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On the basis of bending strength and Young's modulus experimental data
of a porcelain mixture, evaluated by three-point bending in the course of firing,
the basic mathematical model has been extended to fnclude the effect of the
increasing share of microstructure flaws with increasing test specimen volume.

INTRODUCTION

Optimizing the firing of ceramics is a way to achieve energy savings. Knowledge
of the material mechanical parameters in the course of firing, particularly in the
region of its brittle behaviour, is a necessary prerequisite of any analytical optimizing
efforts. Such measurements were carried out on a porcelain mixture with an elevated
content of alumina over the temperature interval of 200 to 700 °C, with the use of
a suitable apparatus [1, 2].

The relationship of the Young’s modulus £ and bending strength ope of the
porcelain mixture on firing temperature as evaluated from our experimental data has
shown a distinct systematic dependence on the specimen cross-sectional area. In
order to achieve consistent interpretation of these results the basic mathematical
model of the experiment has been modified to include the shear force effect, and
gradually evolved into a model of bending of a ceramic body while respecting the
effect of porosity. The measurements were carried out by the three-point bending
method (Fig. 1), with constant span by a quasistatically increasing force F, on three
sets of specimens with various diameters (cf. Table I). The variation coefficients
with in the individual set of specimens did not exceed 309, for the force and 119,
for the deflection.

QUANTIFICATION OF THE SHEARING FORCE EFFECT

The influence of the shearing force on the beam deflection can be determined
according to the Castigliani’s principle by comparing the derivatives of the state of
stress potential energies due to bending and shear. In the experimental arrangement
employed it is possible to use the simplified analytical expression for the state of stress
potential energy due to the bending moment in the form

1 i ;
Ly = 57 | (Mo(w)? dz, 1)
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where Mo(z) is the local value of the bending moment; for the state of stress potential
energy due to the shearing force the following equation (3) for the interval 1/10 <
< dfl < 1/4 can be employed:

11 T 2
Lr=B g_‘ I e, (2)

where T'(z) is the local value of the shearing force and the numerical value of the
coefficient B has been evaluated according to Zhuravskii’s rule for circular cross-
-section as § = 1.18.

S S
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Fig. 1. Schematic diagram of the experimental arrangement employed for measuring the mechanical
parameters by the threepoint bending method.

Table I

Mean values measured for various diameters of test specimens at the given temperatures and
calculated according to the elementary model. Span of supports { = 126 mm

__i_ ¢ . Frax Yy E _O'r;t ~
mm °C N mm GPa MPa
200 32.31 0.270 5.68 6.91
400 36.27 0.333 5.16 . 71.57
12 500 38.64 0.287 6.36 8.27
11.5 600 56.18 0.381 6.98 12.51
700 62.06 0.412 7.14 13.61
200 72.78 0.317 2.76 5.46
17 400 80.86 0.326 2.98 5.87
16.2 500 ) 71.84 0.262 3.30 5.43
600 114.84 0.298 4.63 8.64
700 151.14 0.411 4.43 10.93
200 136.70 0.382 1.20 3.91
23 400 163.02 0.359 1.43 4.39
22.3 8500 163.45 0.275 1.87 4.40
600 241.91 0.335 2.42 6.44
700 265.13 0.363 2.45 7.61

Notice: The mean values of the mechanical parameters & and opo were calculated from 9—15
specimens. op; is the limit stress calculated according to the linear elastic model of
bending.
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The total state of stress potential energy is given by the sum of individual states
of stress energies,

L= Ly -+ Ly. (3)

For the case of three-point bending of a prismatic beam, equations (1} and (2)
can be analytically integrated. Following rearrangement, one obtains the expressions

Fa3

v = 9887 > @
F2

Ly = /3 RGS (5)

where F is the loading force, ! is the span, ¢ is the modulus of elasticity in shearing,
8 is the specimen sectional area.

According to Castigliani’s theorem, the deflection under the force F can be
expressed as partial derivative of the state of stess potential energy according to the
acting force, which in this case leads to the expression

Fp Fl

in which the first term represents the well-known elementary relationship for lateral
deflection of a beam loaded by force F, derived while considering only the normal
stress in the beam. The other term can be regarded as a correction factor describing
the actual state of stress (¢, 7). To estimate the quantitative relation of the two
strain components, requation (6) for a circular cross section can be adjusted by using
the relationship between the moduli in tension and in shear

E6 = 2(1 + p) )

to the form
Fi3 3 d\2
-”F=m(1+?ﬁ“+/‘)(7)) ®)

where u is the Poisson’s ratio, d is the specimen diameter.

On substituting § = 1.18, u = 0.3 into this equation, one obtains

Fl3 d\2
ve = o (1 + 2.9 (7) ) . )

In the case of using equation (9) for calculating the modulus of elasticity for
various specimen diameters the correction for the shearing force affects the results
in the desired sense (i.e. increasing values of the ratio d/! increase the value of £ with
respect to the value calculated from the elementary equation). However the correc-
tion value of the order of up to 109, is quite inadequate in view of the experimental
results (e.g. for 4 = 23 mm, the value of the correction is approximately 89,).
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THE IMPACT OF THE POROSITY REDUCTION OF THE BEAM CROSS
SECTIONAL AREA UNDER TENSION ON THE STRESS AND STRAIN
DISTRIBUTIONS

The pores of ceramic materials are assumed to be unable to transmit tensile stresses,
whereas in the region of compressive stresses no difference will be observed between
a cross sectional area with pores or defects and one completely free of them, when
viewed from the standpoint of macrostresses and macrodeformations. In consequence
of this assumption, the geometric-form of the transvese sectional area will change as
a result of the effective sectional area reduction in the tensional region. In view of the
possibility of ready analytical description, further calculations apply to a beam cross
section of square form. The calculation procedure is quite analogous for circular
specimen cross sections which were in fact employed; however, the analytical
procedure is significantly more difficult. Uniform distribution or porosity over the
sectional area is assumed in the first approximation. From the point of view of
planar bending, this situation is equivalent to a reduction of the transverse sectional
area of the beam according to Fig. 2. The amount of pores over the area is represented
by the quantity « which is a function (obviously a non-decreasing one) of the
characteristic dimension a of the body.

_ ?j__%ﬁ. My Sp\\\

a-E

w=w ()

L N\

Fig. 2. Model of the porosity effect on the load carrying sectional area.

The position of the neutral axis, given by the ordinate &, is determined from the
condition of equilibrium of forces into the z axis: according to the Bernoulli’s hypo-
thesis, the following equation holds for the deformation:

& = an, (10)
where « is a proportionality coefficient, and according to the Hooke’s law, the stress
is given by the equation

¢ = Eon, (11)
where 7 is the distance from the neutral axis.
From the condition of equilibrium of static forces with respect to axis z,
Eoc_”nds: 0, (12)
®)
the following quadratic equation can be writen for the position parameter of the

neutral axis (after rearrangement):
—wé? + 2a(w —a) § + a*a —w) =0, (13)
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and its physically significant root (w/a < 1) provides the expression for the position
parameter of the neutral axis in terms of the reduction parameter of the sectional

area stressed by tension:
l/l —2(1-2)
a a
a

a ) (14)

w

§=

The moment of inertia of the form in Fig. 2 with respect to the neutral axis of bending
can be regarded as the reduced moment of inertia whose value is given by the
expression

J =5 (a8 + (@—w) a— ) (15)

As the further treatment is aimed at finding a mathematical model describing the
experimental values, the expressions need some additional adjustment. On designating
the coefficient expressing the measure of reducing the area stressed by tension as

l/l_i_(l_ﬁ’,) ‘
“ 2/ 4 (16)

’
w

a

the position of the neutral axis of bending can be expressed by the product
&= Aa (17)

and for the cross section moment of intertia with respect to this axis the following
expression is valid

J’ :%m [A3+ (1——2’—) (1——A)3]. (18)

Using the expression for the moment of inertia the full sectional area (free of
pores) with respect to the central axis of inertia, equation (18) can be adjusted to the
form

J = pd, . (19)

where the reduction coefficient is defined as
w

Comparison with the original expression of Young’s modulus according to the
elementary theory of elasticity,
Fis

where yp is the deflection under the loading force and the other quantities are
designated according to Fig. 1, shows that on respecting the assumed porosity over

Silikaty ¢. 2, 1988 101



M. Svarc, L. Brofovd, V. HanykyF:

the beam cross section the reduced values of the moment of inertia have to be
substituted into (21)
Fi3 Fis 1 1
= = . — = — 22
E 48yrJ’  48yrJ " @ E e’ #2)
in eq. (22) E represents the modulus of elasticity evaluated according to the original
uncorrected equation.

By simultaneous use of the experimentally established equation ¢ = p(a) (derived
from the values in Table I) and the analytical equation ¢ == g(w/a) (expression
of the moment of inertia reduction with the material measure of imperfection) the
dependence of the characteristic dimension (dimension a in the present simplified
case) on the measure of microstructural inhomogeneity (here represented by w/a)
can be estimated. The procedure for the chosen temperature of 200 °C is shown in
Fig. 3.

The actual course of the dependence g = g(w/a) for the given arrangement is
given in Table II.

074 p— —
10,
r
Fig. 3. The procedure for determining the dependence of porosity on the characteristic dimension
of the specimen.
Table 11

Correction of the cross sectional moment of inertia
vs. the microstructural inhomogeneity parameter of the

material

7}

A 4 ?
0.1 0.4868 0.9480
0.2 0.4721 0.8916
0.3 0.4555 0.8300
0.4 0.4365 0.7621
0.6 0.4142 0.6863
0.6 0.3874 0.6003
0.7 0.8539 0.5009
0.8 0.3090 0.3819
0.9 0.2402 0.2309
0.956 0.1827 0.1336
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The change in the effective beam sectional area considered is also reflected on the
state of stress of the beam. The maximum tensile stresses (i.e. those in the fibres most
distant from the neutral axis of bending), which are regarded as criteria of possible
failure in the case of ceramic materials, are given by the following expression for
the case when reduction of the area is considered:

Mo
= 23
7 (23)
For the reduced bending resistance modulus of the cross section holds the relationship
wy="L, (24)
€2

where e; is the maximum distance in the sectional plane between the neutral axis
and the tensional section border line. In the given cage, equation (24) can be written
in the form

| (25)

using comparison with the cross section bending resistance modulus for a material
free of microstructural defects Wy, equation (25) can be expressed as

W, = Wo (26)

¢
21 — 4) -
The normal stresses in a beam can then be calculated by the following equation for
the given tensional area reduction:

M, 21— 4)
=W, o
where the term Mo/W, is the stress evaluated according to the elementary theory

of beam bending. Experimental values of this stress are listed in Table III, together
with the respective correction and corrected stresses.

’

= oy, (27

Table 111

The values of experimentally determined stress o, the respe-
ctive corrections and the corrected atress ¢’

d-specimen o o’
a (mm) MPa 4 MPa
12 6.9 1.31 9.03

17 . 5.4 2.58 13.9

23 3.9 6.58 25.6

The values of stress ¢ given in Table III indicate that a feasible explanation of the
strain state beams has been presented within the framework of the working hypo-
thesis formulated in this chapter; however, this is not the case for the state of stress.
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To eliminate this discrepancy between the experimental data and the theoretical
model, let us further generalize the model by considering the dependence of the
macroscopic Young’s modulus on the specimen size.

MODIFICATION OF THE STRESS AND STRAIN STATES THROUGH
CONSIDERING THE DEPENDENCE OF GLOBAL ELASTICITY MODULUS
ON THE SPECIMEN SIZE

In view of the fact that for an arbitrary non-zero pore area Vget, 6m > 0'nom.,
the mean deformation in the local cross section zone containing pores is greater than
its nominal value over the validity range of the Hooke’s law. An additional increase
in the state of stress (and thus deformation) in the crack tip region is due to a local
increase in stress above the gm value. In consequence of the joint effects of the two
factors the actual macrodeformation of a relatively porous ceramic body can be
expected to exceed the one corresponding to the Hooke’s law with the modulus of
elasticity of the pore-free material.

For the present case of bending of a prismatic ceramic beam the original working
hypothesis has to be supplemented with the assumption of decreasing macroscopic
Young’s modulus with increasing pore content (corresponding in its turn to the
increase in the characteristic body dimension) in order to achieve agreement between
the mathematical model and experimental data for both the stress and strain states.

Such an agreement is attained by comparing the fictive state of stress according
to the original basic model to the limit real state of stress for which the tensile
strength obtained by the bending test of d = 12 mm specimens is regarded as the
failure criterion. Using the condition of equality of limit deformations (28) for the
model derived earlier and for the expanded model respecting the variability of
Young’s modulus in tension with changing pores content in the body,

o om
E E =)
where op; is the ultimate tensile strength, the following relationship for the tensional
modulus of elasticity of porous materials can be obtained:

B =E%2, (29)
o

In view of the shift of the neutral axis following from the establishment of the
forces equilibrium the result will have to be determinated by iteration for the top
iteration limit.

On retaining the assumptions of both the deformation of a body element and the
linear distribution of strees (Fig. 4), it is possible to introduce the term’ reduced
modulus of elasticity in bending’ ,Eeq.

On the basis of the analogy of the expressions (cf. Fig. 4),

o _ M1

tan Yo = m = T E (30)
and
My 1 E 1
tany;:T?—ET(E’—i——E?—(a—E’));, (31)
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the reduced modulus of elasticity in bending can be expressed as follows:

1 1, E RU
s pa—o) (32)

Ered -
Using equation (32), Ereq can be expressed explicitly as
Bra=E-— % — | (33)
¢+ a—e)
El

g4/ F

_NO

G, /€

Fig. 4. Shift of the neutral axis due to reduction of the Young’s modulus.

On introducing the term & for the ratio of the moduli,
S (34)

where £ = £(w/a), the final form of the expression for the calculation of Young’s
modulus of a pore-free material from measuring the deflection of a beam is obtained

FI3 1 1
I o — Eret —— 35
48Jyr ov fiet v’ (35)

where FBrict is the value of the modulus calculated according to the elementary
uncorrected equation; g is the correction for the tensional section area reduction;

v is the correction for the decrease of the Young’s modulus in tension due to the pres-
ence of pores, for which it holds that

o a .
&+ &a—¢&)"

For the simplified case of a beam of square cross section, the correction coefficient

can be expressed in the form

v

1

VEATEI—4)

(36)
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It follows from equation (29) that the sought for relationship (34) can in our case be
established from the relationship
a'(a
£ = §a) = 22

37
pry (37)

On the assumption of a constant modulus of elasticity of pore-free ceramic material
under constant conditions of firing and of constant limit stress, it is possible to use
experimental data (cf. Table I) in determining the numerical values of corrections
o and » for the individual measured diameters of test specimens. The calculation
procedure is shown schematically in Fig. 5.

Fig. 5. Iteration procedure for dekrmining the dependence of porosity on the body size. I, IT and I11
are the iteration steps, *«» = w(a) is the sought for relationship.

CONCLUSION

The presented mathematical model which explicitly takes into account the micro-
structural character of ceramics — particularly the porosity — indicates the way
how to explain consistently the dependence of the experimentaly established values
of the Young’s modulus and bending strength on the test specimens diameter. The
proposed procedure represents a feasible method for correlating the information
obtained for test specimens to the conditions of actual products. The subject matter
is highly topical both in the region of mathematical modelling of technological and /
or operational strains of ceramic products and in the field of numerical evaluation of
their resistance to these loads.
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VLIV VELIKOSTI VZORKU NA MECHANICKE PARAMETRY
PORCELANOVE SMESI

Milan Svarc*, Libuse BroZova**, Vladimir Hanyky#**
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U souboru dat mechanické pevnosti a Youngova modulu pruZnosti stanovenych metodou
t¥ibodového ohybu bdhem vypalu valcovych vzorka pripravenych z porceldnové smési se zvyse-
nym obsahem oxidu hlinitého byla zjift&na vyraznd zavislost vypoltenych parametrii na jejich
praméru. K vysvétleni tohoto jevu byl roziffen zédkladni model t¥fbodového ohybu pro zahrnutf
rostoucfho podflu defekt mikrostruktury keramického materidlu s pramérem vzorkii. Vysledkem
je iteradni postup, ktery s vyuZitim vztahu (35) umoziiuje konzistentni interpretaci experimental-
nich dat.

Obr. 1. Schéma uspordddni pro méfeni mechanickych parametric metodou tFtbodového ohybu.

Obr. 2. Model vlivu pérovitosti na nosnou plochu prifezu.

Obr. 3. Postup uréeni zdvislosti podilu pori na charakteristickém rozméru vzorku.

Obr. 4. Posun neutrdlné osy pi redukcei Youngova modulu.

Obr. 8. Iterabni postup urent zdwvislosti podilu péri na velikost: télesa. I., I1., II1. jsou iteraéni
kroky *w = w(a) — hledand zdvislost,

BJIUAHUE PASMEPA OBPA3IIA
HA MEXAHUUYECKUE MAPAMETPH ®AP®OPOBOII CMECH

Muaan [IBapm*, JTubyme Bposxosa**, Baagumup IaHrkupm**

Tocydapcmeermsiii HAYUHO-UCCALIOBAMEALCEUTE UHCIMUMYM A% KONCMPYEYUU MAWUH
Bexosuye, 190 00 Ilpaza

** pagedpa mernoaoeul cuiuramos X umMuko-merHos02usecKo20 UHCIMUmMyma

166 28 Ipaea

B mafope JaHHEX MeXaHUIECKKON NPOoYHOCTH 1 MoAyJIA JOHra, mMOJyYeHHBIX ¢ MOMOIIBIO
MeTOZA TPeXTOYedHOro uMaruba BO BpeMA OOKHra NUIMHIPAYECKEX OODASIOB, IPATOTOB-
JeHHHIX u3 (PapdopoBOH cMecH ¢ HOBBHIMIEHHLIM COJeP/KAHNEM OKCHJA TPEeXBATIEHTHOrO
aMOMAHAA YCTAHOBNIM PE3KYIO 3aBHCHMMOCTh pacCYHTaHHHIX IlapaMeTPOB OT HX JHa-
Merpa. [ o6bAcHEeHNA NaHHOTO ABJICHHA PACHIMDHIH OCHOBHYIO MOJeJIb TPEeXTOYeHHOIO
wsrmba Ha pacTyHmyl0 [OJI0 [e(eKTOB MHKPOCTPYKTYPHI KapeMHYeCKOTOo MartepHaia Co
cpexHHM pasmepoM 06pasmoB. Pe3ysInTaToM TOrO ABJIAETCA HTeDAIMOBHHIA IIPHEM, KOTOPBIT
¢ HCHOJIL30BAHMEM OTHOMIEHHA (35) mpefcTaBAfeT BOSMOKHOCTH KOH3MCTEHTHOIO OOBSCHE-
HUSA SKCHEPHMEHTAJILHBIX J(AHHBIX.

Puc. 1. Cxema ynopadoeHus YCmarnoskl Oaf UIMEPEHILI MELAHUMECKUL NAPAMEMPOE € No-
MOUbI0 memoda mpermoueyroeo uzeuba.
Puc. 2. Modeav gauanua nopucmocmu Ha Hecyusylo noseprrocms duamempa.
Puc. 3. ITocaedosameavHocmb 0npedescrus 3agucumocini 00AU Nop oM Tapaxmepucmuuecro20
pasmepa obpasya.
Puc. 4. Cmueweriue netimpanbrolt ocu npu eoccrmanosackuu modyan HOnea.
1

Puc. 6. Hmepayuonnas nocaedoeameavrocms onpedesenus aasucumocmu Goaw nop om
pasmepa meaa; 1, 11, I11 — umepayuonrsie waeu, *ow = w(a) z — uckomas sasucu-
mocme.
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