the mean
mixture relaxation flux rate. To describe the water and heat transfer in
ceramics use is made of the situation in which the individual components in
the mix are in motion, whereas the medium proper remains stationary, i.e.
u = 0. Equations (1) and (2) then have the forms:

3,0 = —div h, (3)
oc; 0T = —div q, (4)

where 0; represents partial derivative in terms of time. The moisture and heat
flux in saturated ceramic mix can then be described by linear constitutive
equations for moisture and heat flux in the forms:

h= —Dgrad C — Dy grad T — Dp grad P, (5)
q= —Agrad T, (6)

where P is pressure, D, Dr, Dp are the coefficients of diffusion, thermodiffusion
and barodiffusion respectively, and A4 is the coefficient of thermal conductivity.
On introducing the term of effective diffusion coefficient, i.e. a coefficient whose
value includes the effect of capillary barodiffusion [3]:

D+ = D+ Dp dcP, (7)
equation (3) will have the form:
h= —D*grad C — Dpgrad T. (8)

If the moisture and heat transfer are unidimensional, equations (3), (4),
(6) and (8) can be expressed in the forms:

8:C = 0z (D* 920 + Dy 05T), (9)
0cp 0T = 0z (A 85T, (10)

h = —D+ 3,0 — Dr 8,T, (11)
q= —10,T. (12)
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Convective Drying of Ceramic Body, 1

On the assumption that the material variables in equations (9 and 10) are
constants, the equations can be written as follows:

0,0 = D+ 022C + Dy 02T (13)
atT =a 83;1;T, (14)

where a = A/cpp is the thermal conductivity of the mix.

Initial and boundary conditions

To resolve equations (13) and (14), one has to know the initial and boundary
conditions which follow from the analysis of the given technological operation
[4]. The aim is to obtain a mathematical model of convective drying of ceramic
bodies.

The course of convective drying of ceramic body in a medium of constant
parameters, i.e. temperature 7', rate of air flow v and relative air humidity ¢ can
be expressed by the schematic diagram in Fig. 1. Curve 1 represents the time

-
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Fig. 1. Curve of body drying in a mediaum of constant parameters.

dependence of drying rate m and curve 2 the time dependence of the mean
body temperature 7. The diagram indicates that three characteristic periods of
time can be distinguished [5]:
I — the period of heating through,
IT — the period of a constant drying rate,
IIT — the period of a decreasing drying rate.

From the standpoint of a safe course of drying, the quality of green ware
isdecisively affected by the course of periods I and II. Moreover, these two periods
comply with the assumption of the binary mix introduced in the formulation of
the problem. Let us therefore pay attention to these two characteristic periods.

Period I involves an increase in the drying rate and the rate of heating the
body, which results in the creation of moisture and temperature gradients
in the body. The end of the first period can be characterized by attainment of
a constant rate of drying and the body temperature, which is equal to the
temperature of adiabatically saturated air. Period II is characteri zed by a con-
stant drying rate and a constant body temperature. The end of this period is
indicated by the critical point.
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In the course of drying, the water evaporates from the body surface into the
ambient atmosphere, which results in water transfer from the body interior
towards the surface. As a consequence of this water transfer, a moisture gradient
arises in the body and is responsible for internal stress. This situation is schemati-
cally represented in a simplified way in Fig. 2. The given findings show that
knowledge of the time development of moisture and temperature profiles in the

c Pressure
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-L 0 L -L 0 L
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Fig. 2. Schematic diagram of the development of stress in a body.

body in terms of the size of the surface moisture and temperature fluxes
(drying rate and heating rate respectively) will be decisive for a correct
description of the convective body drying operation.

To formulate the initial and boundary conditions, let us consider a body
2L in thickness, with a generally defined moisture and temperature distribution
at time £ = 0. This condition can be mathematically expressed by the initial
condition:

t=0 2e(0,L) C@) =fx) (15)
T(z) = falx), (16)

where L is the half body thickness. The boundary conditions can then be formula-
ted by means of assumed knowledge of the surface moisture and heat fluxes
and the symmetry conditions, i.e.:

t>0 z=0 0,C =0,T =0 (17)
x=L  hr(t) = —D+(0,0)r — Dr(0:T)L (18)
qr(t) = A0zT)L + 7 . hel?), (19)
C - f2(xJ T C T
P 7 - q,(t)
/ \ 0
C: fplx)
Co [ — n, (1)
0 L 0 L
A 6

Fig. 3. Schematic diagram of initiul and boundary conditions in a body.
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Convective Drying of Ceramic Body, I

where the second term on the right-hand side of equation (19) expresses the
consumption of heat due to evaporation of water from the body surface. The
initial and boundary conditions defined in this way are represented aby the
simplifying schematic diagram in Fig. 3. A shows that the initial mean moisture
distribution €y and the initial mean temperature distribution 7'y, for which it
holds that 0,Cy = 0,79 = 0, i.e. Cp and T = const., can be defined in the body
at time ¢t = O; these are defined as follows:

I
00 = L1 gfl(x) dx, To = L ;ifz(x) dy (20)

To simplify the expression and control the model, it is convenient to convert
the transfer equations into dimensionless forms. On introducting

& = (Co— C(2)/Co, @
T = (T(z) — To)/T, (22)
T = at/L?, " (23)
&= x/L, (24)
Fa(§) = (Co — f1 (2))/Co, (25)
Fi(¢) = fz — To))/To, (26)
Co = JFI(S) dé, (27)
1
To = gFé(E) d¢, (28)
equations (13) and (14) will have the forms:
3:C = n 8:eC — qy 3T, (29)
0:T = ¢ T, (30)
where n = Dt/a, (31)
6 = Dr/D+, (32)
y = 8T0o/Co, (33)
and the initial and boundary conditions will have the forms
=0, £e(0]1) C=F (), (34)
T = Fy(&), (35)
1<0, £=0 9:.0=20T=0, (36)
E=1 p=0a0—yar, , (37)
Br = 0T — nufa, (38)
where
Br = qu(t) L/AT,, (39)
B2 = hi(t) L/ D+C,, (40)
= rColocyTo. (41)
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THE MODEL OF CONVECTIVE BODY DRYING INVOLVING
THERMODIFFUSION

The solutions of equations (29) and (30) for conditions (34 through 38) can
be obtained by Laplace’s transformation in the following form [6]:

- 2

¢ = kzl Z Akszz + BthM: (42)
2 2

T =kzl Z Pri + BfQui, (43)

where
A% = (—=1)i (1 — 3)/(s} — 92),
Ap = Bl = (Vi y/0} — ),

1
Bfy = (—1F (1 — »)(} — #),

(

(
i (486)
A% =0, (47)
A% = (=1 (/g — v/ (v} — 13), (48)
B, = (=1) pm(v2— 1)/(v} — 43), (49)
B = (=1)in(l/n — 2}) — pyn/(v] — %), (50)
= (L + 1/9) + (=1F (1 + Un)2 — 4/m)1/2)/2, (51)

P = jm(s) 4 +2 3 cos (nrf) exp (—nind) X
X iFk(E) cos (nm€) dé  and (52)
Quxe = [ Bu(r) a7 + 3 (—1)" cos (nf) X
X exp (—nznwgm)of Bi(') exp (n2n2viye’) do). (53)

If the initial moisture and temperature distribution in the body is homoge-
neous, conditions (15) and (16) have the form

t=0 20,L) Cl) = Co
() = T, (54)

Rearrangement of equations (42) and (43) yields the moisture and temperature
profiles in the body:

- 2
¢=3 3 BiOu. (55)

[ [\/]m I [\/jm

2
Z Bi.Qr: - (56)

All the symbols in these equations have the same significance as those in the
previous instances.
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Convective Drying of Ceramic Body, 1

THE MODEL OF CONVECTIVE BODY DRYING BY NEGLECTING
THERMODIFFUSSION

Thermodiffusion is a water transfer process whose driving force is the tempera-
ture gradient arising in the ceramic body. Determination of the effect of this
phenomenon on water transfer in the drying of ceramic materials is so far
not a quite clear problem. The determination can be based on comparing
models of drying involving thermodiffusion with those neglecting thermodiffusion.
The latter can be obtained by solving equations (29) and (30) while neglecting
the cross terms for conditions (34 through 38). The corresponding time
developments of temperature and moisture profiles will have the forms:

~ 1 T
T= (J; Fy(8) d& + g [Bulr') — pnBa(z))1dv’ +

+2 ilcos (nmc&) {exp (—n?n27) ijl(S) cos (nmé) d&} +

+2 il(—l)" cos (nrf) {exp (nznzf)i [B(r') — (67)
~ pale')] exp (nmoe') dv'),
0= Fue) e+ | Bae) & + 55 cos (nrt) x

X exp (—ntn27) {] Fa(f) cos (nmf) d§ +
0
+ (=) | a(7’) exp (nemiyr’) drY, (58)
0

where the symbols used in the equations have the same significance as those
used in the previous chapter. Adjustments identical with those used in the
previous chapter will yield solutions corresponding to the initial homogeneous
moisture and temperature distribution in the body.
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KOHBEKTUBHAA CYIIKA KEPAMMWYECKOTIO TEJIA,
YACTb I — MATEMATUHYECKAA MOJEJIb
Oparrumex Oyupxn, Upxn TaBpoa

ragedpa mexnoaoesuu cusuramos, Xumurko-merronoeusecKui uKcmumym
166 28 Ilpaza

Mojienlh KOHBEKTHBHOH CYIIKM HACHIIEHHOIO KEPaMUIeCKOI'0 Tesla OCHOBEIBaeTCS Ha
TPeJN OJIOMKeHHH, 9T0 B TeJle IPOMCXOAUT O0mas mepegada Baard Auddysned B TemaAa TemIo-
NpoBOAHOCTHIO. IIpH [NABHWX HpPEANO;I0KeHHAX ORJIM HOJNydYeHH OajlaHCEBEHe H KOHCTH-
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TYTHBHbIe YpPaBHeHAA 060HX Mpomeccop. IlyTeM HX pelleHMA 1A HAYAIbHEX K KOHTYPHEX
YCJIOBHi, oUpefieIAIIUX ONepPandi0 KOHBeKTHBHOA CYMIKM HACHOIeHHOTO KepaMHYecKOTOo
TeJjla, OHJIO NOJIy9eHO MAaTeMATMYECKOe ONHCaHHe Xoja omepaiud BKJIOYas BIAHAHHE Tep-
monuddysnn Ha mepejavy BiraxHOCTH B cMecH. Mofiedlb ompefienserca ypaBHeHAAME (42 —53).
IlpeneOpexenneM BauAHAS TepMoAmdpdysnm Ha mepefady BIAMKHOCTH HPH CYIMKe B peme-
HEeM ypaBHeHmid mepejadym OnJiia momydeBa Mopein 6Ge3 Tepmonmddysmm, ompefesiseMad
ypaBeeBnaME (57) 7 (58). :

Puc. 1. Hpusasa cywru meaa 6 cpede ¢ ROCMOAHHBIMU NADAMEMPAMU.
Puc. 2. Cxema 603HUKHO6CHUR HANDANCCHUR 6 MeEAE.
Puc. 3. Cxema naxvarvisixr u KOHMYPHLIZ Ycaosull ¢ meae.

KONVEKCNT SUSENf KERAMICKEHO TELESA, CAST I —
MATEMATICKY MODEL

FrantiSek Oujifi, Jifi Havrda

Katedra technologie silikdte, Vysokd skola chemickotechnologickd, 166 28 Praha 6

Model konvekéniho suSeni nasyceného keramického télesa je zaloZen na piedpokladu, Ze v t&-
lese dochézi ke spole¢nému sdileni vlhkosti difuzi a tepla vedenim. Za téchto predpokladu
byly ziskény zékladni bilanéni a konstitutivni rovnice obou procesti. Jejich feSeni pro poéiteéni
a vkrajové podminky definujici operaci konvekéniho suSeni nasyceného keramického télesa byl
ziskdn matematicky popis prubshu operace zahrnujici vliv termodifize na pienos vlhkosti ve
smési. Model je definovén rovnicemi (42—53). Zanedbénim vlivu termodifiize na pfenos vlhkosti -
pii suSeni a feSenim prenosovych rovnic byl ziskdn model bez termodifuze, definovany rov-
nicemi (57) a (58).

Obr. 1. K¥ivka sudeni télesa v prostfedi s konstantnim: parametry.
Obr. 2. Schéma vzniku pnutt v t&lese.
Obr. 3. Schéma poédteénich a okrajovych podminek v télese.

0. G. MARTYCENKO, A. G. SEMENOV, JU. A. SOKOVISIN: PARAMETRICESKIE
METODY V SVOBODNOJ KONVEKCII (Parametrické metody ve volné konvekci). Nauka
i technika, Minsk 1984, 239 stran, cena 1r. 70 k., 22 Kés.

Kniha se zabyvéd pfenosem tepla volnou konvekei mezi vertikdlnim povrchem a okolni
tekutinou, a to pro nekonstantni teplotu povrchu. UvaZuje se pouze stacionérni stav a uloha
se Tesi ve dvou rozmérech pro polonekoneénou sténu s poédtkem na dolni hrané. Pro FeSeni
hraniéni vrstvy se aplikuji razné varianty parametrickych metod, které se postupné zobeciiujf.
Je odvozena univerzélni rovnice pro vypotet parametrickych funkei a jsou diskutovéna riznéa
piibliZeni, jejich presnost a rychlost konvergence. Z numerickych vypoéti plyne vysoké
presnost uvedené metody.

Zajimavym roz8ifenim je feSeni tiloh volné konvekce spojené s kondukei v pevné sténd.
To umoziiuje fadu konkrétnich aplikaci, napf. vypodet svislého Zebra ohiivaného zespodu,
svislé desky s vnitfnimi tepelnymi zdroji, pevné stény rozddlujici dvé oblasti s volnou kon-
vekei, apod.

V zévéru knihy jsou piiklady inZenyrskych vypoéta tykajicich se vysokoteplotnich a kryo-
gennich armatur a raznych &4sti elektrickych zarizeni.

Schill
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