AMFOTERNÍ CHARAKTER Al₂O₃ V SYSTÉMU CaO—Al₂O₃—SiO₂

NGUYEN VAN LOC

Institut pro výzkum materiálů, Národní centrum vědeckého výzkumu, khu Bách khoa, Hanoi, Vietnam

Došlo 1. 10. 1988

V tavenině strusky při vysokých teplotách lze přítomný Al_2O_3 v koordinaci ekvivalentně nahrazovat oxidem křemičitým v poměru 1 mol Al_2O_3 za 2 moly SiO_2 . Při stejném obsahu Al_2O_3 ve strusce je hodnota viskozity dále závislá, kromě celkového obsahu Al_2O_3 též na stupni jeho koordinace. V práci je uveden způsob kvantitativního určení iontů Al^{3+} v koordinaci 4.

ÚVΟD

Jednou z nejdůležitějších vlastností vysokopecní strusky je její viskozita při vysokých teplotách, která je převážně ovlivňována obsahem SiO₂ a Al₂O₃. Oxid hlinitý se však v tavenině vysokopecní strusky může vyskytovat buď v koordinaci 4, nebo 6. Při koordinačním stupni 4 se vytvářejí polyedry (AlO₄)⁵⁻ a při koordinačním stupni 6 polyedry (AlO₆)⁹⁻, které hodnotu viskozity ovlivňují nestejně. Nezáleží proto pouze na absolutním obsahu Al₂O₃, ale též na jeho koordinačním stupni v tavenině strusky. V předložené práci jsou diskutovány možnosti kvantitativního určení obou uvedených koordinačních forem Al₂O₃ ve strusce s možností předpovědi viskozity a krystalizační teploty strusky při vysokých teplotách.

TEORETICKÁ ČÁST

 Vysvětlení amfoterního charakteru Al₂O₃ v systému CaO—Al₂O₃—SiO₂ vyplývající z diagramu závislosti viskozity a aktivační energie na chemickém složení

a) Na základě závislosti viskozity strusky na její vnitřní struktuře a na základě srovnání tvarů izokom s ternárním diagramem $CaO-SiO_2-Al_2O_3$ lze předvídat aniontovou strukturu strusky a síly působící mezi anionty a kationty [1]:

l — každá z izokom kolmých na základnu diagramu má určitý konstantní poměr O/R ($R = Si^{4+} + Al^{3+}$);

2 — tyto izokomy náhle změní svůj směr při poměru O/R = 2;

3— směry izokom v oblasti vysokopecní strusky jsou rovnoběžné s čarami konstantního obsahu CaO;

4 — ve spodní a levé části diagramu se utvářejí izokomy přecházející do směru kolmého k základně a posléze asymptotického s čarou $O/R \ge 3$;

5 — v horní části diagramu, kde je hodnota viskozity $\eta \ge 2$ dPa s, se všechny izokomy stávají rovnoběžné s čarou konstantního poměru O/Si = 3 a kolmé k pravé straně diagramu.

b) Dle výpočtů Rossinových [2] (obr. 1) se objevují nové izokomy na levé straně ternárního diagramu, které se stáčejí do směru kolmého k základně trojúhelníka. Zdá se, že toto pravidlo platí, když hodnota poměru O/R je větší než 3 $(R = \text{Si}^{4+} + \text{Al}^{3+})$. Pro vysvětlení struktury kapalné strusky nestačí však pouze diagramy viskozity; je třeba užít také diagramy aktivační energie.

×,

Obr. 1. Křivky ekvivalentní aktivační energie v ternárním diagramu SiO₂—Al₂O₃—CaO (molární složení).

Obr. 2. Závislost aktivační energie viskózního toku na složení silikátového systému.

Srovnáním hodnot aktivační energie v binárním systému CaO—SiO₂ podle Bockrise [3, 4] (obr. 2) s hodnotami v ternárním systému CaO—SiO₂—Al₂O₃ podle Rossina [2] bylo zjištěno, že se tyto hodnoty shodují a rovnají se 104,5 kJ/mol při

$$O/Si = O/R = 4$$
 (CaO = 66 %) (1).

Diagram izokom a čar aktivační energie v ternárním systému lze rozdělit do tří zón (obr. 3):

- Zóna A: $O/R \ge 4$. Všechny izokomy jsou kolmé k základně (CaO-Al₂O₃).
- Zóna B: 4 > O/R > 2. Izokomy divergují od směru kolmého na základnu a stávají se paralelní s čarami konstantního obsahu CaO.
- Zóna C: $O/R \leq 2$. Izokomy jsou kolmé k pravé straně trojúhelníka (Al₂O₃—SiO₂). Zóny B a C jsou rozděleny na horní a dolní část izokomou $\eta = 2$ dPa s.

Popis jednotlivých zón.

Zóna A: Po přidání dostatečného množství i
ontů O^{2-} do strusky může proběhnout reakce

$$Al_2O_3 + 25 O_2 = 2 (AlO_4)^{5-},$$

tzn. že z molekuly Al₂O₃, lze získat 2 tetraedry (AlO₄)⁵⁻, které se podobají (SiO₄)⁴⁻; jinými slovy v tomto případě je molekula Al₂O₃ ekvivalentní 2 molekulám SiO₂. Aby se zachovala stálá viskozita strusky, je třeba dvěma molekulami SiO₂ nahradit molekulu Al₂O₃. Příslušné izokomy budou rozděleny kolmo k základně diagramu CaO—SiO₂—Al₂O₃.

Z obrázku 3 je vidět, že tato distribuce izokom se objevuje pouze v zóně A, kde všechny ionty Al³⁺ jsou v koordinačním stavu 4 a (AlO₄)⁵⁻ ve strusce mají poměr $O/R \ge 4$. Podmínka není splněna, když MO/Al₂O₃ ≥ 1 nebo 2, jak uvedl Kozakevič [5, 6].

Obr. 3. Závislost viskozity strusky v systému CaO—SiO2—Al2O3 při 1900 °C na chemickém složení podle Kozakeviče (molární složení).

Lze předpokládat, že v zóně A, kde $O/R \ge 4$, se vyskytují ionty: $(SiO_4)^{4-}$, $(AlO_4)^{5-}$, O^{2-} , Ca^{2+} .

Zóna B: V této zóně mají izokomy téměř lineární průběh v sektoru odpovídajícím složení vysokopecní strusky a jsou téměř nezávislé na obsahu CaO. Podél těchto

Silikáty č. 4. 1989

izokom dochází současně ke vzrůstu obsahu Al_2O_3 , zmenšení obsahu SiO_2 a poměru O/R. Normálně by zmenšení poměru O/R mělo způsobit zvětšení viskozity strusky, ale v tomto případě zůstává nezměněna. Z uvedeného vyplývá, že v zóně B poměr O/R nevyjadřuje pravidlo změny viskozity a označuje se jako "zdánlivý poměr"

$$Ra = Si^{4+} + Al^{3+}$$
.

V tomto případě pro udržení konstantní viskozity musí být část i
ontů Al³⁺ v koordinačním stavu 6. Potom

$$O/R_r = O/(Si + Al_{IV})r$$
 ($O/R_r = reálný poměr$),

kde Al_{IV} — množství iontů Al³⁺ ve tvaru (AlO₄)⁵⁻, Al_{VI} — množství iontů Al³⁺ ve tvaru (AlO₆)⁹⁻, celková suma Al³⁺ = Al_{tt} = Al_{IV} + Al_{VI}.

Když $O/R_r < 4$, v kapalné strusce začne polymerizační proces tetraedrů (SiO₄)⁴⁻ a (AlO₄)⁵⁻; když $O/R_r = 3$ —4, může se vytvářet smíšená řetězová mřížka a trojrozměrná mřížka. Když $O/R_r < 3$, vytváří se pouze trojrozměrná mřížka. Aby se zmenšila volná energie systému, dochází k rozpadu iontů

a

$$[(Al, Si)_n O_{3n+1}]^{(2n+2+3n+2)^-} \quad s \ n \ge 2$$
$$[(Al, Si)_n O_{2n+3}]^{(6+6+n)^-} \quad s \ n \ge 3$$

na menší diskrétní anionty s nejmenšími hodnotami n. V řetězové a kruhové mřížce mají nejstabilnější ionty tvar

$$[(Si, Al) O_4]^{(4+5)-}$$
 a $[(Si, Al)_3O_9]^{(6+9)-}$

Zónu *B* v diagramu lze tudíž rozdělit do dvou sektorů. Spodní sektor přísluší hodnotám $3 < O/R_r < 4$ a mohou v něm existovat anionty [(Si, Al) O₄]^{(4+5)⁻} a [(Si, Al)₃O₉]^{(6+9)⁻}. V horním sektoru, kde $O/R_r < 3$ ($\eta \ge 2$ dPa s), existuje pouze kruhová mřížka o vzorci [(Si, Al)_nO_{2n+3}]^{(6+6+n)⁻}.

Zóna C: Izokomy v ternárním diagramu CaO—Al₂O₃—SiO₂ dosahují vrcholu, když $O/R_a = 2$. Izokomy v horním sektoru ($\eta \ge 2$ dPa s, $O/R_a = 2$) budou rovnoběžné s čarami konstantní hodnoty poměru O/Si = 3 a kolmé na stranu diagramu SiO₂—Al₂O₃.

2. Srovnání strusek stejných viskozit

• V roztaveném stavu rozměry diskrétních aniontů mají rozhodující vliv na viskozitu strusky.

V obecném případě lze uvažovat dva druhy strusek:

a) počáteční struska,

b) nová struska získaná z počáteční strusky jako výsledek změny množství Al⁺³ iontů ve strusce. Nová struska má tutéž viskozitu jako struska původní.

Z předpokladu, že uvedené dva druhy strusky by měly stejnou izokomu, vyplývají následující vztahy

$$\frac{O_1}{R_{r_1}}=\frac{O_2}{R_{r_2}},$$

kde R_r je suma Si + Al_{IV}.

 Al_{IV} — ionty Al^{3+} ve tvaru $(AlO_4)^{5-}$.

Jestliže $O_2 > O_1$, potom

$$\frac{O_1}{R_{r_1}} = \frac{O_2}{R_{r_2}} = \frac{O_1 + O'}{R_{r_1} + r'},$$

kde $O' = O_2 - O_1$ a $r' = R_{r2} - R_{r1}$

a

$$\frac{O_1}{R_{r_1}} = \frac{O'}{r'}$$

Dále platí: r' = a' + si',

kde a' — množství přidaných iontů Al³⁺ s koordinačním číslem 4 si' — množství přidaných iontů Si⁴⁺.

a' a si' odpovídají umístění strusky v ternárním diagramu. Hodnota si může být negativní nebo pozitivní, tzn.

$$a' = \frac{O'}{\frac{O_1}{R_{r_1}}} + si'. \tag{1}$$

Zóna A: Izokomy v této zóně se shodují s čarami konstantního poměru O/R, tj. $O_1 = O_2$ a $O' = O_1 - O_2 = O$.

Potom $a' = s_i'$. Všechny přidané ionty Al³⁺ ve strusce jsou tudíž ve tvaru (AlO₄)⁵⁻.

Zóna B: Jak bylo dříve uvedeno, když v této zóně zůstává viskozita kapalné strusky konstantní, potom zvětšení obsahu Al₂O₃ ve strusce jde na úkor obsahu SiO₂ (1), kde a' závisí na O/R_{r1} , asymptoticky směřuje k si' a je vždy pozitivní. V zóně B je proto vždy část iontů Al³⁺ ve strusce ve tvaru (AlO₄)⁵⁻. Obecně platí, že přidaný podíl Al³⁺ s koordinačním číslem 4 ve strusce jde na úkor SiO₂ (v sektoru $O/R_r = 2$), protože zde jsou izokomy paralelní s čarou obsahu SiO₂, tj. si' = 0 a platí rovněž vztah (1).

Zóna $C: \mathbb{Z}$ průběhu izokom vyplývá; že při zvýšení obsahu Al₂O₃ (při zachování konstantní viskozity) je třeba zároveň zvětšit obsah SiO₂ ve strusce podle vztahu (1). Jsou-li všechny přidané ionty Al³⁺ při podmínce $O/R_r \leq 3$, $\eta \geq 2$ dPa s v koordinaci 6, tj. ve tvaru (AlO₆)⁹⁻, je struktura strusky trojrozměrná. Množství iontů Al³⁺ v koordinaci 4 lze definovat vztahem (2)

$$\operatorname{Al}_{\mathrm{IV}} = \frac{O_2}{O_1} - \operatorname{Si}_2.$$

$$(2)$$

 Při zmenšování poměru ${\cal O}/R_r$ se v kapalné strusce objevují diskrétní ani
onty v kruhovém tvaru

$$[(Si, Al)_n O_{2n+3}]^{(6+6+n)} \le n > 3$$

3. Stanovení množství iontů Al³⁺ ve strusce ve tvaru (AlO₄)⁵⁻

Pro výpočet poměru O/R_r je třeba znát stupeň účasti iontů Al³⁺ na tvorbě aniontů (AlO₄)⁵⁻. Tuto hodnotu lze určit z diagramu (obr. 4) [7]. Přitom je třeba

Silikáty Č. 4, 1989

Nguyen Van Loc:

uvažovat nejen strukturu strusky, ale též i jiné faktory, jako např. stabilitu iontové vazby a mocenství kationtů. Proto jsou výsledky výpočtů pouze aproximativní.

Obr. 4. Stupeň ekvivalence (N_a) SiO₂ a Al₂O₃ v závislosti na molární koncentraci Al₂O₃ a molárním poměru Al₂O₃/CaO v taveninách o složení CaO—Al₂O₃—SiO₂.

Příklad: Výpočet poměru O/R_r u strusky složení 3 CaO. 3 Al₂O₃. 4 SiO₂.

$$\frac{O}{R_{\bullet}} = \frac{20}{10} = 2,$$
$$\frac{O}{8i^{4+} + Ai^{3+}} = \frac{20}{4 + Ai^{3+}}.$$

Podle Turdoganova diagramu [7]

$$\frac{N_{\rm Aj2O3}}{N_{\rm CaO}} = 1$$

a při molární koncentraci $Al_2O_3 = 0,3$, je pak obsah SiO₂ ekvivalentní množství Al_2O_3 , $N_a = 0,27$. Jestliže 100 % iontů Al^{3+} se objevuje ve tvaru (AlO₄)⁵⁻, 1 mol Al_2O_3 je ekvivalentní 2 mol SiO₂ a $N_a = 2$.

Potom $N_{Al^2O_3} = 2 \times 0.3 = 0.6$ místo 0,27, tzn. pouze 0,27/0,60 × 100 = 45 % Al³⁺ je přítomno ve strusce s koordinačním číslem 4. Potom výsledná hodnota poměru O/R_r je rovna 3. Struska je složena z aniontů [(Si, Al)₃O₉]^{(6+9)⁻}. Výpočet a syntéza výsledků ukazují: jestliže zdánlivý poměr O/R_a zůstává konstantní, stupeň účasti iontů Al³⁺ ve tvaru (AlO₄)⁵⁻ se zvětšuje s růstem Al₂O₃ ve strusce za**n**edbatelně. Vzhledem k vyššímu mocenství a afinitě ke kyslíku (kJ/mol) iontů Al³⁺ ve srovnání s Ca²⁺ lze zanedbat tento vzrůst a uvažovat konstantní množství (AlO₄)⁵⁻ pouze při konstantním O/R_r .

Jak bylo dříve uvedeno, získané výsledky jsou přibližné. Pro kontrolu lze užít

hodnot aktivační energie v systémech CaO—SiO₂ a CaO—SiO₂—Al₂O₃. Po stanovení poměru O/Si v binárním systému lze zvolit příslušnou hodnotu poměru O/R_r v ternárním systému a dále určit tvar diskrétních aniontů.

4. Vliv desintegrace polyedrů (AlO₄)^{5−} a (AlO₆)^{9−} na viskozitu strusky s vysokým obsahem Al₂O₃

Ionty Al³⁺ se mohou vyskytovat v koordinačním stavu 4, $[(AlO_4)^5]$ nebo 6, $[(AlO_6)^{9-}]$. Jestliže O/R < 4, jsou tyto polyedry desintegrovány. Účast iontů Al³⁺ na tvorbě $(AlO_6)^{9-}$ zvětšuje poměr O/R_r a zmenšuje viskozitu kapalné strusky při vysoké teplotě.

Část iontů Al³⁺ v koordinačním stavu 6 utvoří s anionty stabilní kombinaci, která je stálejší při relativně nízké teplotě. Vzhledem k afinitě Al³⁺ ke kyslíku [292,6 kJ/mol (Al³⁺), 125,4 kJ/mol (Ca²⁺)] a také vzhledem k vyššímu mocenství Al³⁺ ve srovnání s Ca²⁺, růst množství volných polyedrů ve tvaru (AlO₆)⁹⁻ způsobuje zvětšení elektrostatické síly kapalné strusky.

Kromě toho zvětšení negativního elektrostatického náboje aniontových skupin o část iontů ve tvaru (AlO₄)-+ způsobuje zvětšení přitažlivých sil mezi kaitonty a anionty.

Jestliže se zvětší obsah Al₂O₃, obě formy Al³⁺ (Al_{IV} a Al_{VI}) zvýší elektrostatickou sílu mřížky a to může vést ke zvýšení teploty krystalizace strusky. Proto je struska o vysokém obsahu Al₂O₃ velmi pohyblivá při vysoké teplotě, zatímco při relativně nízké teplotě zůstává viskózní.

Viskozitu strusky s vysokým obsahem Al₂O₃ lze zvýšit třemi způsoby:

- 1. zmenšením množství Al³⁺ přidáním čeřiv k vysokopecní vsázce,
- 2. zvýšením teploty strusky, aby se zmenšila elektrostatická síla mřížky,
- 3. přidáním některých prvků, které ve strusce zeslabí vazby v celé mřížce.

Obr. 5. Izokomy viskozity při 1900 °C, složení ve hmot. %.

Silikáty č. 4, 1989

5. Vztah mezi strukturou strusky a teplotou krystalizace

Rozměry diskrétních aniontů mají vliv na viskozitu strusky, zatímco elektrostatické interakční síly mezi ionty rozhodujícím způsobem ovlivňují krystalizační teplotu strusky. Tato interakční síla závisí na mocenství kationtů, na afinitě každého prvku ke kyslíku a na negativním elektrickém náboji diskrétních aniontů.

Na druhé straně, čím menší jsou rozměry diskrétních aniontů, čím větší je množství volných kationtů (které je obklopují), čím větší je obsah Al_2O_3 ve strusce, tím větší je také počet iontů Al^{3+} v obou formách (Al_{IV} , Al_{VI}).

Z této skutečnosti lze učinit závěr, že všechny strusky v tomto případě mají vysokou teplotu krystalizace. Na diagramu zóny $A \neq C$ přísluší vysoké teplotě vzhledem k velkému množství volných kationtů Ca²⁺ (zóna A) a kationtů Al³⁺ (zóna C). Pouze zóna B přísluší nízké teplotě krystalizace.

Požadavek nízké viskozity a teploty krystalizace je splněn pouze tehdy, když strusky ve spodním sektoru zóny B odpovídají složením vysokopecní strusce (obr. 5).

ZÁVĚR

1. V molárním ternárním diagramu (CaO—Al₂O₃—SiO₂) přísluší všechny kolmice na základnu diagramu stanovené hodnotě O/R. Amfoterní charakter Al₂O₃ závisí pouze na poměru O/R, nezávisí však na MO/Al₂O₃. Vznik polyedrů (AlO₄)^{5–} a (AlO₆)^{9–} začíná, když O/R < 4 a nedochází k němu, když MO/Al₂O₃ < 1 nebo 2.

2. V každém konkrétním případě lze množství iontů Al³⁺ v koordinaci 4 a 6 vypočítat srovnáním příslušných binárních a ternárních diagramů aktivační energie nebo užitím experimentálního diagramu Turdoganova.

3. Ternární diagram CaO—Al₂O₃—SiO₂ lze rozdělit do tří zón s touto iontovou strukturou:

a)
$$O/R_r \ge 4$$
: [(Si, Al) O₄]⁽⁴⁺⁵⁾⁻; O²⁻; Ca²⁺

b)
$$4 > O/R_r > 3$$
: Ca²⁺; Al_{VI}³⁺; [(Si, Al) O₄]^{(4+5)⁻}; [(Si, Al)₃ O₉^{(6+9)⁻}]

c) $3 \ge O/R_r$: kruhová mřížka [(Si, Al)_nO_{2n+3}]^{(6+6+n)⁻}; Ca²⁺; AlvI³⁺.

4. Viskozita strusky je nepřímo úměrná poměru O/R_r ; čím je větší tento poměr, tím je menší viskozita.

5. Teplota krystalizace závisí přímo úměrně na množství volných kationtů, afinitě každého prvku ke kyslíku, mocenství kationtů a elektrickém náboji aniontů.

Literatura

- Nguyen Van Loc: Studie tvorby vysokopecní strusky (v ruštině). Disertační doktorská práce, 1968, Vietnam.
- [2] Rossin R., Bersan J., Urbain C.: Rév. Hautes Températures et Réfraet. 1, 159 (1964).
- [3] Bockris J. O'M., Lowe D. C.: Proceedings Royal Soc., 226, 423 (1954).
- [4] Bockris J. O'M., Mackenzie J. D., Kitchener J. A.: Trans. Farad. Soc. 51, 1734 (1955).
- [5] Kozakevič P.: Rév. de Métall rgie, (1960).
- [6] Kozakevič P.: Rév. de Métallurgie 1 (1967).
- [7] Turdogan E. T., Bills P. M.: Ceram. Bulletin, 39, No 11 (1960).

АМФОТЕРНЫЙ ХАРАКТЕР А1203 В СИСТЕМЕ СаО-А1203---SiO2

Нгиюен Ван Лок

Институт для исследования материалов, Национальный центр научного исследования, Въетнам

Одним из наиболее важных свойств доменного плака является его вязкость при высоких температурах, на которую преимущественно оказывает влияние содержание SiO₂ и Al₂O₃. Однако оксид трехвалентного алюминия может встречаться в доменном шлаке или в координации 4 или 6. При степени координации 4 образуются полиэдры (AlO₄)⁵⁻, а при степени координации 6 полиэдры (AlO₆)⁹⁻, которые на величину вязкости оказывают неодинаковое влияние. Поэтому решающим является не только абсолютное содержание Al₂O₃ в расплаве шлака, но и его степень координации. Было установлено, что в расплаве шлака при высоких температурах присутствующий Al₂O₃ в координации 4 можно эквивалентно заменять оксидом четырехвалентного кремния в отношении 1 моль Al₂O₃ на 2 моля SiO₂. При одинаковом содержании Al₂O₃ в шлаке величина вязкости далее зависит, кроме общего содержания Al₂O₃, также от степени его координации. В предлагаемой работе рассматриваются возможности количественного определения обеих приводимых форм координации Al₂O₃ в шлаке с возможностью предположения о вязкости и температуре кристаллизации шлака при высоких температурах.

Рис. 1. Кривые эквивалентной энергии активации в тернарной диаграмме SiO₂—Al₂O₃— —CaO (моларный состав).

- Рис. 2. Зависимость энергии активации вязкого течения от соства силикатной системы. Рис. 3. Зависимость вязкости шлака в системе CaO—SiO₂—Al₂O₃ при температуре 1900° С от химического состава согласно Козакевичу (молярный состав).
- Рис. 4. Степень эквивалентности (Na)SiO2 и Al2O3 в зависимости от молярной концентрации Al2O3 и молярного отношения Al2O3/CaO в расплавах составом CaO—Al2O3—SiO2.
- Рис. 5. Изокомы вязкости при температуре 1900° С состав в % по объему.

AMPHOTERIC CHARACTER OF Al₂O₃ IN THE SYSTEM CaO-Al₂O₃-SiO₂

Nguyen Van Loc

Institute for Research of Materials, National Centre of Scientific Research. Hanoi, Vietnam

The high-temperature viscosity of blast-furnace slag, which is mostly affected by its SiO₂ and Al₂O₃ content, is one of the most important properties. However, aluminium oxide in molten slag may arise either in coordination 4 or 6. AlO₄⁵⁻ polyhedra form at coordination degree 4, and AlO₆⁶⁻ polyhedra at coordination degree 6; the two types show different effects on viscosity. It was found that in slag melts at high temperatures, the Al₂O₃ for 2 mols of SiO₂. At the same content of Al₂O₃ in slag, its viscosity further depends, in addition to the total alumina content, also on the degree 6 its coordination. The paper deals with the possibility of quantitative determination of the two coordination forms of Al₂O₃ in slag as a means for precasting viscosity and crystallization temperatures.

- Fig. 1. Curves of equivalent activation energy in the SiO₂--Al₂O₃--CaO ternary diagram (molar composition).
- Fig. 2. Activation energy of viscous flow vs. composition of the silicate system.
- Fig. 3. Viscosity of slag in the system CaO—SiO₂—Al₂O₃ at 1900 °C vs. its chemical composition after Kazakevich (molar composition).
- Fig. 4. Equivalency degree (N_a) of SiO_2 and Al_2O_3 in terms of the molar concentration of Al_2O_3 and the Al_2O_3/CaO molar ratio, in melts having the composition $CaO Al_2O_3 SiO_2$.
- Fig. 5. Isoviscosity curves at 1900 °C, composition in wt. $\frac{0}{10}$.

Silikáty č. 4, 1989