MELITELNOST A ENERGIE ZDROBŇOVÁNÍ

LUDVÍK JIROUSEK*, KAREL ŠPIČÁK

Katedra technologie silikátů, Vysoká škola chemicko-technologická, Suchbátarova 5, 166 28 Praha 6

*Výzkumný ústav elektrotechnické keramiky, Pospíšilova 281, 500 64 Hradec Králové

Došlo 12. 2. 1986

Při dlouhodobém suchém i mokrém mletí písku v laboratorním mlýnu a určování měrného povrchu různými metodami bylo konstatováno, že naměřené hodnoty technické melitelnosti závisí nejen na podmínkách mletí, ale i na metodách posuzování výsledků mletí.

Pro posouzení se ukázal být vhodným měřítkem měrný povrch určený ze sedimentační analýzy a z adsorpce dusíku.

Technická melitelnost není materiálovou konstantou, mění se v průběhu zdrobňování. Je vyjádřena pro dané stadium mletí jako melitelnost efektivní, diferenciální, resp. diferenční nebo pro celý interval mletí jako dvouparametrová mocninová funkce měrného povrchu.

Poměr melitelností standardního materiálu za sledovaných podmínek k melitelnosti téhož materiálu za standardních podmínek je označen jako melivost. Melivost mokrého mletí je větší ve srovnání se suchým mletím a je přibližně lineární funkcí měrného povrchu.

ÚVOD

Téměř každá publikace o zdrobňování se dotýká palčivé otázky vysoké spotřeby energie této operace. Zvláště při jemném mletí je tato spotřeba neúměrně velká a docílený výsledek (posuzovaný obvykle přírůstkem povrchu nebo poklesem příslušné střední velikosti zrna) neekonomický. Vynaložená práce je závislá nejen na materiálu samém, ale velmi výrazně i na zařízení a jeho provozních parametrech určujících předávání energie. Stanovit melitelnost jako materiálovou vlastnost, tj. od pracovních podmínek izolovanou schopnost materiálu mechanicky se zdrobňovat, je prakticky nemožné. Výsledky jsou kromě toho poplatné zvolenému kritériu účinku mletí i metodě jeho určování [23]. Při mletí probíhá vedle zdrobňování též amorfizace povrchu zrn a celkové zvýšení vnitřní energie produktu. Je-li toho využíváno v následujících technologických operacích, vychází účinnost a tedy i melitelnost mletí podstatně větší [18].

Melitelnost materiálu bude v této práci pojata z technického hlediska (jako technická, resp. standardní charakteristika), jako přírůstek povrchu docílený vynaloženou prací [1] za zvolených podmínek. Závisí na celém komplexu fyzikálně mechanických vlastností, jako jsou pevnost, pružnost, tvrdost, křehkost, štěpnost, houževnatost. Uvedené vlastnosti jsou určovány u silikátových materiálů nejen mineralogickým složením, strukturou, texturou, nehomogenitami a poruchami, ale i způsobem namáhání, jako je tah, tlak, smyk, a orientací sil, nebot zmíněné vlastnosti materiálu nejsou izotropní. Tyto vlastnosti ovlivňuje i rychlost zatěžování a panující teplota a mechanické "zpracování" během mletí. Práce při mletí závisí dále na zrnitosti kolektivu sestávajícího zpravidla z různě velkých zrn a jeho pohybových vlastnostech, vnitřním tření, kohezi. Energetické vztahy mají proto charakter statistický. Při mletí má důležitý vliv i prostředí [20]. Rozdílná situace je při suchém a mokrém mletí v suspenzi. Významně se uplatňují malá množství intenzifikátorů mletí, která zpravidla potlačují aglomeraci, zvyšují sypkost — tekutost produktu nebo peptizují a dispergují suspenzi.

Pro obtížnost určování melitelnosti se volí často relativní koeficient melitelnosti $K_{\rm m}$, který je vyjádřen poměrem převrácených mlecích prací, tj. poměrem mlecí práce standardu $W_{\rm st}$ k mlecí práci vzorku W při mletí za stejných podmínek. Vychází se obvykle ze stejně velkých navážek i ze stejné počáteční jemnosti standardu a vzorku a mele se na stejnou konečnou jemnost. Pro splnění stejných podmínek mletí nutno volit standard tak, aby jeho vlastnosti byly blízké zkoušeným látkám. Má pak např. při stejné výchozí zrnitosti i stejnou sypnou hmotnost. Za standard nutno volit proto materiál příbuzný zkoušenému vzorku.

Protože koeficient melitelnosti je poměrem prací W nebo měrných prací w (kWh.kg⁻¹), stačí k jeho vyjádření použít veličin jim úměrných, jako jsou u obvykle používaného kolového mlýna mlecí doba t(h), počet vykonaných otáček z(1), nebo výrobnost Q (kg.h⁻¹), která je práci nepřímo úměrná:

$$K_{\mathbf{m}} = \frac{W_{st}}{W} = \frac{w_{st}}{w} = \frac{t_{st}}{t} = \frac{z_{st}}{z} = \frac{Q}{Q_{st}}.$$

Relativní koeficient melitelnosti standardu je tedy jednotkový, materiál snáze melitelný má koeficient melitelnosti větší než 1.

Jemnost vsázky a produktu se někdy posuzuje nepříliš dokonale zbytkem na zvoleném sítu (R_x) . Vhodnějším měřítkem je "měrný povrch vztažený na objem" – (povrchová hustota) S_V (m⁻¹), který je za předpokladu kulového nebo krychlového zrna šestinásobkem převrácené hodnoty harmonického průměru velikostí zrn počítaného na základě objemového nebo hmotnostního zastoupení zrn. Harmonický průměr takto definovaný bývá právě pro tento vztah k měrnému povrchu nazýván přirozeným (naturálním) průměrem x_{nat} (v západní literatuře Sauterovým průměrem)

$$S_V = 6 \frac{1}{x_{\text{nat}}} = \frac{6}{100} \sum_j \frac{p_j}{x_j},$$

kde x_i je střední hodnota mezí *j*-té frakce s mezemi x_i a x_j ,

 p_i procentové zastoupení této frakce

Měrný povrch se obvykle určuje některou z přímých metod, nejlépe plynovou adsorpcí. Různé metody dávají však podstatně rozdílné hodnoty [9].

Vhodnějším vyjádřením melitelnosti, než je relativní koeficient melitelnosti, by byla převrácená hodnota měrné mlecí práce, která je koeficientem ∇ tzv. mlecích "zákonech", přesněji mlecích hypotézách [4,14].

Nejčastěji používaná je klasická povrchová hypotéza Rittingerova, podle níž je teoretická práce W_0 úměrná nově vzniklému povrchu A:

$$W_0 = \lambda A.$$

Koeficientem úměrnosti je měrná povrchová práce λ , která odpovídá energii nového povrchu. Její převrácená hodnota je teoretická povrchová melitelnost podle Rittingerova vztahu Me_R . Je přírůstkem povrchu získaným jednotkou práce

$$Me_R = \frac{1}{\lambda} = \frac{A}{W_0}$$

Povrchová energie však nepočítá s energií na pružné deformace nevedoucí k rozrušení, která se v konečné formě projeví v ohřátí a je u reálných materiálů významná [19]. Podobně neuvažuje i ostatní energetické ztráty. Oproti tomu převratná hodnota technické nebo standardní zdrobňovací práce, při které se uvažuje součet všech prací W spojených se zdrobňováním, je prakticky určitelná technická nebo standardní povrchová melitelnost. Respektuje práci nejen na nový povrch, ale i veškeré práce ostatní:

$$Me = rac{1}{\lambda_{ ext{tech}}} = rac{A}{W} = rac{S}{w}$$
 $Me = \eta rac{1}{\lambda} = \eta Me_R$,

kde η je účinnost.

Technická melitelnost je mnohem menší než teoretická ($\eta \ll 1$), neboť neúčinné ztráty energie značně převažují. U křemene je udávána [5] hodnotou 9500 m². kWh⁻¹, resp. 2,6. 10⁻³ m². J⁻¹. V. P. Romanin [22] uvádí účinnost v kulovém mlýnu 0,06%, ve válcovém mlýnu 0,4%, v přístroji s padající koulí 0,9%.

Povrchová teorie platí jen přibližně a pouze do určité meze, která je definovatelná např. příslušnou hodnotou měrného povrchu. Nad ní roste měrný povrch méně progresivně, než by odpovídalo vynakládané práci. Podle Olevského [5] na základě dat Tovarova, který sledoval mletí do 640 m². kg⁻¹, platí u písku pro mez proporcionality $S_p = 250 \text{ m}^2 \cdot \text{kg}^{-1}$, $w_p = 0.025 \text{ kWh} \cdot \text{kg}^{-1}$, u ostatních materiálů, vápence, slínku, uhlí, strusky jscu hodnoty w_p menší než poloviční (0,005–0,012 kWh · kg⁻¹). Z uvedených dat S_p a w_p plyne pro melitelnost křemene 1 · 10⁴ m² · kWh⁻¹, což je v dobré shodě s výše uvedenou hodnotou 9,5 · 10³ m² · kWh⁻¹. Hukki uvádí, že Rittingerův vztah se dá dobře použít v rozmezí 10 µm až 1 mm [21].

Většina pozdějších prací vychází opět z teorie povrchové, jako např. Zeisel [11]. O objemovou teorii se opírá Lesin [12], ale respektuje zpevňování s rostoucím měrným povrchem.

Při těchto úvahách je třeba rozlišovat energii na vlastní zdrobňování a na pohon zařízení. Energie na pohon mlýna není sama charakteristikou materiálu. Velikost částic nemá prakticky žádný vliv na příkon mlýna, tento zůstává i při periodickém mletí konstantní; energetická spotřeba je úměrná době mletí [16].

Protože technická melitelnost závisí na podmínkách zdrobňování, je nezbytné pro její určování volit standardní přístroj. Takovým zařízením je vhodný laboratorní mlýn [23]. Sovětská metoda VTI používá kulový mlýn. Kroužkový axiální kuloběžný mlýn je používán klasickou metodou podle Hardgrova v USA [19]. Z něho se vyvinul moderní Segerův přístroj, na němž sledovali melitelnost slínků R. Froněk [6], F. Kůrka [7, 13], Z. Zadák a J. Žežulka [8]. Tlukadlový mlýn byl zaveden ve Výzkumném ústavu energetickém v Brně [3, 17].

Vzhledem k předcházejícím problémům s definováním jednoznačného vztahu pro mlecí práci, pokusili jsme se v tomto sdělení o jiný přístup k řešení.

Uvážili jsme obecný vztah mezi prací a vzniklým povrchem:

$$W = f(A).$$

Po vztažení práce a povrchu na hmotnost m (kg) platí

$$w = f(S) \Rightarrow S = S(w),$$

kde w je měrná práce (J. kg⁻¹) nebo (kWh. kg⁻¹).

Derivace této funkce je funkce melitelnosti. Cílem je určit její parametry

$$Me(w) = S'(w) = \frac{\mathrm{d}s}{\mathrm{d}w}$$
.

EXPERIMENTÁLNÍ ČÁST

Materiál a pracovní postup

Za pokusné melivo byl vybrán úzce vytříděný křemičitý písek T 25. Jeho zrnitost byla určena sítovým rozborem provedeným za mokra (tabulka I). Hlavní podíl zrn má mezi 0,1 až 0,4 mm, a to 91%. Vypočtený měrný povrch za předpokladu kulových zrn je 12 m². kg⁻¹.

Tabulka I Sítový rozbor křemičitého písku T 25

\Pr ůměr x (mm)	Podíl p (%)	Propad y (%)
0,71—1,00	0,40	100.00
0,40-0,71	5,80	99,60
0,20-0,40	42,10	93,80
0,10-0,20	48,90	51,70
0,08-0,10	1,30	2,80
0,063-0,08	0,50	1,50
0,040-0,063	0,20	1,00
pod 0.040	0,80	0,80

Mletí bylo prováděno v laboratorním bubnovém mlýnku typu L 224/1 o objemu 5 litrů s vnitřním průměrem 210 mm (ČSN 72 5621). Mlelo se směsí porcelánových koulí průměru 35 mm (1,1 kg) a průměru 20 mm (0,9 kg). Frekvence otáček byla 75 min⁻¹.

Podle vztahu

$$n_{\mathbf{k}} = 42,3(D-d_{\mathbf{k}})^{-1/2},$$

kde n_k jsou kritické otáčky (min⁻¹),

D průměr mlecího prostoru (m),

 $d_{\mathbf{k}}$ průměr koule (m),

odpovídá tato frekvence 74,2% frekvence kritické pro uvedené velké koule a 77,3% kritické frekvence pro koule malé. Objemový stupeň plnění mlýna mlecími tělesy byl f = 0,317; stupeň zaplnění mezer mezi koulemi melivem [2] (tj. poměr sypného objemu meliva k objemu mezer v náplni mlecích koulí) byl na počátku mletí 2,041. Vyplývá z 2,0 kg mlecích těles uvedených rozměrů a stejné hmotnosti meliva. Mlýn byl poháněn elektromotorem o jmenovitém příkonu 260 W, napojeným přes stabilizátor napětí.

Sledované mlecí doby byly zvoleny v geometrické posloupnosti od 4 do 250 h s kvocientem 2. Vždy po uplynutí příslušného času bylo melivo vyjmuto, zhomogenizováno a odebrán vzorek pro stanovení zrnitosti a měrného povrchu. Takto bylo získáno 7 vzorků — pokusných bodů. Spobřeba práce W (kWh) byla odečítána na elektroměru. Mletí za mokra bylo prováděno stejným způsobem, ale po přídavku ještě 2 l vody, takže tzv. mlecí poměr byl $m_k: m_m: m_v = 1: 1: 1.$ V uvedené časové posloupnosti bylo melivo zachycováno na filtru v Büchnerově nálevce, vysoušeno a určována zrnitost a měrný povrch. Zrnitost byla určována jednak sítovým rozborem prováděným za mokra, jednak pipetovací sedimentační metodou podle Andreasena. Výsledky byly přepočteny na měrný povrch. Měrný povrch byl pak určován přímou metodou adsorpcí dusíku, tzv. chromatografickým způsobem podle Nelsena a Eggertsena.

Výsledky měření a jejich interpretace

Získaná číselná data jsou sestavena v tabulce II a graficky znázorněna ve formě časových závislostí určeného měrného povrchu S_u na době mletí t v obr. 1.

Způsob mletí	Čís.	Doba mletí	Měrná mlecí práce	S_u určený měrný povrch (m² . kg			
	měř.	<i>t</i> (h)	<i>w</i> (kWh . kg ⁻¹)	sítový rozbor (S)	Andreasen (A)	Adsorpce (D)	
Za sucha	1	4	0,228	29,2	143,8	155	
	2	8	0,56	39,0	171,8	225	
	3	16	1,12	53,4	213,2	335	
	4	32	2,25	73,9	280,0	526	
	5	64	4,48	96,7	385,0	775	
	6	128	8,96	109,9	550,0	1 113	
	7	256	17,92	112,5	722,3	2 080	
Za mokra	1	4	0,275	30,0	142,2	140	
	2	8	0,55	49,0	178,0	260	
	3	16	1,10	85,6	246,0	510	
	4	32	2,19	111,5	369,0	995	
	5	64	4,37	112,1	594,2	1 860	
	6	128	8,74	112,6	959,7	3 385	
	7	256	17,49	113,1	1 234,0	6 033	

Tabulka II

Průběh mletí

Z tabelárních dat i grafů vyplývá diametrální odlišnost měrných povrchů stanovených různou metodou [9, 10]. Čím je metoda jemnější, schopnější reagovat i na nejmenší částice a případně jejich nerovnosti, tím je určený povrch větší.

Sítový rozbor je pro posuzování jemného mletí málo vhodný. Za poměrně krátkou dobu, asi po 50 h mletí nevykazuje již další růst měrného povrchu, dosahuje se zdánlivé meze mletí. U dat ze sedimentačních rozborů se dospívá do obdobné situace teprve po cca 250 h mletí. Data měrných povrchů z adsorpce dusíku mají však v této době při docilovaných hodnotách při suchém mletí přes 2, při mokrém přes 6 tisíc m². kg⁻¹ ještě vysoce vzestupný charakter, který v nejmenším nesvědčí o dosahování meze mletí.

Obr. 1. Růst měrného povrchu; S_u — určený měrný povrch, t — doba mletí, w — měrné mlecí práce, D — adsorpce, A — Andreasen, S — sítový rozbor. Indexy: s — suché mletí, m — mokré mletí.

Relativní koeficient melitelnosti a melivosti

Vezme-li se suché mletí za standardní, je možné počítat relativní koeficient melitelnosti $K_{\rm m}$ pro mokré mletí z jednotlivých měrných prací $w_{\rm s}$ a $w_{\rm m}$, potřebných k docílení stejného nového měrného povrchu S, získaného z pokusně určeného měrného povrchu odečtením počátečního měrného povrchu S_0 , který je cca 12 m². kg⁻¹. Hodnoty nového měrného povrchu $S = S_{\rm u} - S_0$ jsou uvedeny v tabulce III a IIIa. Relativní koeficient melitelnosti zárisí ze měrného

Relativní koeficient melitelnosti závisí na měrném povrchu

$$K_{\mathbf{m}}(S) = \frac{w_{\mathbf{s}}(S)}{w_{\mathbf{m}}(S)},$$

kde w_8 je měrná práce (kWh.kg⁻¹) pro standardní mletí, za které bylo zvoleno mletí za sucha,

 w_{m} měrná práce posuzovaného mletí, tj. mletí za mokra.

Takto vypočtené relativní koeficienty melitelnosti je možno označovat jako relativní koeficienty melivosti neposuzuje-li se materiál, ale různé podmínky mletí. Podmínkami mletí mohou být např. různé konstrukce mlýna nebo různá mlecí tělesa. Jedná se pak o různou melivost mlýnů nebo mlecích těles, určovanou prostřednictvím vhodně zvoleného standardního materiálu.

Tytéž koeficienty by bylo možné vyjádřit rovněž z efektivních melitelností a podobné z diferenčních nebo diferenciálních melitelností. Diferenční melitelnosti jsou přibližným vyjádřením diferenciální melitelnosti ve středech uvažovaných intervalů měrných povrchů.

Melitelnost a energie zdrobňováni

Tabulka III	
Nové měrné povrchy $S~({\rm m^2}$. kg^- l) a diferenční melitelnosti $Me_{ij}~({\rm m^2}$. k	Wh-1

	×.,	Měrná	Nový měrný povrch $S = S_{změřený} - S_0 (m^2 \cdot kg^{-1})$ Me _{ij} = $(S_j - S_i)/(w_j - w_i)$ $S = (s_i + s_j)/2$									
Způsob mletí	Cís.	w	sítov	sítový rozbor (S)			Andreasen (A)			adsorpce (D)		
		(K VV II)	s	Me	s	S	Me	8	S	Me	s	
Za sucha			0	60,7	8,5	0	470	65,8	0	510,7	71,5	
	1	0,28	17,0	35,0	21,9	131,6	100	145,6	143	250,0	178,0	
	2	0,56	26,8	25,7	34,0	159,6	73,9	180,3	213	196,4	268,0	
	3	1,12	41,2	18 ,3	51,5	201,0	59,6	234,4	323	170,5	418,5	
	4	2,24	61,7	10,2	73,1	267,8	46,9	320,3	514	111,2	638,5	
	5	4,48	84,5	2,95	91,2	372,8	36,8	455,3	763	75,4	932,0	
	6	8,96	97,7	0,29	99,0	537,8	19,2	624,0	1 101	107,9	1 584,5	
	7	17,92	100,3			710,0			2 068			

Tabulka IIIa

Nové měrné povrchy S (m² . kg⁻¹) a diferenční melitelnosti Me_{ij} (m² . kWh⁻¹)

7		Měrná		No [.] M	vý měri [eij = (ný povrel (ر S و — S s	$h S = S;$ $/(w_j - u)$	změřený () S	- S0 (m² = (8; +	. kg ⁻¹) s;)/2		
zpusob mle tí	Čís.	práce w	sítov	sítový rozbor (S)			Andreasen (A)			adsorpce (D)		
		(kWh)	s	Me	S	S	Me	S	S	Me	S	
Za mokra			0	64,7	8,9	0	472,7	65,0	0	465,5	64,0	
	1	0,275	17,8	69,1	27,3	130,0	130,2	147,9	128	436,4	188,0	
	2	0,55	36,8	66,5	55,1	165,8	123,6	123,6	248	454,5	373,0	
	3	1,10	73,4	23,8	86,4	233,8	112,8	295,3	498	445,0	740,5	
	4	2,19	99,3	0,28	99,6	356,8	103,3	469,4	983	396,8	1 415,5	
	5	4,37	99,9	0,11	100,2	582,0	83,6	764,8	1 848	349,0	2 610,5	
	6	8,74	100,4	0,06	100,7	947,5	31,1	1 084,7	3 373	302,6	4 697,0	
	7	17,49	100,9			1 221,8			6 021			

Hodnoty měrné práce vždy pro tentýž měrný povrch získaný mletím za sucha a za mokra je možno odečíst z graficky vyrovnaných vztahů $S(w_s)$ a $S(w_m)$, jak je ukázáno na výsledcích měrných povrchů určených Andreasenovou sedimentační metodou. Příslušný graf je na obr. 2, odečtená data a vypočtená K_m jsou v tabulce IV.

Obr. 2. Nový měrný povrch v závislosti na měrné práci; S — nový měrný povrch, ostatní symboly viz obr. 1.

 $Tabułka \ IV$ Relativní koeficient melitelnosti $K_{\rm m}(S)$ pro měrné povrchy z Andreasenovy metody z grafůS(w)

Číslo	S	w_s	$w_{ m m}$	Km	K×_	
	(m² . kg ⁻¹)	(kWh . kg ⁻¹)		(1)	(1)	
1	150	0,35	0,35	1,00	1,074879	
2	200	1,00	0,80	1,25	1,242164	
3	300	2,75	1,65	1,67	1,576735	
4	400	5,10	2,55	2,00	1,911306	
5	500	7,85	3,50	2,24	2,245877	
6	600	10,50	4,50	2,33	2,580448	
7	700	17,10	5,60	3,05	2,916019	

Obr. 3. Koeficient melivosti v závislosti na vzniklém měrném povrchu.

V uvažovaném rozpětí společných hodnot měrných povrchů, které je omezeno (nižším měrným povrchem získaným mletím za sucha při nejdelší sledované době mletí) na interval cca 150 až 700 m². kg⁻¹ zvolený relativní koeficient melitelnosti mokrého mletí prakticky lineárně stoupá podle regresního vztahu

$$K_{\rm m}^{z} = 0,003\ 345\ 71S\ +\ 0,573\ 022$$

s hodnotou korelačního koeficientu $r = 0,98242\overline{4}$. Odtud vypočtené hodnoty tzv. odhady $K_{\rm m}^z$ jsou rovněž v citované tabulce. Situaci názorně ukazuje obr. 3.

Větší melitelnost při mokrém mletí plyne též ze známého přepočtu Bondových energetických indexů [21] W_i

$$W_i$$
 za sucha = $\frac{W_i$ za mokra .

Konstanta 1,3 odpovídá řádově relativnímu koeficientu melitelnosti, resp. melivosti, který se v našem případě pohybuje od cca 1 do 3.

Technická melitelnost

Technickou melitelnost je možné vyjádřit poměrem přírůstku povrchu A na spotřebovanou mlecí práci W, nebo přírůstku měrného povrchu S na měrnou práci w podle vztahů

$$Me = rac{A}{W} = rac{A/m}{W/m} = rac{S}{W}m = rac{S}{w},$$

kde m je hmotnost meliva (kg).

Za předpokladu nelineárního průběhu S(w) je vhodné označit takto vypočtenou melitelnost jako celkovou nebo zdánlivou, případně efektivní. Je to melitelnost, která by platila pro dané podmínky, tj. S_1 a w_1 při platnosti Rittingerova vztahu přímé úměrnosti

$$Me_{0j} = \frac{S(w_j)}{w_j} = \frac{S_j}{w_j}.$$

Tyto efektivní melitelnosti pro suché a mokré mletí značené stručně Me_s a Me_m pro měrné povrchy určené ze sedimentačních dat a desorpce jsou v tabulce V.

Oproti tomu diferenční melitelnost vyjádřená pro jednotlivé intervaly ij odpovídá poměru přírůstků

$$Me_{ij} = \frac{S_j - S_i}{w_j - w_i} = \frac{\Delta_S}{\Delta w}$$

Z tohoto hlediska je efektivní melitelnost diferenční melitelností pro interval, jehož dolní mez je počátek i = 0.

Limita diferenční melitelnosti pro infinitesimální interval je diferenciální melitelnost

$$Me(w) = \lim_{\Delta w \to 0} \frac{\Delta_S}{\Delta w} = \frac{\mathrm{d}S}{\mathrm{d}w} = S'(w).$$

Diferenciální melitelnost je úměrná při konstantním příkonu okamžité rychlosti mletí

$$\frac{\mathrm{d}S}{\mathrm{d}w} \sim \frac{\mathrm{d}S}{\mathrm{d}t} \, \cdot \,$$

Silikáty č. 2, 1987

135

	Tabulka	V		
Efektivní melitelnosti	$Me (m^2)$	kWh ⁻¹)	z naměřených	dat

			$Me = Me_{0j} = S_j w_j$						
Způsob mletí	Čís.	Merna práce	sítový	rozbor	Andr	easen	adso	orpce	
		K VV II	\boldsymbol{S}	Me	S	Me	S	Me	
Za	1	0,28	17.0	60,7	131.6	26,3	143	510,7	
sucha	2	0,56	26,8	44,9	159,6	31,9	213	380,4	
	3	1,12	41,2	36,8	201,0	40,2	323	288,4	
	4	2,24	61,7	27,5	267,8	53,6	514	229,5	
	5	4,48	84,5	18,9	372,8	74,6	763	170,3	
	6	8,96	97,7	10,9	537,8	107,6	1 101	122,9	
	7	17,92	100,3	5,60	710,1	142,0	2 068	115,4	
Za	1	0,275	17.8	64.7	130.0	472.7	128	465.5	
mokr a	2	0,55	36,8	66,9	165,8	301,5	248	450,9	
	3	1,10	73,4	66,7	233,8	212,5	498	452,7	
	4	2,19	99,3	45,3	356,8	162,9	983	448,9	
	5	4,37	99,9	22,9	582,0	133,2	1 848	442,9	
	6	8,74	100,4	11,5	947,5	108,4	3 373	385,9	
	7	17,49	100,9	5,8	1 221,8	69,9	6 021	344,3	

Pro případ platnosti povrchové hypotézy Rittingerovy by všechny tyto melitelnosti byly v celém rozpětí mlecí doby stejné a konstantní.

Diferenčni melitelnosti z dat sedimentace a desorpce odpovídající intervalům technické měrné práce, jsou zaneseny v již uvedené tabulce dat s novými měrnými povrchy (viz tab. III).

Efektivní melitelnosti platí pro příslušné hodnoty měrných povrchů. Oproti tomu diferenční melitelnosti jsou počítány jako konstantní v příslušných intervalech měrných povrchů. Takto vynesené hodnoty jsou na obr. 4 (data z Andreasena) a 5 (data z adsorpce).

Obr. 4. Efektivní a diferenční melitelnosti v závislosti na měrném povrchu určeném sedimentací; z aproximálních dat; Me_s — efektivní melitelnost při mletí za sucha, Me_m — efektivní melitelnost při mletí za mokra, Me_{ijm} — diferenční melitelnost při mletí za mokra, Me_{ijs} — diferenční melitelnost při mletí za sucha.

Obr. 5. Efektivní a diferenční melitelnost v závislosti na měrném povrchu určeném adsorpcí. Vysvětlivky viz obr. 4.

Vyplývá z nich pokles melitelností s rostoucím měrným povrchem. U dat z adsorpce jsou však dvě odchylky: 1. malá odchylka blízko počátku mokrého mletí, prudší pokles a přechodný malý vzestup diferenční melitelnosti, který se jeví jako nepatrný přechodný vzrůst efektivní melitelnosti, 2. poněkud větší odchylka u suchého mletí, která vykazuje konečný vzestup diferenční melitelnosti, jenž se však neprojevuje na efektivní melitelnosti. Jev je vysvětlitelný rozpadem aglomerátů, které vznikají zvláště při suchém jemném mletí. Aglomeráty nejprve rostou, mletí se zpomaluje, měrný povrch může dokonce přechodně klesat, dosáhnou-li však určité velikosti, rozpadají se, což se může periodicky opakovat, jak bývá pozorováno zvláště u dlouhodobého vibračního mletí [15]. U výsledků z Andreasena se nemůže tento efekt očekávat, neboť metoda pracuje se suspenzí po dokonalé dispergaci.

Funkce melitelnosti

Uváží-li se, že spotřeba měrné práce na elementární účinek měrného povrchu je úměrná mocnině měrného povrchu, tj. d $w/dS \sim S^*$ pak integrací v mezích S_0 až S se dostane

$$w = \frac{1}{\varkappa + 1} \left(S^{\varkappa + 1} - S_0^{\varkappa + 1} \right).$$

Zanedbá-li se počáteční měrný povrch $S_0 \doteq 0$ a zavedou-li se nové konstanty, vznikne po vyjádření měrného povrchu vztah:

$$S = cw^k = \left(\frac{w}{w_K}\right)^k,$$

kde S je přírůstek měrného povrchu, nový měrný povrch $(m^2 \cdot kg^{-1})$

c, n — parametry

- $w_K = c^{-1/k}$ má význam měrné práce při jednotkovém měrném povrchu
 - k stupeň funkce; pro k = 1 přechází vztah v Rittingerovu rovnici, pak $w_K = \lambda$ (měrná technická povrchová mlecí práce kWh m⁻²).

Tento jednoduchý dvouparametrový mocninový vztah se transformuje logaritmováním na lineární

$$\log S = \log c + k \log w.$$

Označí-li se log S = Y, log w = X a log c = Q, mohou se řešit parametry této regresní přímky Y = Q + kX metodou nejmenších čtverců. Pro parametry pak platí vztahy (vypustíme-li u proměnných a symbolu Σ indexy)

$$k = \frac{n \sum X Y - \sum X \sum Y}{n \sum x^2 - (\sum X)^2} \qquad Q = \log c = \frac{1}{n} (\sum Y - k \sum X),$$

kde n je počet pokusných bodů, dvojic (w, S).

Pro výpočtem odhadnutou hodnotu S z proložené křivky platí

$$S^* = cw^{k}$$
.

Výběrový korelační koeficient r je dán poměrem výběrové kovariance s_{xy} k součinu výběrových směrodatných odchylek s_x a s_y :

$$r = \frac{s_{xy}}{s_x \cdot s_y} = \frac{1}{n-1} \frac{(X - \overline{X})(Y - \overline{Y})}{s_x \cdot s_y}$$

Čím je hodnota |r| bližší 1, tím je vztah S(w) lépe vystižen křivkou $S^*(w)$. Je-li v intervalu 0,950 až 0,999, je to potvrzení uvažované hypotézy.

Melitelnost jako derivace funkce S(w) pro uvedenou mocninovou funkci je dána vztahem:

$$Me(w) = \frac{\mathrm{d}S}{\mathrm{d}w} = ckw^{k-1} = aw^{-b}.$$

Má-li se melitelnost vyjádřit v závislosti na S, provede se to vyřešením w z původního vztahu

$$w = \left(\frac{S}{c}\right)^{1/k},$$

a jeho dosazením do předcházející rovnice, která pak přejde na funkci Me(S)

$$Me(S) = ck\left(\frac{S}{c}\right)^{\frac{k-1}{k}} = k\frac{1}{ck}S^{-\left(\frac{1}{k}-1\right)} = AS^{-B}$$

Místo mocninové funkce je možné použít lineární funkce, tj. rovnice obecné přímky

$$S^{x} = \alpha + \beta_{w},$$

kde S^x na rozdíl od S^* je odhad z lineární funkce.

Z derivace této funkce vyplývá, že koeficient β je přímo melitelností, melitelnost je pak konstantou

$$Me(w) = Me(S) = \beta.$$

V mnohých případech však není nutné znát průběh melitelnosti v celém zde sledovaném rozpětí mlecích časů, které bylo v našem případě (4 až 256 h) značně široké. Je možné zaměřit se na dílčí interval, např. od 4 do 128 h, což odpovídá našim experimentálním bodům 1 až 6. tj. polovině celého intervalu, a volit vyjádření přiléhavější zpravidla s větším r v tomto nižším intervalu.

Dále jsou shrnuty parametry vztahů měrných povrchů S(w) a funkcí melitelnosti Me(w), opírající se o data získaná sedimentační metodou (tabulka VI a VIa) a o data z desorpce (tabulka VII a VIIa).

Melitelnost a energie zdrobňování

Tab**ul**ka VI

Parametry funkcí měrných povrchů a melitelností ze sedimentačních dat Suché mletí

Pro		$S^* = cw^k$			$S^x = \alpha + \beta_w$	
body	c	k	r	α	β	r
$ \begin{array}{c} 1 - 3 \\ 1 - 4 \\ 1 - 5 \\ 1 - 6 \\ 1 - 7 \\$	192,943 198,538 202,531 204,786 205,044	0,305518 0,340771 0,375118 0,406867 0,417572	0,998679 0,996031 0,994211 0,993175 0,995393	110,900 118,626 129,117 143,653 174,437	81,3776 67,9752 56,1310 45,8437 32,6108	0,996873 0,995533 0,993459 0,991267 0,973580
		$Me = aw^{-b}$				
	a	Ь	—			
1-6 1-7	83,3212 85,6208	0,593133 0,582428			Me = B	
		$Me = AS^{*-B}$			p	
	A	В	—			
1—6 1—7	1950,67 1435,94	1,457807 1,394796				

Tabulka VIa

Parametry funkcí měrných povrchů a melitelností ze sedimentačních dat Mokré mletí

Pro		$S^* = cw^k$			$S^x = \alpha + \beta_w$,
body	c	k	r	α	β	r
1-3 1-4 1-5 1-6 1-7	220,825 232,879 240,961 244,445 244,132	$\begin{array}{c} 0,423806\\ 0,487441\\ 0,544421\\ 0,583465\\ 0,574077\end{array}$	0,995155 0,992805 0,991694 0,992910 0,995190	96,000 100,294 107,324 125,836 197,225	125,506 117,916 109,815 96,423 65,019	0,999917 0,999578 0,999251 0,997220 0,966968
		$Me = aw^{-b}$				
	a	ь	_			
1—6 1—7	142,628 140,151	0,416535 0,425923				
		$Me = AS^{*-B}$			Me = p	
	A	В				
1—6 1—7	7229,65 8280,11	0,713899 0,741927				

Parametry funkcí měrných povrchů a melitelnosti z adsorpčních dat

Suché mletí

Pro	I 1	$S^* = cw^k$			$S^x = \alpha + \beta_w$	
body	c	k	r	α	β	r
$ \begin{array}{r} 1-3\\ 1-4\\ 1-5\\ 1-6\\ 1-7 \end{array} $	301,2850642 307,7129685 307,0768610 305,7287975 306,770806	0,5877595089 0,6137940372 0,6102250749 0,5976102902 0,6265133771	0,999919 0,999371 0,999665 0,999503 0,997950	88,0000000 102,6956522 138,9583333 191,3731343 198,7873563	211,4346939 186,2422360 145,3004992 108,2064169 105,0193618	0,998046 0,997781 0,989940 0,980904 0,995251
		$Me = aw^{-b}$			•	
	a	ь	_			
1-6 1-7	182,7066754 192,1960137	0,4023897089 0,3734866229			Ma Q	
		$Me = A \cdot S^{*-E}$	3		Me = p	
	A	B				
1—6 1—7	8614,085013 5837,428003	0,6733312937 0,5961351131				

Tabulka VIIa

Parametry funkcí měrných povrchů a melitelností z adsorpčních dat

Mokré mletí

Pro body	$S^* = cw^k$			$S^x = \alpha + \beta_w$		
	c	k	r	α	β	r
1-3 1-4 1-5 1-6 1-7	450,8947163 452,7049385 449,1321319 446,0682694 444,8925873	0,9800009661 0,9848303595 0,9715970868 0,9529785369 0,9336761439	0,999885 0,999946 0,999879 0,999674 0,999433	3,00000000 4,2454271 27,33028592 78,39261573 171,0867897	449,3506494 447,1490381 420,5478574 383,6077971 342,8314121	0,999950 0,999989 0,999516 0,998637 0,997604
	$Me = aw^{-b}$					
	a	ь	_			
1 —6 1—7	425,0934867 415,3855954	0,0470214631 0,0663238561				
	$Me = AS^{*-B}$			$Me = \beta$		
	A	В				
1—6 1—7	574,3942562 640,5760892	0,049341576 0,0710351834				

Grafické vyjádření mocninových funkcí $S^*(w)$ spolu s pokusnými body je v logaritmické síti v obr. 6.

Parametry regresních přímek jsou počítány jednak z prvních šesti bodů ${}^{\circ}S(w)$, jednak ze všech sedmi bodů ${}^{\gamma}S^{*}(w)$.

Parametry lineárních funkcí jsou opět ze šesti a sedmi bodů ${}^{\delta}S^{x}(w)$ a ${}^{7}S^{x}(w)$. Jsou pro výsledky se sedimentace na obr. 7 a na obr. 8 pro výsledky z adsorpce.

Obr. 6. Mocninové funkce růstu měrného povrchu s měrnou prací. Vynesené body odpovídají experimentálním datům. Přímky A ze sedimentace, přímky D z adsorpce. ⁶S*(w) — korelační přímka z prvých 6 bodů, ⁷S*(w) — korelační přímka ze všech 7 bodů. Indexy: s — za sucha, m — za mokra.

Obr. 7. Lineární funkce růstu měrného povrchu s měrnou prací ze sedimentačních dat — ⁶S*(w) korelační přímka z prvých 6 bodů, ⁷S*(w) — korelační přímka ze všech 7 bodů. Indexy: s — za sucha, m — za mokra.

Obr. 8. Lineární funkce růstu měrného povrchu s měrnou prací z dat adsorpce. Vysvětlivky viz obr. 7.

Obr. 9. Průběh melitelností v závislosti na měrném povrchu ze sedimentace; Me_{ij}(S_{ij}) — diferenční melitelnosti z experimentálních dat pro střed intervalu S_{ij}, Me(¹S*) — diferenciální melitelnosti z mocninové funkce ze 7 bodů, 7β — melitelnost z lineární funkce ze 7 bodů, 6β — melitelnost z lineární funkce ze 6 bodů. Indexy: s — suché mletí, m — mokré mletí.

Průběhy melitelností Me/S opírající se o sedimentační data ukazuje obr. 9, data z adsorpce jsou na obr. 10. Vynášeny jsou:

1. diferenční melitelnosti počítané z experimentálních dat proti aritmetickým středům intervalů měrných povrchů \bar{S}_{ij} ,

2. diferenciální melitelnosti z mocninové funkce,

3. konstantní melitelnosti plynoucí z lineární funkce.

Hodnoty melitelností určené při mletí za sucha leží pod hodnotami určenými při mletí za mokra, kromě jediného případu na počátku mletí při měrném povrchu určovaném adsorpcí. Počátek křivek, tj. prvé body po 4 h mletí za mokra i za sucha, jsou si blízké, neboť se vychází ze stejného materiálu a poměrně krátká doba a principielněstejný způsob mletí nevede ještě k podstatně rozdílným výsledkům. Se vzrůstajícím měrným povrchem převažuje melitelnost za mokra, jak je to zvlášť výrazné u výsledků z adsorpce.

Mocninové funkční vyjádření průběhů suchého mletí je vesměs výstižnější než lineární. U mokrého mletí je situace jiná. Pro data z adsorpce je vhodnější lineární vyjádření pro prvé 3 až 4 body, v ostatních případech je lepší vyjádření mocninové. U dat ze sedimentace je dokonce prvých 6 bodů lépe vystižitelných lineárním vztahem; pro soubor všech 7 bodů je však lepší mocninová funkce.

Obr. 10. Průběh melitelností v závislosti na měrném povrchu z adsorpce. Vysvětlivky viz obr. 9.

Vyjádří-li se relativní koeficient melitelnosti, resp. melivosti z funkcí melitelnosti Me(S), dostane se funkce stejného typu. Pro mocninovou funkci platí

ro moenmovou funkci piaci

$$K_{\mathbf{m}} = \frac{Me(S)_{\mathbf{m}}}{Me(S)_{A}} = \frac{A_{\mathbf{m}}S^{-B_{\mathbf{m}}}}{AS^{-B_{\mathbf{s}}}} = \frac{A_{\mathbf{m}}}{A_{\mathbf{s}}}S^{B_{\mathbf{s}}-B_{\mathbf{m}}}.$$

Pro lineární vztah vychází opět konstanta

$$K_{\mathbf{m}} = \frac{\beta_{\mathbf{m}}}{\beta_{\mathbf{s}}}.$$

Zvolí-li se jako příklad pro vyhodnocení K_m ze sedimentačních dat, dostane se

$$K_{\mathbf{m}}^{*}(S) = \frac{8\,280,11}{143\,594} \cdot S^{1,494\,796-0,741\,927} = 0,057\,663\,3\,S^{0,652\,879}$$

Pro data z adsorpce platí obdobně

$$K_{\mathbf{m}}^{\bullet}(S) = \frac{640,576\,089}{5\,837,428} \cdot S^{0,5\,96\,135-0,071\,035\,2} = 0,109\,736\,S^{0,525\,100}$$

Výsledky těchto vztahů pro stoupající hodnoty měrného povrchu jsou v tabulce VIII.

Tabulka VIII

Relativní koeficient melivosti K_m^* a funkcí melitelností Me(S)

Měrný povrch (m² . kg ⁻¹)	Sedimentace K [*] _m	Adsorpce K_m^
150	1,519 156	1,524 104
200	1,833 036	1,772 637
300	2,388 556	2,193 236
400	2,882 067	2,550 884
500	3,334 062	2,867 993
600	3,755 508	3,156 140
700	4,153 136	3,422 236
K _m ^x	1,993 787	3,264 459

Pro lineární vztah ze sedimentace se získá konstantní hodnota

$$K_{\rm m}^{\rm z} = \frac{65,0190}{32,6108} = 1,993787$$

pro data z adsorpce podobně

$$K_{\rm m}^{\rm z} = \frac{342,831}{105,019} = 3,264\ 459.$$

Hodnota K_m^* z adsorpce je cca 1,64krát větší, než je ze sedimentace. Oproti tomu $K^*(S)$ je kromě prvé uvedené hodnoty pro 150 m². kg⁻¹ vesměs menší než ze sedimentace.

Rovněž efektivní melitelnosti je možné vyjádřit ze známých funkcí. Položí-li se měrný povrch z mocninové hypotézy rovný měrnému povrchu z Rittingerovy hypotézy

$$S = cw^k$$
 $S = Mew$,

dostane se efektivní melitelnost Me_{0j}

$$cw^{\mathbf{k}} = Me_{0j} \cdot w \qquad Me_{0j}^{*} = cw^{\mathbf{k}-1}.$$

Melitelnosti vypočtené prostřednictvím korelačních vztahů se liší od efektivní melitelnosti počítané přímo z pokusných dat.

Kromě uvedené mocninové funkce byl zkoušen Zeiselův vztah [11], který je exponenciální rovnicí

$$w = w_0 e^{cS}$$
.

Jeho zlogaritmováním, úpravou a zavedením $k = c^{-1}$ se dostane vztah

$$S = k \ln w - k \ln w_0 = k \ln \frac{w}{w_0},$$

který je lineární pro Y = S, $X = \ln w$, pak $Q = -k \ln w_0$, k = k. Metodou nejmenších čtverců pro našich 6 pokusných bodů suchého mletí z měrných povrchů určených sedimentací se získají hodnoty parametrů Q = 226,540, k = 112,835, korelační koeficient r = 0,952598. Odtud $w_0 = 0,134296$, takže pro odhad měrného povrchu platí

$${}^{6}S^{*}(w) = 112,835 \ln \frac{w}{0,134,296}$$

Pro mokré mletí bylo určeno obdobně z $w = 0,931,991$
 ${}^{6}S^{*}(w) = 225,56\bar{0} \ln \frac{w}{0,260,209}$

Situaci znázorňuje obr. 11.

Obr. 11. Experimentální křivky a korelační přímky pro Zeiselův vztah ze 6 experimentálních bodů pro data ze sedimentace. Indexy: s — suché mletí, m — mokré mletí.

Vztah Olevského [5] je možné rovněž snadno transformovat na lineární pro

$$Y = \frac{S}{w} \qquad \text{a} \qquad X = \ln w,$$
$$S = Kw \ln \frac{c}{w} \qquad \frac{S}{w} = K \ln c - K \ln w,$$

pak k = K, $Q = K \ln c$.

Pro sedimentační data vedlo našich 7 pokusných bodů při koleračním koeficientu $r = -0.920\,882$ k rovnicím pro mletí za sucha

$${}^{7}S^{*}(w) = 94,667\,9w\ln\frac{0,069\,046\,8}{w}$$

za mokra při $r = -0,931\,103$

$${}^{7}S^{*}(w) = 86,436\bar{2}w\ln\frac{24,527}{w}$$

Průběh těchto funkcí je na obr. 12.

S těmito vztahy nebylo dále počítáno pro nižší hodnoty korelačních koeficientů.

Obr. 12. Experimentální křivky a korelační přímky pro Olevského vztah ze 7 bodů. Indexy: s — suché mletí, m — mokré mletí.

ZÁVĚRY

1. Technická, resp. standardní melitelnost závisí nejen na fyzikálně mechanických vlastnostech materiálu a podmínkách mletí, ale i na volbě účinku mletí a na volbě metody jeho určování.

Za míru účinku byl zvolen nově vzniklý měrný povrch S. Jeho hodnoty určené výpočtem z běžných sítových rozborů se ukázaly nedostatečné. Podstatně rozdílné byly nalezeny i měrné povrchy počítané ze sedimentační analýzy a přímo měřené adsorpcí, což vede k různým hodnotám melitelností.

2. Relativní koeficient $K_{\rm m}$ určený na standardním materiálu poměrem prací za standardních podmínek k práci za podmínek sledovaných nebo převráceným poměrem melitelností je relativní účinností, melivostí. Může sloužit k posuzování různých mlýnů, mlecích těles, aktivátorů mletí apod. Zde bylo sledováno mokré mletí vzhledem k suchému. Melivosti mokrého způsobu jsou přibližně lineární funkcí měrného povrchu.

3. Zavedení nelineární funkce melitelnosti $Me = AS^{-B}$ vede k definování melitelnosti efektivní a diferenční nebo diferenciální.

4. Pro křemičitý písek určeny parametry lineárních i mocninových funkcí vyjadřujících závislosti měrných povrchů na měrné práci S(w) a melitelností na měrné práci Me(w) a měrném povrchu Me(S). Jejich prostřednictvím vyjádřeny koeficienty melivosti $K_{\rm m}(S)$ a efektivní melivosti a srovnány s daty počítanými přímo z naměřených hodnot.

5. Pro suché mletí je mocninová funkce vhodnější než lineární.

Literatura

- [1] ČSN 72 1085 Stanovení melitelnosti schváleno 25, 10, 1972, účinnost od 1, 10, 1973.
- [2] Jirousek L., Špičák K., Valenta L.: II. Celostátní konference Mletí v silikátovém průmyslu Sborník, Brno, 25.—26. 6. 1968, str. 46a—55.
- [3] Vodáček O.: Celostátní konference Mletí v silikátovém průmyslu Sborník, Brno, 25.—26. 6. 1968, str. 24-29.
- [4] Špičák K.: Výrobní procesy a zařízení v technologii silikátů I., SNTL, Praha, 1964 (skripta VŠCHT).
- [5] Olevskij A. V.: Razmolnoje oborudovanije obogalitel'nych fabrik, Gosgortechnizdat, Moskva 1963, 223.
- [6] Froněk R.: Stavivo, 44, 95 (1966), str. 95-97.
- [7] Zadák Zd., Kurka F.: Silikáty 13, 241 (1969).
- [8] Zadák Zd., Žežulka J.: Silikáty 14, 45 (1970).
- [9] Jirousek L., Mangel A., Špičák K.: Silikáty 12, 97 (1968).
- [10] Růžek J.: Silikáty 15, 283 (1971).
 [11] Zeisel H. G.: Sborník přednášek "Mletí v cementárskom priemysle", Dom techniky ČSVTS Žilina (1965).
- [12] Lesin A. D.: Vibracionnoje izmělčanije matěrialov Promstrojizdat, Moskva 1957.
- [13] Kurka F.: Sborník přednášek z celostátní konference "Mletí v silikátovém průmyslu", Dům techniky ČSVTS Brno, 1966, (104–140).
- [14] Špičák K.: Sborník přednášek z celostátní konference "Mletí v silikátovém průmyslu", Dům techniky ČSVTŠ, Brno 1966, (str. 25-57).
- [15] Naeser G., Scholz W., Fiedler A.: Kolloid-Zeitschrift 147 (1963).
- [16] Rose H. E., Sullivan E. M. E.: A treatese on the internal mechanics of ball, tube and rod mills, Constable, London, 1958, str. 258.
- [17] ČSN 44 1332 Stanovení melitelnosti tuhých paliv metodou VÚK schváleno 1976, účinnost 1. 10. 1977.
- [18] Dinter O.: Drcení a mletí nerostných surovin, SNTL, Praha 1984, 244 str.
- [19] Reményi K.: The theory of grindability and the comminution on binary mixtures. Academie Kaidó, Budapest 1974, 144 str.
- [20] Špičák K., Růžek J., Fárník K.: Sborník VŠCHT B 10 (1967), str. 43-54.
- [21] Lowrison G. Ch.: Grushing and Grinding Brutterworths, London, 1974, 286 str.
- [22] Romadin V. O.: Pyleprigotovlenije, Gosenergoizdat, Moskva-Leningrad 1953, 519 str.
- [23] Andrejev S. Je.: Tovarov V. V., Perov V. A.: Zakonoměrnosti izmělénija i isčislenija charakteristik granulometričeskogo sostava. Metallurgizdat, Moskva 1959, 437 str.

СПОСОБНОСТЬ К РАЗМАЛИВАНИЮ И ЭНЕРГИЯ ИЗМЕЛЬЧЕНИЯ

Лудвик Ироусек*, Карел Шпичак

кафедра технологии силикатов Химико-технологического института, 16628 Прага 6

*Научно-исследовательский институт электротехнической керамики, 50064 Градец Кралове

С теоретической точки зрения, опираясь на закономерности измельчения, авторами приводится проблематика определения способности к размаливанию в качестве константы материала.

Для экспериментальной работы использовали кварцевый песок, обрабатываемый в лабораторной барабанной мельнице. Материал измел чали от 4 до 250 часов мокрым и сухим путем. Для технической способности к размаливанию послужила поверхностная теория. Удельную поверхность определяли рассчетом просеивания, седиментационного анализа и прямо с использованием адсорбции азота. Ход удельной поберхности изображается на рис. 1 и 2.

Способность к размаливанию понимается как функция удельной поверхности. На рис. 4 приводится эффективная и разностная способность к размаливанию в зависимости от удельной поверхности, рассчитанной на основании гранулометрического состава. На рис. 5 изображается способность к размаливанию в виде функции удельной поверхности, установленной с помощью адсорбции. В случае нелинейной зависимости удельной поверхности от удельной работы способность к разваливанию характеризуется параметрами деривации данной функции или приводится эффективная или разностная способность к размаливанию.

Ход зависимостей удельной поверхности от удельной работы аппроксимированный двухпараметровой степенной функцией S*(w) приводится на рис. 6, линейная аппроксимация S*(w) на рис. 7. Параметры приводимых функций и из них вытекающих функций способности к размаливанию (рис. 9 и 10) вместе с коэффициентами корреляции г приводятся в табл. VI и VII.

В качестве способности к размаливанию или условий всей операции приводится относительный коэффициент эффективности, установленный на стандартном матераиле соотношением способностей к размаливанию при исследуемых условиях к способности к размаливанию, установленной при стандартных условиях. Способность к размаливанию мокрым путем больше по сравнению к размаливанию сухим путем и является приближенно линейной функцией удельной поверхности.

- Рис. 1. Рост удельной поверхности; Su установленная удельная поверхность, t время размаливания, w — удельные работы размаливания, 🕨 — адсорбция, A — Андреасен, S — анализ просеиванием, s — размаливание сухим путем, т размаливание мокрым путем.
- Рис. 2. Новая удельная поверхность в зависимости от удельной работы; S -- новая удельная поверхность, дальнейшие обозначения согласно рис. 1. Рис. 3. Коэффициент способности к размаливанию в зависимости от возникшей удель-
- ной поверхности.
- Рис. 4. Эффективная и разностная способность к размаливанию в зависимости от удельной поверхности, установленной седиментацией; из аппроксимальных данных: Mes — эффективная способность к размаливанию при размаливании сухим путем, Mem — эффективная способность к размаливанию при размаливании мокрым путем, Меут = разностная способность при размаливании мокрым путем, Meijs — разностная способность к размаливанию при размаливании сухим путем.
- Рис. 5. Эффективная и разностная способностьи к размаливанию в зависимости от удельной поверхности. установленной адсорбцией. Рис. 6. Степенные функции роста удельной поверхности с удельной работой. Выне-
- сенные точки отвечают экспериментальным данным. Прямые А из седиментации, прямые D из адсорбции, 6^{*} (w) — прямая корреляции из первых 6 точек, 7*(w) — прямая корреляции из всех 7 точек, s — сухим путем, т — мокрым путем.
- Рис. 7. Линейные функции роста удельной поверхности с удельной работой, из седиментационных данных — ⁶s*(w) — прямая корреляция из первых 6 точек, ⁷s*(w) — прямая корреляции из всех 7 точек; s — сухим путем, т — мокрым питем.
- Рис. 8. Линейная функция роста удельной поверхности с удельной работой из данных адсорбции. Обозначения см. рис. 7.
- Рис. 9. Ход способностей к размаливанию в зависимости от удельой поверхности из седиментации: Мең(Sıj) — разностные способности к размаливанию из экспериментальных данных для среды интервала Sij, Me(1s*) — разностные способности к размаливанию из степенной функции из 7 точек, 7 β — способность к размаливанию из линейной функции из 7 точек, 6β — способносьт к размаливанию из линейной функции из 6 точек; s — размаливание сухим путем, т размаливание мокрым путем.

- Рис. 10. Ход способностей к размаливанию в азвисимости от удельной поверхности из адсорбции. Обозначения см. рис. 9.
- Рис. 11. Экспериментальные кривые и корреляционные прямые для отношения Цейзела из 6 экспериментальных точек при данных из седиментации; S — размаливание сухим путем, т — разваливание мокрым путем.
- Рис. 12. Экспериментальные кривые и корреляционные прямые для отношения Олевского из 7 точек; s — размаливание сухим путем, т — размаливание мокрым путем.

GRINDABILITY AND THE DIMINUTION THEORY

Ludvík Jirousek*, Karel Špičák

Department of the Technology of Silicates, Institute of Chemical Technology 166 28 Prague 6

*Research Institute of Electrotechnical Ceramics, 500 64 Hradec Králové

The problems involved in the defining and determination of grindability as a material constant are demonstrated in a theoretical discussion based on the laws of grinding.

The experimental work was carried out on silica sand in a laboratory drum mill. The sand was ground both dry and wet for periods of from 4 to 250 hours. Technical grindability was assessed on the basis of the surface theory. The specific surface area was calculated from sieving analyses, sedimentation analyses and determined directly by nitrogen adsorption. The course of the specific surface area is shown in Figs. 1 and 2.

The grindability was expressed as a function of specific surface area. Fig. 4 shows effective and differential grindability in terms of specific surface area calculated from the grain size distribution data, while Fig. 5 demonstrates grindability as a function of specific surface area determined by nitrogen adsorption. For the case of non-linear dependence of specific surface area on specific work, grindability is characterized by parameters of the derivative of this function, or effective and differential grindability are expressed.

The course of the dependence of specific surface area on specific work, approximated by twoparameter power function $S^*(w)$, is plotted in Fig. 6, and its linear approximation $S^*(w)$ in Fig. 7. The parameters of these functions and the respective grindability functions (Figs. 9 and 10) together with correlation coefficients are listed in Tables VI and VII.

The grinding efficiency of grinding equipment or of the entire operation is expressed as a relative efficiency coefficient determined on a standard material by means of a grindability ratio, namely of grindability established under the conditions in question to that determined under standard conditions. The grinding efficiency of wet grinding exceeds that of dry grinding, and is approximately a linear function of specific surface area.

- Fig. 1. Increase in specific surface area;
 - S_u specific area determined, t time of grinding, w specific work of grinding, D adsorption, A Andreasen, S sieving analysis; Subscripts: s — dry grinding, m — wet grinding.
- Fig. 2. New specific surface area in terms of specific work S new specific area, for the other symbols refer to Fig. 1.
- Fig. 3. Grinding efficiency coefficient in terms of the specific area obtained.
- Fig. 4. Effective and differential grindability in terms of specific surface area determined by sedimentation; from approximative data;
 Me_s effective dry grindability, Me_m effective wet grindability, Me_{ijm} differential wet grindability, Me_{ijs} differential dry grindability.
- Fig. 5. Effective and differential grindability in terms of specific area determined by adsorption. For symbols refer to Fig. 4.
- Fig. 6. Power functions of increase in specific area in terms of specific grinding work. The points plotted correspond to experimental data. Straight lines A from sedimentation, lines D from adsorption.

 $^{\circ}S^{*}(w)$ — correlation straight line from the first 6 points, $^{7}S^{*}(w)$ — correlation straight line from all seven points Subscripts: s — dry grinding, m — wet grinding.

Fig. 7. Linear function of increase in specific area in terms of specific grinding work, from sedimentation data

 ${}^{6}S^{*}(w)$ — correlation straight line from the first 6 points, ${}^{7}S^{*}(w)$ — correlation straight line from all 7 points. Subscripts: s — dry grinding, m — wet grinding.

- Fig. 8. Linear function of increase in specific surface area in terms of specific work from adsorption data. For symbols refer to Fig. 7.
- Fig. 9. The course of grindability in terms of specific surface area obtained from sedimentation analysis.

 $Me_4(S_{43})$ — differential grindability from experimental data for interval centre S_{44} , $Me(^7S^*$ — differential grindability from the power function from 7 points, 7β — grindability from the linear function provided by 7 points, 6β — grindability from linear function provided by 6 points. Subscripts: s — dry grinding, m — wet grinding.

- Fig. 10. The course of grindability in terms of specific surface area obtained from adsorption measurements. For symbols refer to Fig. 9.
- Fig. 11. Experimental curves and correlation straight lines for Zeisel's equation for 6 experimental points obtained from sedimentation analysis. Subscripts: s dry grinding, m wet grinding
- Fig. 12. Experimental curves and correlation straight lines for Olevski's equation obtained from 7 points. Subscripts: s dry grinding, m wet grinding.

JAROSLAV VLČEK: METODY SYSTÉMOVÉHO INŽENÝRSTVÍ, SNTL Praha, 1984, 340 str.

V současné době se velmi často setkáváme s pojmem systémové inženýrství, obzvlášť ve spojitosti se záměry a požadavky při řešení problémů složitého řízení organizací, výrobních procesů, projektů nových investičních komplexů, mezilidských i meziorganizačních vztahů.

Kniha Metody systémového inženýrství se zabývá teorií systémů, metodami a technikami projektování, zavádění a udržování systémů.

V oblasti teorie systémů se popisují vlastnosti systému, a to základní vlastnosti, odvozené vlastnosti, hierarchické uspořádání a klasifikace systémových vlastností. Podrobně je rozebírán systém jako model a dále definice systému, a to z hlediska algebraického a topologického přístupu. Přehlednou formou je vysvětlován stav a chování systému a cílové chování systému.

Je charakterizován proces identifikace systému od podstaty identifikace přes metodiku identifikace, specifické problémy identifikace až po uplatnění identifikace.

Jsou rozvedeny vztahy mezi systémovou analýzou a projektováním systémů. Na příkladech je znázorněno řešení úloh systémové analýzy. Podrobně jsou rozebírány kapacitní úlohy, strukturní úlohy a stanovení cíle úlohy. Vzhledem k rozlehlým systémům je názorně popsána potřebná oblast dekompozice systémů.

Projektování systémů je vysvětleno v těchto krocích: obsah projektování systémů, metody projektování včetně algoritmů a aplikací inženýrských principů.

Řealizace systémů je rozebrána s cílem uplatnění systémového inženýrství v aplikační oblasti se zřetelem na funkční schopnost systému, spolehlivost a životnost systému.

Kniha je psána velmi přehledně a je potřebnou pomůckou pro pracovníky vytvářející projekty složitých technických objektů, rozlehlých technologických soustav a automatizovaných systémů řízení.

P. Zemánek

A. F. CHALMERS: WEGE DER WISSENSCHAFT (Cesty vědy), 240 str. cena 32 DM Springer Verlag, Berlin 1986.

Chalmersova kniha s původním názvem "What is This Thing Called Science?" vyšla anglicky již ve dvou vydáních (1976 a 1982) a druhé vydání vychází nyní německy v překladu N. Bergmanna a J. Prümpera.

Kniha představuje znamenitý úvod do teorie vědy zejména pro studující přírodních věd. Autor nepředpokládá u čtenáře žádné předchozí filozofické vzdělání a jednoduchou snadno srozumitelnou formou doplněnou vždy řadou příkladů jej seznamuje s teoriemi vědy od jejich základů až po nejaktuálnější otázky.

Německé vydání je doplněno seznamem doporučené německé literatury včetně odborných časopisů a knihu lze vřele doporučit studujícím i zájemcům o tuto vědní oblast.

V. Šatava