Původní práce # PHASE RELATIONS IN THE SILICA RICH AREA OF THE SYSTEM Li₂O—SnO₂—SiO₂ # Miroslav Štemprok, Jan Voldán* Ústřední ústav geologický, Malostranské náměstí 19, 118 21 Praha 1 *) Státní výzkumný ústav sklářský, Škroupova 957, 501 92 Hradec Králové Received 7. 1. 1986 The glasses of the composition Li₂O . $n \, \mathrm{SiO_2}$ (where n=2, 3, 4, 5 and 6) with the additions of the amount of $\mathrm{SnO_2}$ up to 30% were melted in air at 1500—1600°C. Their crystallization was studied by the gradient method in ceramic boats and by the quenching method. The liquidus surface of the portion of the diagram Li₂O— $\mathrm{SnO_2}$ — $\mathrm{SiO_2}$ tested is characterized by the fields of primary crystallization of cassiterite, tridymite, lithium metasilicate and lithium disilicate. A ternary eutectic point was found at the temperature 965°C. Glasses exhibit metastable liquid immiscibility which decreases with the raising amount of $\mathrm{SnO_2}$. Our results and the comparison with the system $\mathrm{Na_2O}$ — $\mathrm{SiO_2}$ — $\mathrm{SnO_2}$ suggests that $\mathrm{SnO_2}$ belongs to network formers and it is copolymerized with silica tetrahedra in the silicate network. The subsolidus part of the system showed at 880 C° the phase of brennockite Li₄ $\mathrm{Sn_2Si_{12}O_{30}}$ which is formed in high silica runs extremely slowly. #### INTRODUCTION AND EARLIER STUDIES The high silica portion of the system Li_2O — SnO_2 — SiO_2 was studied to follow the behaviour of tetravalent tin in a simple alkali silicate system. The smaller ionic size of lithium (r=0.06 nm) compared to Na (0.095 nm) and K (0.133 nm) decreases the volume of alkali ions in the structure of a silicate melt and makes it possible to follow more distinctly the bonding of tin with silicon. The system Li₂O—SiO₂ was studied in the thirties by Kracek [1] who found two binary compounds, Li₂SiO₃ with the melting point at 1201 °C and the lithium disilicate Li₂Si₂O₅ with the melting point at 1033 °C. A binary eutectic exists between SiO₂ and Li₂O . 2 SiO₂ at 1028 °C. A part of the ternary system Li₂O—Al₂O₃—SiO₂ was studied by Krishna and Hummel [2]. No comprehensive survey of the phase relations is recorded in the system SiO₂—SnO₂ in the literature [3] and the system Li₂O—SnO₂ does not have binary compounds reported. There is a single ternary phase in the system with K corresponding to the mineral brennockite Li₃K Sn₂Si₁₂O₃₀ described from lithium-bearing pegmatites [4] and among the products of experiments, in hydrothermal environment as the phase Li₄Sn₂Si₁₂O₃₀ (5). The properties of glasses in the system Li₂O—SiO₂—SnO₂ were tested by Vakhrameev and Evstrop'ev [6]. The role of tin dioxide as nucleation agent in lithium disilicate glasses was studied by Thakur and Thiagarajan [7] and Thakur [8]. The influence of a small addition of Sn on the crystallization of glasses in the system Li₂O—Al₂O₃—SiO₂—TiO₂ was followed by Khodakovskaya et al. [9]. Table I The composition of melts in the high silica portion of the system $\text{Li}_2\text{O}-\text{SiO}_2-\text{SnO}_2$ | d. F. | Compc | Composition (mass . %) | 88 · %) | Comp | Composition (mol . %) | 1.%) | socie de melos | |---|------------------|------------------------|------------------|------------------|-----------------------|------------------|--| | Classincation | SiO ₂ | Li ₂ O | SnO ₂ | SiO ₂ | Li ₂ 0 | SnO ₂ | COIOIII OI BIRASS | | Li ₂ O . 1.5 SiO ₂ + x Sn | SnO ₂ | | | | | | | | S
 1.5 | 66.78 | 33.22
24.91 | | 50.00 | 50.00 | | fully crystallized, cracks
glass in a thin layer, strongly crystallized | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 71.52
68.26 | 23.72
22.65 | 4.76
9.09 | 59.06
58.14 | 39.37
38.78 | 1.57
3.08 | grey-brown fully crystallized in total mass
grey-brown fully crystallized in total mass | | Li ₂ O . 2 SiO ₂ + x SnO ₂ | 102 | | | | | | | | L - 2 S - 0
L - 2 S - 5 | 80.08
76.27 | 19.92
18.97 | 4.76 | 66.67
65.58 | 33.33
32.79 | 1.63 | greenish, occassionally crystalline spherolites
in view through smoky brown, at bottom slightly clou- | | L-2 S-7.5 | 74.49 | 18.53 | 86.9 | 65.17 | 32.59 | 2.44 | ued
in view through smoky brown, in thicker layer | | 2 S S S S S S S S S S S S S S S S S S S | 72.80 | 18.11 | 9.09 | 64.53
63.51 | 32.26 | 3.21 | dark brown, sings of clouding | | $\frac{L-2}{r} = \frac{S-20}{S}$ | 66.73 | 16.60 | 16.67 | 62.52 | 31.26 | 6.22 | dark brown, non transparent | | 2 02 5
1 01 1 | 62.81 | 15.62 | 21.57 | 61.20 | 30.41 | 8.39 | dark brown, semitransparent | | 7 | 61.60 | 15.32 | 23.08 | 60.64 | 30.31 | 9.02 | blackbrown, non transparent | | | | | | | | | | continued Table I | | | 1 | + | | |------------------------|-------------------|--|---|---| | | Colour of glass | | milk white clouding, in thinner layers translucent in view through light brown (bluish opalescence) light brown, very weak opalescence light brown, very weak opalescence light brown, very weak opalescence light brown, without opalescence light brown, without opalescence light brown, clouded, transparent dark brown, transparent on transparent, light grey brown with rosa tinge | opaline, translucent very strong opalescence (bluish), non transparent in view through light brown, weaker opalescence in view through light brown, very weak opalescence in view through light brown, very weak opalescence in view through light brown, milky streaks dark brown, non transparent | | 1.%) | SnO_2 | | 1.71
2.56
3.37
4.96
6.52
8.01
9.46
10.91 | 1.76
3.46
5.10
6.68
8.23
9.70 | | Composition (mol . %) | LiO2 | | 25.00
24.57
24.25
24.15
23.76
23.36
22.63
22.63 | 20.00
19.64
19.30
18.86
18.34
18.06 | | Comp | SiO2 | | 75.00
73.72
73.19
72.48
71.28
70.12
68.99
67.91 | 80.00
78.60
77.24
75.92
74.66
73.43 | | 88 · %) | SnO_2 | | 4.76
6.98
9.09
13.04
16.67
20.00
23.08
25.93 | 4.77
9.09
13.04
16.66
20.00 | | Composition (mass . %) | Li ₂ O | | 14.22
13.55
13.23
12.37
11.85
10.94
10.53 | 11.06
10.53
10.05
9.22
9.22
8.84
8.51 | | Compe | SiO2 | 02 | 85.78
81.69
81.69
79.79
77.98
71.48
68.62
65.98 | 88.94
84.70
80.86
77.34
74.12
71.16
68.42 | | | Classincation | $\mathrm{Li_2O}$. $3~\mathrm{SiO_2} + x~\mathrm{SnO}$ | S S S S S S S S S S S S S S S S S S S | Li ₂ O . 4 SiO ₂ + x SnO L - 4 S - 0 L - 4 S - 10 L - 4 S - 15 L - 4 S - 20 L - 4 S - 25 L - 4 S - 30 L - 4 S - 30 | | 5 | CIRSSII | Li ₂ O . 3 (| 111111111
 | Li ₂ O . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . | | ۴ | | |---|---| | (| D | | 5 | 2 | | 7 | 9 | | | | | 3 | Š | | Composition (mass. %) Compositition (mol. %) | Octour or glassic SiO ₂ Li ₂ O SnO ₂ SnO ₂ | | 9.05 — 83.33 16.67 | 8.22 9.09 80.41 16.07 3.52 | 7.87 13.04 79.01 15.80 5.19 | 7.24 16.67 77.66 | | | 7.66 — 85.71 | 7.30 4.76 84.2! 13.97 1.82 | 6.96 9.09 82.72 13.70 3.58 | 19 7 19 19 19 19 19 19 19 19 19 | 0.00 13.04 01.20 13.47 0.27 | 6.38 16.67 79.86 13.23 6.31 | |--|--|---|-----------------------|----------------------------|-----------------------------|----------------------------------|--------------|---|--------------|----------------------------|----------------------------|---------------------------------|-----------------------------|-----------------------------| | SnO ₂ SiO ₂ | | | 83.33 | 9.09 80.41 | 13.04 79.01 | 16.67 77.66
20.00 76.36 | | | _ 85.71 | 4.76 84.21 | 9.09 82.72 | 13.04 81.26 | 1001 | 16.67 79.86 | | Classification | SiO ₂ | Li ₂ O . 5 SiO ₂ + SnO ₂ | 8 8
 0 8
 0 8 | S S 10 | S-15 | 5 S — 20 75.79
5 S — 25 72.76 | - 30
- 30 | Li ₂ O . 6 SiO ₂ + SnO ₂ | $6 \mid 0-8$ | 20 | s - 10 | S — 15 — 8 | | $\ddot{s}-20$ | #### METHODS OF INVESTIGATION ## Glass preparation and methods of study The mixture of the starting materials were prepared in the compositional sections $\text{Li}_2\text{O} \cdot 2 \text{SiO}_2$, $\text{Li}_2\text{O} \cdot 3 \text{SiO}_2$, $\text{Li}_2\text{O} \cdot 4 \text{SiO}_2$, $\text{Li}_2\text{O} \cdot 5 \text{SiO}_2$ and $\text{Li}_2\text{O} \cdot 6 \text{SiO}_2$ with added SnO₂ from the following starting materials: SiO₂ — ground sand Dörentrupp 99.83 mass. % SiO₂, Li₂O added in the form of lithium carbonate (technical purity supplied by firma Kaznějov) and SnO₂ (chemically pure from Lachema in Brno) (Table I). The mixtures of the starting materials were sintered at the temperature 800—900 °C and then melted in the Pt-Rh crucibles in the total amount of about 0.5 kg at the temperatures between 1500-1600 °C in the Kanthal-Super furnaces. The melts were stirred during melting by a Pt-Rh propeller. Various amount of SiO2 changed considerably the viscosity of the melts and hence the time of melting was changed respecively. The melts of the composition Li₂O. 1.5 SiO₂ had a very low viscosity on melting and could have been easily casted. However, they easily crystallized on cooling and could not have been quenched to glass. The mixtures of the composition Li₂O . 2 SiO₂ to Li₂O . 4 SiO₂ were quenchable without crystallization, however the glasses after cooling showed various degree of unmixing. The mixtures with the composition Li₂O. 5 SiO₂ and Li₂O. 6 SiO₂ were highly viscous and hence the time of melting was extended from 5 to 10 hours and the time of stirring was prolonged as well. The position of ternary invariant points was followed by 2 experiments with 81 mass. % SiO2 and 5 mass. % SnO₂ and with 75 mass. % SiO₂ and 5 mass. % SnO₂. The survey of the melting conditions is given in Table I. The resulting glasses were either completely recrystalized glasses, or transparent glasses with a different degree of unmixing or white glasses in which the starting material was not dissolved in the melt even in extended time (cassiterite). The areas occupied by individual glasses of this kind are given in the Fig. 1 where the thick line represents the SnO₂ solvus in the melts at the temperatures between 1500—1600 °C. Fig. 1. The area of transparent glasses in the high silica portion of the system Li₂O—SiO₂—SnO₂ showing strong (A) and weak (B) metastable liquid immiscibility. It is separated from clouded glasses with undissolved SnO₂ at 1600 °C which represents the tin dioxide solvus. The area of clear glasses according to Vakhrameev and Evstrop'ev (6) is marked by the field D. 1— glasses with admixture of SnO₂, 2— clear or opalescent glasses, 3— unquenchable glasses, 4— field boundaries, 5— boundary of the field D. 5 The samples of the glasses were tested by the gradient methods in ceramic boats in the temperature interval $700-1300\,^{\circ}\mathrm{C}$. The details of the methods are described in Kopecký and Voldán [10]. The accuracy for the determination of the temperatures of crystallization is beleived to be $\pm 5\,^{\circ}\mathrm{C}$ which includes the innaccuracies for the control of the temperature in runs and the accuracy of reading of the beginning of crystallization. The time of the runs was 3 hours. Several selected samples were tested by the quenching method using suspended platinum envelopes with quenching on a metallic plate. The temperature of these runs was measured by PtRh thermocouples calibrated against the melting points of gold and sodium chloride, respectively. The products of runs were studied by optical and X-ray studies. The optical observations included the tests of phase transitions in ceramic boats which were easily detected as the beginning of clouding in glass rods induced by melting or by relatively sharp boundaries of crystallization at univariant or invariant equilibria. The optical identification was done on a petrographic microscope or by X-ray diffraction studies. These X-ray studies were done in the laboratory of the Geological Survey and in the laboratory of the State Glass Research Institute in Hradec Králové. The data obtained were compared with the data from ASTM tables. Some selected samples were studied under the electron microscope. The etching of fragment faces was done by 2 mass. % HF or 5 mass. % HNO₃ during 1s and after rinsing by distilled water. One step positive prints were made by a contemporaneous evaporation of carbon and platinum under the angle 25°. The photographs were taken on electron microscope Tesla BS 242 E on a photographic plate ORWO DU 25. The glasses prepared were also tested by the DTA method on the apparatus Derivatograph type OD 102 (by MOM Budapest). The runs were carried out at 6 °C/min., grain size of the sample was 0.1—0.063 mm, the sensitivity 1: 10, as standard heated Al₂O₃ served. #### RESULTS AND DISCUSSION #### The phases identified in the studies The solid phases which were identified during the phase equilibria studies include cristobalite, tridymite, lithium disilicate, lithium metasilicate, cassiterite and brennockite. Lithium metasilicate Li₂SiO₃ White dense aggregates of prismatic crystals negatively elongated, with parallel extinction; Np = 1589 and Ng = 1600. Lithium disilicate Li₂Si₂O₅ Dense, white-grey aggregates, under the microscope in the form of fibrous crystals. It was identified by X-ray method (according to the ASTM table 17—447). Tridymite SiO₂ Megascopically greyish clouding in the glasses. Optically, it forms low birefringence basal plates with random orientation in glass. Cristobalite SiO₂ Disperse grey clouding. Identified by X-ray method as an admixture of some runs with predominance of tridymite at low temperatures. Cassiterite SnO₂ A rose-white clouding. Under the microscope, short prismatic or acicular, high birefringence crystals occassionally with well developed twinning on {101}. Brennockite Li₄Sn₂Si₁₂O₃₀ (lithian variety) Admixture of a high SnO₂ run at 920 °C identified by X-ray method according to data by Nekrasov and Dadze (5). # The area of glasses The melting at 1500—1600 °C in the system (see Fig. 1) differentiated the area of translucent glasses showing metastable liquid immiscibility with various degree of opalescence from clouded glasses containing undissolved SnO₂. The high temperature of experiments did not permit SiO₂ phases (tridymite or cristobalite) to crystallize as a primary phase in the portion tested. In the area of glasses with metastable liquid immiscibility there can be differed the one showing a strong liquid immiscibility (A) and a weaker liquid immiscibility (B). The weaker liquid immiscibility is in the compositions high in SnO₂ and relatively poorer in SiO₂ as indicated in Fig. 1. Our results are comparable in the silica poorer area with the results of Vakhrameev and Evstrop'ev [6] obtained at lower temperatures (1300—1400 °C). # The liquidus surface of the diagram The phase equlibria on the liquidus surface of the diagram were studied by the tests in ceramic boats. The survey of the important results of runs used in the construction of the diagram is given in Table II. The portion of the diagram studied is characterized by a steep slope of the liquidus surface of the fields of SiO_2 and SnO_2 primary crystallization of which SiO_2 has the melting points at 1713 and SnO_2 at 2300 °C [3]. These fields of primary crystallization of tridymite and cassiterite occupy the predominant portion of the diagram tested. The fields of primary crystallization of lithium metasilicate and lithium di silicate are restricted to a very small area near the binary Li_2O — SiO_2 join. The liquidus temperatures drop from those along the Li_2O — SiO_2 join towards the SnO_2 apex and raise again in the area of about 7 to 10 mass. % SnO_2 . The position of the ternary eutectic in the portion of the diagram (Fig. 2) studied has been extrapolated from the data between the $2 SiO_2$. Li_2O and $3 SiO_2$. Li_2O sections of the diagram and an additional run at 81 mass. % SiO_2 and 5 mass. % SnO_2 . Its temperature was determined to be equal to 965 °C ± 5 °C at the composition at 78 mass. % SiO_2 and 6 mass. % SnO_2 (± 1 mass. %) (Table III). The connection of this eutectic with the binary eutectic along the $\text{Li}_2\text{O}-\text{SiO}_2$ side at 82.2 mass. % SiO_2 gives a cotectic line between tridymite and lithium disilicate fields as it has been indicated by a heavy line in Fig. 2. The course of the cotectic line between the fields of primary crystallization of tridymite and cassiterite could not have been determined within the interval tested in ceramic boats. Therefore three runs were carried out at 1400 °C as given in Table IV. These show that the composition $4\,\mathrm{SiO}_2$. $\mathrm{Li}_2\mathrm{O}$. $10\,\mathrm{SnO}_2$ produced a liquid whereas the composition $5\,\mathrm{and}$ 6 SiO_2 . $\mathrm{Li}_2\mathrm{O}$ gave tridymite with some metastable cristobalite as the primary crystallzation phases. Hence the course of the cotectic line is Silikáty č. 1, 1987 7 #### M. Štemprok, J. Voldán: extrapolated to the $4~{\rm SiO_2}$. ${\rm Li_2O}$. $10~{\rm SnO_2}$ composition. The inferred course of cotectic lines between the field of lithium metasilicate and disilicate is shown by dashed line. $Table\ II$ Runs used for interpretation of the fields of primary crystallization | | Mass. % | | Beginning of | Phase(s) | | |------------------|-------------------|------------------|----------------------|------------------|--| | SiO ₂ | Li ₂ O | SnO ₂ | (°C) crystallization | I hase(s) | | | 66.73 | 16.60 | 16.67 | > 1250 | cas. | | | 69.63 | 17.32 | 13.05 | > 1253 | cas. | | | 71.48 | 11.85 | 16.67 | > 1230 | cas. | | | 72.80 | 18.11 | 9.09 | 1085 | cas. | | | 74.12 | 9.22 | 16.66 | > 1220 | cas. | | | 74.49 | 18.53 | 6.98 | 995 | dis. | | | 74.59 | 12.37 | 13.04 | > 1225 | cas. | | | 75.00 | 20.00 | 5.00 | 1057 | $\mathbf{met}.$ | | | 75.79 | 7.54 | 16.67 | > 1290 | C&8. | | | 76.27 | 18.97 | 4.76 | 994 | dis. | | | 77.34 | 9.62 | 13.04 | > 1220 | cas. | | | 77.98 | 12.93 | 9.09 | 1180 | cas. | | | 79.09 | 7.87 | 13.04 | > 1290 | cas. | | | 79.79 | 13.23 | 6.98 | 1220 | trid. + cas. | | | 80.30 | 6.66 | 13.04 | > 1290 | trid. + cas. | | | 80.86 | 10.05 | 9.09 | > 1220 | trid. + cas. | | | 81.00 | 14.00 | 5.00 | > 1131 | trid. | | | 81.69 | 13.55 | 4.76 | > 1230 | trid. | | | 82.69 | 8.22 | 9.09 | > 1280 | trid. + cas. | | | 83.95 | 6.96 | 9.09 | > 1290 | trid. | | | 84.70 | 10.53 | 4.77 | > 1221 | $\mathbf{trid}.$ | | | 86.62 | 8.62 | 4.76 | > 1290 | $\mathbf{trid}.$ | | Abbrevations: trid. = tridymite cas. = cassiterite crist. = cristobalite dis. = lithium disilicate met. = lithium metasilicate $\label{eq:Table III}$ Runs used for the determination of the temperature of the eutectic point (E) | | Mass. % | | Temperature of the | | |---|---|--------------------------------------|---------------------------------|---| | SiO ₂ | Li ₂ O | SnO ₂ | boundary (°C) | Phases | | 74.49
76.27
78.13
79.79
81.00 | 18.53
18.97
19.43
13.23
14.00 | 6.98
4.76
2.44
6.98
5.00 | 963
961
970
967
965 | dis. + cas.
dis. + cas.
dis. + cas.
cas. + trid. + crist.
trid. + dis. + cas. | Abbrevations: trid. = tridymite cas. = cassiterite crist. = cristobalite dis. = lithium disilicate Fig. 2. Liquidus surface of the high silica portion of the system $\text{Li}_2\text{O}-\text{SiO}_2-\text{SnO}_2$ with eutectic point (E) at 965 \pm 5 °C. Heavy lines indicate field boundaries established by experimental data, the dashed lines are inferred from phase relations. For abbreviations see table 2. The section Li_2O . 4 SiO₂ + n SnO₂ in fig. 4 is marked by 4. $\begin{tabular}{ll} $Table\ IV$ \\ $Crystallization\ of\ glasses\ at\ 1400\ ^{\circ}C$ \\ \end{tabular}$ | . | N -4 | |----------------|--------------------| | Products | Notes | | glass | strong opalescence | | crist. + trid. | . | | crist. + trid. | | ## The subsolidus section of the diagram The subsolidus diagram was constructed on the basis of data in Table V and shows the relationships of phases below the presence of liquids in the system as given in Fig. 3 in the interval $\sim\!800-900\,^{\circ}\mathrm{C}$. The diagram in the section $\mathrm{SnO_2}\mathrm{--}\mathrm{SiO_2}\mathrm{--}\mathrm{Li_2O}$ has a simple form characterized by four three phase triangles giving the equilibrium of cassiterite-brennockite-tridymite, cassiterite-brennockite-lithium disilicate, tridymite-brennockite-lithium disilicate and cassiterite-lithium metasilicate and lithium disilicate. The appearence of brennockite in the high silicaruns has not been recorded and apparently due to sluggish reaction in dry systems in this temperature interval and the equilibrium diagram is constructed from the data in its higher $\mathrm{SnO_2}$ portion. Brennockite was reported by Nekrasov and Dadze (5) to form in a Li_2O — SiO_2 — SnO_2 — H_2O system at the temperatures 500 and 650 °C and the water pressure of $P_{\text{H}_2\text{O}}$ 108 Pa and it was noted in our experiment to exist below 881 °C. ## M. Štemprok, J. Voldán: Fig. 4. Schematic cross section through the T-x diagram at $4 \, \mathrm{SiO}_2 \, . \, \mathrm{Li}_2\mathrm{O} + n \, \mathrm{SnO}_2$ with two invariant points (α and β). The section explains the coexistence of tridymite and cassiterite in melts as found in a number of phase determinations. Table V Runs for the determination of subsolidus phase equilibria $1~000 > T < 820~{\rm ^{\circ}C}$ | 36.43 3 | D. 1 | Duration | Temperature | | Mass. % | | |----------------|----------------------|----------|-------------|------------------|-------------------|------------------| | Methods | Product | (hours) | (°C) | SnO ₂ | Li ₂ O | SiO ₂ | | E | cas. + dis. + trid. | 20 | 920 | 23.08 | 10.94 | 65.98 | | В | met. + cas. | 3 | 820 | 9.09 | 22.65 | 68.26 | | В | cas. + dis. + bren. | 3 | 850—881 | 23.07 | 8.51 | 68.42 | | | + crist. + (coesit?) | | | | | | | В | dis. + cas. | 3 | 830—880 | 13.05 | 17.32 | 69.63 | | В | dis. + cas. | 3 | 873—912 | 9.09 | 18.11 | 72.80 | | В | dis. + cas. | 3 | 935—965 | 6.98 | 18.53 | 74.49 | | E | dis. + cas. + trid. | 20 | 920 | 13.04 | 12.37 | 74.59 | | В | dis. + metas. + cas. | 3 | 980—990 | 5.00 | 20.00 | 75.00 | | В | dis. + cas. | 3 | 924—961 | 4.76 | 18.97 | 76.27 | | E | dis. + cas. | 20 | 920 | 4.76 | 18.97 | 76.27 | | E | trid. + cas. + dis. | 20 | 900 | 13.04 | 9.62 | 77.34 | | E | dis. + cas. + trid. | 20 | 920 | 9.09 | 12.93 | 77.98 | | В | dis. + cas. | 3 | 940—960 | 2.44 | 19.43 | 78.13 | | В | dis. + cas. + crist. | 3 | 965—970 | 6.98 | 13.23 | 79.79 | | В | dis. + cas. + trid. | 3 | 930—940 | 5.00 | 14.00 | 81.00 | | E | dis. + cas. + trid. | 20 | 920 | 4.76 | 13.55 | 81.69 | Abbrevations: dis. = lithium disilicate cas. = cassiterite crist. = cristobalite trid. = tridymite met. = lithium metasilicate bren. = brennockite E = platinum envelope B = ceramic boat (gradient crystallization) # Sections through the portion of the system investigated The sections of the diagram along the $3\,\mathrm{SiO_2}$. $\mathrm{Li_2O}$, $4\,\mathrm{SiO_2}$. $\mathrm{Li_2O}$, $5\,\mathrm{SiO_2}$. $\mathrm{Li_2O}$ and $6\,\mathrm{SiO_2}$. $\mathrm{Li_2O}+n$. $\mathrm{SnO_2}$ compositions are characterized by two large fields of primary tridymite (cristobalite) and cassiterite crystallization which are contacted at an invariant point β with the field of cassiterite + tridymite + liquid whose existence has been confirmed by a number of phase determinations. The exact position of this point was not determined from the runs but in the $4\,\mathrm{SiO_2}$. $\mathrm{Li_2O}+h$ 0. $\mathrm{SnO_2}$ join it is close to $1400\,^{\circ}\mathrm{C}$ at about $9\,^{\circ}\!\!\!/_{\circ}$ $\mathrm{SnO_2}$ (Fig. 4). Fig. 3. Subsolidus phase relations of the system Li₂O—SiO₂—SnO₂ at 880 °C showing three phase triangles with the equilibria of cassiterite, tridymite, lithium disilicate and brennockite. For abbreviations see table 5. The position of the second invariant point α with the equilibrium of lithium disilicate, tridymite, cassiterite and liquid was deduced from the literature data and supported by some results of our runs. # Metastable liquid immiscibility In the samples prepared from the starting materials the metastable liquid immiscibility was observed. The immiscibility appears as a bluish-white cloudint of various intensity. There is a marked decrease in the intensity of clouding with raising amount of SnO₂. The decrease of metastable liquid immiscibility was well observed on the microphotographs taken under the electron microscope where the Silikáty č. 1, 1987 pictures of glasses containing 16.67 mass. % SnO_2 in the section with Li_2O . 5 SiO_2 showed abundant oval admixtures (fig. 5) within the matrix whereas the glass with 1.57 mass. % SnO_2 in the section with Li_2O . 2 SiO_2 was devoid of them (Fig. 6). Our data confirm that metastable liquid immiscibility known from the data by Marinov and Radenkova-Yaneva (11) exists also into the ternary system LiO₂—SiO₂—SnO₂ in which the presence of SnO₂ tends to decrease the intensity of immiscibility but it does not eliminate it completely. #### DTA measurements The DTA measurements determined the nucleation in the glasses of the sections studied (12, 13). The end members of the sections (Li₂O . 2 SiO₂, Li₂O . 3 SiO₂, Li₂O . 4 SiO₂, Li₂O . 5 SiO₂, Li₂O . 6 SiO₂) in the system Li₂O—SiO₂ (without SnO₂) gave exothermic peaks at the temperatures from 600 to 610 °C in the sections studied. The addition of 5 mass. % of SnO₂ gave exothermic peaks at the temperatures 610, 640, 670, 700 and 750 °C respectively which indicates a general temperature increase for the beginning of crystallization as compared with pure systems. The addition of 10 mass. % SnO₂ caused the appearance of exothermic peaks of the crystallization at 690 °C in all series of glasses tested. The influence of raising amount of SnO_2 on the DTA curves of the glasses in the series $Li_2O \cdot 2 SiO_2 + n SnO_2$ is shown in Fig. 7. The curve of the sample without SnO₂ shows one sharp peak at 600 °C indicating the crystallization of Li₂Si₂O₅. By the addition of 5 mass. % SnO₂ and more to the glass of this composition, the start of the crystallization of Li₂Si₂O is gradually shifted towards higher temperatures. This is related to the raised viscosity caused by the addition of tin dioxide. At the same time another peak at about $900\,^{\circ}\text{C}$ appears which corresponds to the crystallization of SnO_2 . This peak gradually grows with the raising amount of SnO_2 . At about 20 mass. % of SnO_2 added to the glass this peak exceeds that of the lithium disilicate and is becoming sharper. This testifies to a more rapid crystal-lization of SnO_2 compared to that of $Li_2Si_2O_5$. The runs in the section $Li_2O \cdot 3 SiO_2 + n SnO_2$ are analogous exept that with the raising amount of SnO_2 the peaks of SnO_2 and $Li_2Si_2O_5$ crystallization start to coincide and at 25 mass. % SnO_2 there exists a single peak (Fig. 8). In most of the runs there is an endothermic reaction apparently corresponding to the temperature of melting of lithium disilicate which melts at 1033 °C according to Kracek [1]. Thakur and Thiagarajan [7] studied the nuleaction behaviour of glasses of the composition Li_2O . $2\,\text{SiO}_2$ with the admixture of SnO_2 by DTA and found that SnO_2 in the amount of about 18 mass. % does not produce heterogenous nucleation and it makes the glasses more stable. The addition of about 24 % SnO_2 by mass gave opaque glasses already on casting at 1440 °C caused by the crystallization of SnO_2 during melting. Our data confirm the increases stability of glasses with the raising amount of SnO_2 as compared with pure systems (without SnO_2) in all the sections studied. 12 Silikáty č. 1, 1987 Fig. 7. DTA curves of the samples in the section Li_2O . $2SiO_2 + nSnO_2$. Fig. 8. DTA curves of the samples in the section Li_2O . $3 SiO_2 + n SnO_2$. # Structural position of SnO2 The equilibria studies have shown that cassiterite SnO_2 is the typical liquidus phase crystallizing from Li_2O — SiO_2 — SnO_2 system over about 7.5 mass. % SnO_2 in melts having approximately lithium disilicate composition. Tetravalent tin with 4 d^{10} Silikáty č. 1, 1987 configuration is more stable then divalent tin in glasses and thus it is present in glasses in high proportion [14]. Tin dioxide belongs to the networkforming oxides and similarly as it was shown in the sodium-silicate system [15] it can be accommodated into the silica network in a limited amount. Its amount dissolved in sodium silicate liquid ranges from 18 to 20 mass. % by mass at 1500—1600 °C and it is very similar to that observed in the Li₂O—SiO₂—SnO₂ system tested in the present study. Approximately a very similar solubility limit of SnO₂ in the system Na₂O—SiO₂—SnO₂ (15) compared to that of Li₂O—SiO₂—SnO₂ suggests that the solubility of tin dioxide in the melts is not dependent on the nature of alkali oxide but it is primarily determined by the competence of tin to be copolymerized with silica tetrahedra. Tin (Sn4+) can be coordinated also with silica and lithium oxide to form a ternary compound (brennockite) at lower temperatures but this reaction is very sluggish in dry system and in most runs in high SiO₂ portion of the diagram SnO₂ appears as a metastable phase. The formation of brennockite is accelerated by the presence of water as shown by Nekrasov and Dadze [5]. The coordination of tetravalent tin in silicate glasses differs from that of divalent tin. SnO can be dissolved in SiO₂ glasses in the amount up to 75.9 mass. % [16]. #### CONCLUSIONS The solubility of SnO₂ in high silical lithium silicate glasses at 1600 °C is up to about 18 mass. %. The glasses of such compositions show a metastable liquid immiscibility which is decreased with the raising amount of SnO₂. The portion of the system studied is occupied by the fields of primary crystallization of cassiterite, lithium disilicate, lithium metasilicate, and of tridymite. The cotectic lines of these fields form a ternary eutectic point at 965 °C. Our data show the ranges of SnO₂ solubility are similar to the system Na₂O-SiO₂-SnO₂ which suggest that its extent is not dependent on the nature of the alkali ion. Hence, tin (Sn4+) is probably copolymerized with silicon tetrahedra in alkali glasses and it belongs in silicate melts to network forming oxides. ## Acknowledgement The authors thank Dr. K. Melka for performing the X-ray analyses and Ing. J. Dvořák for making the electron microscope photographs. #### References - [1] Kracek F. C.: J. Phys. Chem. 34, 2641 (1930). - [2] Krishna M., Hummel F. A.: J. Amer. Ceram. Soc. 37, 14 (1954). - [3] Toropov N. A. Barzakovskii V. P., Lapin V. V., Kurceva N. N.: Diagrams of state in silicate systems. Vol. 1, Binary system. Izd. Nauka, Leningrad (1969) (in Russian). [4] White J. S., Amer J. E., Nelen J. A., Leavens P. B., Thomssen R. W.: Mineral. Res. - 4, 73 (1973). - [5] Nekrasov I. Ya., Dadze T. P.: Mineral. zhurnal AN SSSR, [3], 17 Kiev (1980) (in Russian). - [6] Vakhrameev V. I., Evstrop'ev K. S.: Neorganicheskie materialy 5, [1], 101 (1969) (in Russian). - [7] Thakur R. L., Thiagarajan S.: Centr. Glass Ceram. Res. Inst. Bull. 13, [2], 33 (1966). - [8] Thakur R. L.: Symposium AGS, April 26—28, 1971, 166—172, Chicago (1971). [9] Khodakovskaya R. V., Abrashitova E. J., Pavlushkin N. M., Donskaya T. D., Ellerin G. A.: Fiz. chem. stekla 6, 60 (1980) (in Russian). - [10] Kopecký L., Voldán J.: Geotechnica, 25, ČSAV Praha (1959). - [11] Marinov M., Radenkova-Yaneva J.: Compt. Rend. Acad. Bulg. Sci. 19, 917 (1966). - [12] Voldán J.: Sklář a keramik 24, 351 (1974). - [13] Voldán J.: In Sborník VII celoštátna konferencia o termickej analýze, Termanal 76, Vysoké Tatry, 1-6 (1976). - [14] Pyare Ram, Nath P.: J. Amer. Ceram. Soc. 11, 549 (1982). - [15] Štemprok M., Voldán J.: Silikáty 19, 211 (1975). - [16] Ishikowa T., Akagi S.: Physics chem. glasses 19, 108 (1978). ## FÁZOVÉ VZTAHY V ČÁSTI SOUSTAVY Li₂O—SnO₂—SiO₂ BOHATÉ SiO₂ #### Miroslav Štemprok, Jan Voldán*) Ústřední ústav geologický, 118 21 Praha *) Státní výzkumný ústav sklářský, 501 92 Hradec Králové Byla utavena skla o složení Li_2O . $n SiO_2$ (kde n=2, 3, 4, 5 a 6) s přídavkem SnO_2 až do množství 30 % (hmot.) při teplotě 1500-1600 °C. Byla určena oblast existence skel obsahujících rozpuštěný SnO_2 , která jsou charakterizována metastabilní likvací, jejíž podíl se zmenšuje s přidáním SnO_2 . Krystalizace takto připravených skel byla sledována gradientovou metodou a v zavěšených platinových obálkách. Byla určena pole primární krystalizace kasiteritu, tridymitu, lithného disilikátu, která vytvářejí eutektický bod s teplotou 965 °C. V oblasti subsolidu byla potvrzena existence fáze Li4Sn2Si12O30, která odpovídá lithné varietě minerálu brennockitu. Tato fáze vzniká při experimentech jenom velmi pomalu a většina pokusu v části bohaté SiO2 poskytuje nerovnovážný SnO2. Naše výsledky a srovnání s dříve studovanou soustavou Na2O-SiO2-SnO2 ukazují na to, že kysličník ciničitý v jednoduchých alkalických silikátových sklech patří sítotvořičům a je vázán pravděpodobně na tetraedry SiO₄. - Obr. 1. Oblast průhledných skel v části soustavy Li₂O—SiO₂—SnO₂ bohaté oxidem křemíku se silnou (A) a slabou (B) metastabilní likvací. Oblast je oddělena hranicí od zakalených skel s SnO2 nerozpuštěným při 1600°C, která představuje solvus oxidu cínu. Oblast čirých skel podle Vachramejeva a Jevstropěva (6) je označena písmenem D. 1 — skla s příměsí SnO2, 2 — čirá nebo opalizující skla, 3 — nezchladitelná skla, 4 — hranice polí, 5 — hranice pole D. - Obr. 2. Poloha likvidu části soustavy Li₂O -SiO₂-SnO₂ bohaté SiO₂ s eutektickým bodem (E) při teplotě 965 °C +5 °C. Silné čáry označují hranice polí určených podle experimentů, čárkované jsou odvozeny z fázových vztahů. Zkratky jsou v tab. II. Řez Li₂O . 4 SiO₂ + n SnO₂ je v obr. 4 označen číslicí 4. - Obr. 3. Fázové vztahy v oblasti subsolidu soustavy Li₂O—SiO₂—SnO₂ při teplotě 880 °C ukazující třífázové trojúhelníky s rovnováhami kasiteritu, tridymitu, lithného disilikátu a brennockitu. Zkratky v tab. V. - Obr. 4. Schematický řez diagramem T-x o složení 4 SiO2 . Li₂O + n SnO₂ se dvěma invariantními body (α a β). Řez vysvětluje koexistenci tridymitu a kasiteritu v taveninách, jak bylo zjištěno v řadě fázových stanovení. Obr. 5. Obraz z elektronového mikroskopu skla o složení 75,79 % hmot. SiO_2 a 16,67 % hmot. - SnO₂ ukazující hojné projevy metastabilní likvace. - Obr. 6. Obraz z elektronového mikroskopu skla o složení 62,81 % hmot. SiO2 a 21,57 % hmot. SnO2 bez projevů likvace. - Obr. 7. Křivky DTA vzorků v řezu Li_2O . $2 \text{SiO}_2 + n \text{SnO}_2$. - Obr. 8. Křivky DTA vzorků v řezu Li₂O . 3 SiO₂ + n SnO₂. #### M. Štemprok, J. Voldán: ## ФАЗОВЫЕ РОВНОВЕСИЯ В ЧАСТИ СИСТЕМЫ Li₂O-SnO₂-SiO₂, BOΓATOЙ SiO₂ ## Мирослав Штемпрок, Ян Волдан Центральный геологический институт, 11821 Прага 1 Государственный научно-исследовательский институт стекла, 501 92 Градец Кралове Была приготовлена стекла составом LiO_2 . $n SiO_2$ (где n=2, 3, 4, 5 я 6) с добавкойSnO₂ до количества 30 % по весу при температуре 1600—1500 °C. Была установлена область существования стекол, содержащих растворенный SnO₂, характеризуемая метастабильной ликвацей, доля которой уменьшается с нарастающей добавкой SnO2. Кристаллизация полученных таким образом стекол исследовалас с помощью градиентного метода и метода охлаждения. Установлены поля первичной кристаллизации каситерита, тридимита, литиевого дисиликата, образующих эвтектическую точку с температурой 965 °C. В области субсолидуса было доказаво существование фазы Li₄Sn₂Si₁₂O₃₀, отвечающей литиевой разновидности минерала бреннокита. Рассматриеваемая фаза образуется при экспериментах весьма медленно и вбольшинстве экспериментов в части, богатой SiO₂ получается неравновесный SnO₂. Наше результаты в сопоставлении с до сих пор исследованной системой Na₂O—SiO₂—SnO₂ показывают, что окись олова (IV) в простых щелочных силикатных стеклах относится к решеткообразователям и вероятно связывается с тетраэдрами SiO₄. - Рис. 1. Область програчных стекол в части системы Li₂O—SiO₂—SnO₂, богатой окисью кремния со сильной (А) и слабой (В) метастабильной ликвацией. Область разделена пределом от глушеных стекол с SnO2 нерастворенным при 1600°C представляющий собой сольвус окиси олова. Область програчных стекол по Вахрамееву и Естропьеву (6) обозначена D: 1- стекла с примесью $\mathrm{SnO_2}, 2-$ програчные или опалигирующие стекла, 3 — неохлаждаемые стекла, 4 — граници полей, 5 — граница поля D. - Рис. 2. Поверхность ликвидуса части системы ${\rm Li_2O-SiO_2-SnO_2}$, богатой ${\rm SiO_2}$ с эвтектической точкой (E) при температуре 965 ± -5 °C. Толстые линии обовначают пределы полей, установленных на основе экспериментов, штриховые линии из фазовых равновесий. Сокращения см. табл. 2. Сечение Li₂O. 4 SiO₂ + + n SnO2 находится на рис. 4 и обозначено через 4. - Puc.~3.~ Фазовые равновесия в области субсолидуса системы ${\rm Li_2O-SiO_2-SnO_2}$ при температуре 880°C, показывающие трехфазные треугольники с равновесием каси- - терита, тридимита, дисиликата лития и бреннокита. Сокращения см. табл. 5. $Puc.\ 4.\ Cx$ ематическое сечение диаграммой T-x составом $4\ SiO_2$. $Li_2O+n\ SnO_2$ с двумя инвариантными точками (α u' β). Сечение объясняет сосущестование тридимита и каситерита в расплавах, как это было установлено на основе экспериментов. - Рис. 5. Электронмикроскопические снимки стекла составом 75,79 % SiO2, и 16,67 % SnO2 (по весу) показывающие метастабильную ликвациию. - Рис. 6. Электронмикроскопические снимки стекла составом 62,81 % SiO2, и 21,57 % SnO2 (по весу) без явной ликвации. - Рис. 7. Кривые ДТА образцов в сечении ${\rm Li}_2{\rm O}$. $2~{\rm SiO}_2+n~{\rm SnO}_2$. Рис. 8. Кривые ДТА образцов в сечении ${\rm Li}_2{\rm O}$. $3~{\rm SiO}_2+n~{\rm SnO}_2$. NOVÝ SPÔSOB ZÍSKAVANIA VZÁCNYCH MINERÁLNYCH LÁTOK Z MORSKEJ VODY navrhli sovietski výskumníci. Metóda využíva obrovské siete filtračných zariadení so speciálnymi sorbentami ponorené v miestach silných morských průdov, ktoré zabezpečujú samočinne dynamické aspekty filtrácie. Výpočty ukázali, že ekonomika tohoto postupu (napr. pri získavaní uránu) je zrovnateľná s ekonomikou banskej ťažby (Sputnik 12, 1985, 107). I. Horváth