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On the basis of bending strength and Young's modulus experimental data 
of a porcelain mixture, evaluated by three-point bending in the course of firing, 
the basic mathematical model has been extended to include the effect of the 
increasing share of microstructure flaws w#h increasing test specimen volume. 

INTRODUCTION 

Optimizing the firing of ceramics is a way to achieve energy savings. Knowledge 
of the material mechanical parameters in the course of firing, particularly in the 
region of its brittle behaviour, is a necessary prerequisite of any analytical optimizing 
efforts. Such measurements were carried out on a porcelain mixture with an elevated 
content of alumina over the temperature interval of 200 to 700 °C, with the use of 
a suitable apparatus [I, 2]. 

The relationship of the Y oung's modulus E and bending strength <1Po of the 
porcelain mixture on firing temperature as evaluated from our experimental data has 
shown a distinct systematic dependence on the specimen cross-sectional area. In 
order to achieve consistent interpretation of these results the basic mathematical 
model of the experiment has been modified to include the shear force effect, and 
gradually evolved into a model of bending of a ceramic body while respecting the 
effect of porosity. The measurements were carried out by the three-point bending 
method (Fig. I), with constant span by a quasistatically increasing force F, on three 
sets of specimens with various diameters ( cf. Table I). The variation coefficients 
with in the individual set of specimens did not exceed 30 % for the force and 11 % 
for the deflection. 

QUANTIFICATION OF THE SHEARING FORCE EFFECT 

The influence of the shearing force on the beam deflection can be determined 
according to the Castigliani's principle by comparing the derivatives of the state of 
stress potential energies due to bending and shear. In the experimental arrangement 
employed it is possible to use the simplified analytical expression for the state of stress 
potential energy due to the bending moment in the form 

1 i 

LM = 2EJ ! (Mo(x))2 dx, (I) 

Silikaty c. 2, 1988 97 



M. Svare, L. Brozova, V. Hanykyf: 

where M 0(x) is the local value of the bending moment; for the state of stress potential 
energy due to the shearing force the following equation (3) for the interval 1/10 < 
< d/l < 1/4 can be employed: 

L = /J Jl (T(x))2 d 
T O GS x, (2) 

where T(x) is the local value of the shearing force and the numerical value of the 
coefficient /J has been evaluated according to Zhuravskii's rule for circular cross­
-section as /J = 1.18. 
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Fig. 1. Schemat,ic diagram of the experimental arrangement employed for measuring the mechanical 
parameters by the threepoint bending me:thod. 

Table I 

Mean values measured for various diameters of test specimens at the given temperatures and 
calculated according to the elementary model. Span of supports l =a 125 mm 

d t Fmax 

I 
y E O"Pt -- - ·-w-- --

GPa MPa-mm oc mm 
I 

200 32.31 0.270 5.68 6.91 
400 36.27 0.333 5.16 7.57 

12 500 38.54 0.287 6.36 8.27 
ll.5 600 56.18 0.381 6.98 12.51 

700 62.06 0.412 7.14 13.51 

200 72.78 0.317 2.76 5.46 
17 400 80.86 0.326 2.98 5.87 
16.2 500 71.84 0.262 3.30 5.43 

600 114.84 0.298 4.63 8.64 
700 151.14 0.411 4.43 10.93 

200 136.70 0.382 1.20 3.91 
23 400 153.02 0.359 1.43 4.39 
22.3 500 153.45 0 • .275 1.87 4AO 

600 241.91 0.-335 2.42 6.44 
700 265.13 0.363 2.45 7.61 

Notice: The mean values of the mechanical parameters E and O"PO were calculated from 9-15 
specimens. O"pt is the limit stress calculated according to the linear elastic model of 
bending. 
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The total state of stress potential energy is given by the sum of individual states 
of stress energies, 

(3) 

For the case of three-point bending of a prismatic beam, equations (I) and (2) 
can be analytically integrated. Following rearrangement, one obtains the expressions 

F2l3 
LM = 96EJ' (4) 

(5) 

where Fis the loading force, l is the span, G is the modulus of elasticity in shearing, 
S is the specimen sectional area. 

According to Castigliani's theorem, the deflection under the force F can be 
expressed as partial derivative of the state of stess potential energy according to the 
acting force, which in this case leads to the expression 

Fl3 Fl 
YF = 48EJ + fJ 4GB ' (6) 

in which the first term represents the well-known elementary relationship for lateral 
deflection of a beam loaded by force F, derived while considering only the normal 
stress in the beam. The other term can be regarded as a correction factor describing 
the actual state of stress (O', -r). To estimate the quantitative relation of the two 
strain components, requation (6) for a circular cross section can be adjusted by using 
the relationship between the moduli in tension and in shear 

E/G = 2(1 + µ) (7) 
to the form 

(8) 

whereµ is the Poisson's ratio, dis the specimen diameter. 

On substituting {3 = 1.18, µ = 0.3 into this equation, one obtains 

Fl3 (d)2) YF = 48Ef (l + 2.3) T . (9) 

In the case of using equation (9) for calculating the modulus of elasticity for 
various specimen diameters the correction for the shearing force affects the results 
in the desired sense (i.e. increasing values of the ratio d/l increase the vaJue of E with 
respect to the value calculated from the elementary equation). However the correc­
tion value of the order of up to 10 % is quite inadequate in view of the experimental 
results (e.g. ford= 23 mm, the value of the co1Tection is approximately 8%), 
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THE IMPACT OF THE POROSITY REDUCTION OF THE BEAM CROSS 
SECTION AL AREA UNDER TENSION ON THE STRESS AND STRAIN 

DISTRIBUTIONS 

The pores of ceramic materials are assumed to be unable to transmit tensile stresses, 
whereas in the region of compressive stresses no difference will be observed between 
a cross sectional area with pores or defects and one completely free of them, when 
viewed from the standpoint of macrostresses and macrodeformations. In consequence 
of this assumption, the geometric-form of the transvese sectional area will change as 
a result of the effective sectional area reduction in the tensional region. In view of the 
possibility of ready analytical description, further calculations apply to a beam cross 
section of square form. The calculation procedure is quite analogous for circular 
specimen cross sections which were in fact employed; however, the analytical 
procedure is significantly more difficult. Uniform distribution or porosity over the 
sectional area is assumed in the first approximation. From the point of view of 
planar bending, this situation is equivalent to a reduction of the transverse sectional 
area of the beam according to Fig. 2. The amount of pores over the area is represented 
by the quantity w which is a function (obviously a non-decreasing one) of the 
characteristic dimension a of the body. 

0 

a 

Fig. 2. Model of the porosity effect on the load carrying sectional area. 

The position of the neutral axis, given by the ordinate~' is determined from the 
condition of equilibrium of forces into the x axis: according to the Bernoulli's hypo­
thesis, the following equation holds for the deformation: 

e = <X'YJ, (10) 

where a is a proportionality coefficient, and according to the Hooke's law, the stress 
is given by the equation 

<1 = EarJ, 

where 'Y/ is the distance from the neutral axis. 

(11) 

From the condition of equilibrium. of static forces with respect to axis x, 

Ea JS 'Y/ ds = 0, (12) 
(s) 

the following quadratic equation can be writen for the position parameter of the 
neutral axis (after rearrangement): 

---(J.)~2 + 2a(w - a)~+ a2(a - w) = 0, (13) 
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and its physically significant root (w/a < 1) provides the expression for the position 
parameter of the neutral axis in terms of the reduction parameter of the sectional 
area stressed by tension: 

V1-:--(1-:) 
~=--------a. 

a 
Q) 

(14) 

The moment of inertia of the form in Fig. 2 with respect to the neutral axis of bending 
can be regarded as the reduced moment of inertia whose value is given by the 
expression 

J' = ~ [a~3 + (a-w) (a- ~)3). (15) 

As the further treatment is aimed at finding a mathematical model describing the 
experimental values, the expressions need some additional adjustment. On designating 
the coefficient expressing the measure of reducing the area stressed by tension as 

vq-(l-f) =A, 
Q) 

a 

the position of the neutral axis of bending can be expressed by the product 

~=Aa 

(16) 

(17) 

and for the cross section moment of intertia with respect to this axis the following 
expression is valid 

(18) 

Using the expression for the moment of inertia the full sectional area (free of 
pores) with respect to the central axis of inertia, equation (18) can be adjusted to the 
form 

J' = eJ, 

where the reduction coefficient is defined as 

(! = 4 [ A 3 + ( 1 - : ) ( 1 - A )3] . 

(19) 

(20) 

Comparison with the original expression of Young's modulus according to the 
elementary theory of elasticity, 

(21) 

where YF is the deflection under the loading force and the other quantities are 
designated according to Fig. 1, shows that on respecting the assumed porosity over 
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the beam cross section the reduced values of the moment of inertia have to be 
substituted into (21) 

Fl3 _ Fl3 l_El 
E = 48ypJ' - 48ypJ · e - e · (22) 

in eq. (22) E represents the modulus of elasticity evaluated according to the original 
uncorrected equation. 

By simultaneous use of the experimentally established equation(! = e(a) (derived 
from the values in Table I) and the analytical equation (! = e(w/a) (expression 
of the moment of inertia reduction with the material measure of imperfection) the 
dependence of the characteristic dimension ( dimension a in the present simplified 
case) on the measure of microstructural inhomogeneity (here represented by w/a) 
can be estimated. The procedure for the chosen temperature of 200 °0 is shown in 
Fig. 3. 

The actual course of the dependence (! = e(w/a) for the given arrangement is 
given in Table II. 

Fig. 3. The procedure for determining the dependence of por08iJy on the characteristic dimenaion 
of the specimen. 
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Tahle II 

Correction of the cross sectional moment of inertia. 
vs. the microstructural inhomogeneity parameter of the 

material 

w 

: 

A 

I 

Q 
A 

0.1 0.4868 0.9480 
0.2 0.4721 0.8916 
0.3 0.4555 0.8300 
0.4 0.4365 0.7621 
0.5 0.4142 0.6863 
0.6 0.3874 0.6003 
0.7 0.8539 0.5009 
0.8 0.3090 0.3819 
0.9 0.2402 0.2309 
0.95 0.1827 0.1336 
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The change in the effective beam sectional area considered is also reflected on the 
state of stress of the beam. The maximum tensile stresses (i.e. those in the fibres most 
distant from the neutral axis of bending), which are regarded as criteria of possible 
failure in the case of ceramic materials, are given by the following expression for 
the case when reduction of the area is considered: 

, Mo 
<1 = W'. 

0 

(23) 

For the reduced bending resistance modulus of the cross section holds the relationship 

J' 
Wo=-, 

e2 
(24) 

where e2 is the maximum distance in the sectional plane between the neutral axis 
and the tensional section border line. In the given ca.se, equation (24) can be written 
in the form 

Wo = !._ (! 
a l-A 

(25) 

using comparison with the cross section bending resistance modulus for a material 
free of microstructural defects W0 , equation (25) can be expressed as 

W0 = Wo 2(1 !!.__ A) (26) 

The normal stresses in a beam can then be calculated by the following equation for 
the given tensional area reduction: 

, Mo 2(1-A) 
a = -- ----- = <1<p, 

Wo e 
(27) 

where the term M0/W0 is the stress evaluated according to the elementary theory 
of beam bending. Experimental values of this stress are listed in Table III, together 
with the respective correction and corrected stresses. 

Tahle Ill 

The values of experimentally determined stress a, the respe­
ctive corrections and the corrected stress a' 

d-specimen a a' 
-- 'P a(mm) MPa MPa 

12 6.9 1.31 9.03 
17. 5.4 2.58 13.9 
23 3.9 6.58 25.6 

The values of stress <1 given in Table III indicate that a feasible explanation of the 
strain state beams has been presented within the framework of the working hypo­
thesis formulated in this chapter; however, this is not the case for the state of stress. 
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To eliminate this discrepancy between the experimental data and the theoretical 
model, let us further generalize the model by considering the dependence of the 
macroscopic Young's modulus on the specimen size. 

MODIFICATION OF THE STRESS AND STRAIN STATES THROUGH 
CONSIDERING THE DEPENDENCE OF GLOBAL ELASTICITY MODULUS 

ON THE SPECIMEN SIZE 

In view of the fact that for an arbitrary non-zero pore area V def, dm > dnom, 

the mean deformation in the local cross section zone containing pores is greater than 
its nominal value over the validity range of the Hooke's law. An additional increase 
in the state of stress (and thus deformation) in the crack tip region is due to a local 
increase in stress above the O'm value. In consequence of the joint effects of the two 
factors the actual macrodeformation of a relatively porous ceramic body can be 
expected to exceed the one corresponding to the Hooke's law with the modulus of 
elasticity of the pore-free material. 

For the present case of bending of a prismatic ceramic beam the original working 
hypothesis has to be supplemented with the assumption of decreasing macroscopic 
Young's modulus with increasing pore content (corresponding in its turn to the 
increase in the characteristic body dimension) in order to achieve agreement between 
the mathematical model and experimental data for both the stress and strain states. 

Such an agreement is attained by comparing the fictive state of stress according 
to the original basic model to the limit real state of stress for which the tensile 
strength obtained by the bending test of d = 12 mm specimens is regarded as the 
failure criterion. Using the condition of equality of limit deformations (28) for the 
model derived earlier and for the expanded model respecting the variability of 
Y oung's modulus in tension with changing pores content in the body, 

(28) 

where dpt is the ultimate tensile strength, the following relationship for the tensional 
modulus of elasticity of porous materials can be obtained: 

E' = E O'pt , 
a' 

(29) 

In view of the shift of the neutral axis following from the establishment of the 
forces equilibrium the result will have to be determinated by iteration for the top 
iteration limit. 

On retaining the assumptions of both the deformation of a body element and the 
linear distribution of strees (Fig. 4), it is possible to introduce the term' reduced 
modulus of elasticity in bending' ,Ered. 

On the basis of the analogy of the expressions (cf. Fig. 4), 

0'2 Mo I 
tan'lj)o= E(a-fl - J' E (30) 

and 

Mo I (z:.1 E0 I:' ) 1 tan 1P = y E s- + l!F (a - \, ) a, (31) 
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the reduced modulus of elasticity in bending can be expressed as follows: 

-
1-=2-(r+ E' (a-n)'-.1 

· 
Ered E E i a 

Using equation (32), Ered can be expressed explicitly as 

a Ered = E ___ E ___ _ 

;' +E'(a-n 

N.O 

Fig. 4. Shift of the neutral axis due to reduction of the Young's modulus. 

On introducing the term e for the ratio of the moduli, 

E 
°E'=e 

(32) 

(33) 

(34) 

where e = e(w/a), the final form of the expression for the calculation of Young's 
modulus of a pore-free material from measuring the deflection of a beam is obtained 

Fl3 l 1 
E = ------ = Efict -

48JyF ()V ()V 
(35) 

where Enct is the value of the modulus calculated according to the elementary 
uncorrected equation; e is the correction for the tensional section area reduction; 
v is the correction for the decrease of the Young's modulus in tension due to the pres­
ence of pores, for which it holds that 

a 
V=------

f + e(a-n 
For the simplified case of a beam of square cross section, the correction coefficient 
can be expressed in the form 

I 
"JI=-,--~--~ A+ e(I-A) 

(36) 

Silikaty c. 2, 1988 105 



M. Svare, L. Brozova, V. Hanykyf: 

It follows from equation (29) that the sought for relationship (34) can in our case be 
established from the relationship 

; = ;(a) = o''(a) . (37) 
o'pt 

On the assumption of a constant modulus of elasticity of pore-free ceramic material 
under constant conditions of firing and of constant limit stress, it is possible to use 
experimental data (cf. Table I) in determining the numerical values of corrections 
e and 11 for the individual measured diameters of test specimens. The calculation 
procedure is shown schematically in Fig. 5. 

*w=w{a) 

_Q_ 
mm 

,,, 
/ 

V 

f 

Fig. 5. Iteration procedure for determining the dependence of poroaity on the body size. I, II and Ill 
are the iteration stepa, *w = w(a) is the sought for relationship. 

CONCLUSION 

The presented mathematical model which explicitly takes into account the micro­
structural character of ceramics - particularly the porosity - indicates the way 
how to explain consistently the dependence of the experimentaly established values 
of the Young's modulus and bending strength on the test specimens diameter. The 
proposed procedure represents a feasible method for correlating the information 
obtained for test specimens to the conditions of actual products. The subject matter 
is highly topical both in the region of mathematical modelling of technological and / 
or operational strains of ceramic products and in the field of numerical evaluation of 
their resistance to these loads. 
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VLIV VELIKOSTI VZORKU NA MECHANIOKE PARAMETRY 
PORCEL.ANOVE SMESI 

Milan Svare*, Libuse Brozova**, Vladimir Hanykyf** 

* Statni vyzkumny itstav pr9 stavbu strojit, Bechovice, 190 00 Praha 9 
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U souboru dat mechanicke pevnosti a. Y oungova modulu pruznosti stanovenych metodou 
tfibodoveho ohybu behem vypalu valcovych vzorku ptipravenych z porcelanove smesi se zvyse­
nym obsahem oxidu hliniteho byla zjistene. vyrazna zavislost vypoctenych parametru na jejich 
prumeru. K vysvetlenf tohoto jevu byl rozAffen zakladnf model tffbodoveho ohybu pro zahrnutf 
rostoucfho podflu defektu mikrostruktury keramickeho me.terialu s prumerem vzorku. Vysledkem 
je iteracnf postup, ktery s vyuzitfm vztahu (35) umoznuje konzistentni interpretaci experimental­
nfoh dat. 

Olw. 1. Schema uspofadani pro mefeni mechanickych parametrit metodou tfibodoveho ohybu. 
Olw. 2. Model vlivu p6romtosti na nosnou pl,ochu prufezu. 
Obr. 3. Postup urceni zavislosti podilu p6ru na charakteristickem rozmeru vzorkU. 
Olw. 4. Posun neutralne osy pfi redukci Y oungova modulu. 
Olw. 6. Iteracni postup urceni zavislosti podilu p6ru na velikosti telesa. I., II., III. jsou iteracni 

kroky •w = ro(a) - hledaoo zavislost. 

BJII1HHI1E PA3MEPA OBPA3~A 
HA MEXAHI1qECKl1E IIAPAMETPhl <DAP<DOPOBOfl CMECtt 

Mni!aH IIIBapn:*, Jln6yme BpomoBa**, Bna.n;HMHp raHmrnprn** 

I'ocyaapcmee,.u-tblU HllY'{HO-UCC1teaooame.abCKUU UHCmumym a.aR. KOHCmpyKlj UU ,,\WU/UH 
Bexoeulfe, 190 00 Ilpaea 

* * 1,;agjea pa mexHo.aoauu cu.au1,;amo1J X UMu1,;o-mexHo.aoeu<rec1,;oeo UHcmumyma 
166 28 II paea 

B Ha6ope .n;aHHbIX MeXaHnqec1rn:oil: rrpoqHOCTH H MOJ.IYJUI IOHra, IIOilyqeHHbIX C IIOMOJIIbID 
MeTo.n;a TpexToqeqHoro narn6a BO BpeMH o6mnra U:HilHHJJpHqec1rnx o6paan:oB, rrpnroTOB­
JI0HHLIX H3 cpapcpopoBOH CM0CH C IIOBhlill0HHb!M CO)JepmaHH0M OKCH.n;a rpexBaileHTHoro 
aJIIDMHHHll ycTaHOBHi!H peaKyro 38BHCHMOCTh paccqHTaHHbJX rrapaMeTpOB OT HX )lHa­
M8Tpa. .D:illl o6'bllCH0HHll )J.aHHOro HBil0HHll pacmHpHJIH OCHOBHYID MO/1;0Jlb TpexroqeqHoro 
1rnrn6a Ha pacTyru;yro .n;omo .n;eipeKTOB MHKpocrpyKryphl KapeMnqecKoro MaTepnana co 
cpe].IH.IIM pa3MepoM o6pa3U:OB. PeayJihTaTOM Toro llBilll0TCll HTepan:.110HHLIH rrp.11eM, KOTOpbiii: 
C HCIIOilb3OB8H.110M OTHOI118HHll (35) rrpe.n;cTaBilRCT BO3MOlRHO('Tb KOH3HCT0HTHOro OU'bRCHe­
HHll :mcrrepHM0HT8JlhHb!X µ;aHHhIX. 

Puc. 1. Cxe.Ma ynopR-ao'{e1-1,UR, ycmaHO6KU a1iR- ua,41,epPnU:i ,,}iexaHU'{ec1,;ux ll(lpa.Mempoe c no­
.MOUfblO .Memoaa mpexmo'{e'{Hoeo uaeu6a. 

Puc. 2. M oae.ab e.auRHUR- nopucmocmu Ha Hecyu+y10 noeepxHocmb aua.Mempa. 
Puc. 3. Iloc.aeao6ame.abHOCmb onpeae.aeHuR- aaeucu.Mocmu ao.au nop om xapa1.mepucrnu'{ec1,;oeo 

paa.Mepa o6paal{a, 
Puc. 4. C.MeUfeHue Heiimpa.abHoii ocu npu eoccmaHoe.aeHuu .Moay.n,R- lOHia. 
Puc. 5. HmepalfUOHHllR- noc.aeaoeame.abHocmb onpeoe.1,eHuR- aaeucll.Mocmu ao.au nop om 

paa.Mepa me.n,a; I, II, III - umepalfUOHH&ie utaeu, *w = w(a) x - ucKo.MaR- aa6ucu­
.Mocmb. 
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