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A model system of «— t (conversion — time) data on isothermmal cousrse
of a heterogeneous reaction was used to derive a procedure for determining the
parameters of an equation for a universal kinetic model of a polyreactive reac-

tant
m

o = Z X045

i=1
on the condition that
o = 1 — exp (—nyt),

where 1, 18 a parameter expressing the reactivity of a homoreactive fraction
whose content in the reactant in question is z;.

The method is based on determining the minimwm sums of deviations
squared (MSDS) and thus the optimum values of the parameters at gradually
increasing number m of the equation terms. Equalization of MSDS ¢s a cre-
terion for the effective value of m. As parameters of the model are then regarded
those values which describe adequately the given o — t relationship with the
use of the effective number m of homoreactive fractions.

INTRODUCTION

Solid-state reactions constitute the basic element of technological processes
in commercial production of inorganic materials. The aim of studying the reactions
is to learn their kinetics and to utilize the knowledge for the purpose of intensi-
fying effectively the respective process, first of all its controlling stage. If the
reaction mechanisms are unknown or even for the sake of simplicity, relation-
ships derived from kinetic models (formal kinetics) are often used to describe
their course.

Universal kinetic model of a polyreactive reactant

The classical kinetic models were mostly created on the assumption that the
particle of the reactant is situated in a continuous homogeneous medium of an
excess of the other reactant, that it can be regarded as a geometrically simple
body and that it can be considered to be energetically homogeneous with respect
to its reactivity. The models usually did not take into account other parameters
of the reactant such as the distribution of its particles in the reaction mixture,
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the particle size distribution, the complexity of their shape and above all their
energetical inhomogeneity. Although in some instances the equations yielded
by such models describe acceptably the changes of quantities characterizing the
course of the reaction (most frequently the time dependence of conversion of the
reactant, or its temperature dependence), the width of their applicability was
quite limited. Extensive utilization of these equations in the description of pro-
cesses where the assumptions of their derivation are demonstrably not met, tends
to degrade them to mere empirical regressive relationships and there is no reason
to believe that they provide any information on the mechanism of the respective
process.

In 1973, Jesenak [1] suggested a universal kinetic model that eliminated some
of the drawbacks of the previous models, being based on the assumption of reacti-
vity distribution. According to the model the reactant is a polyreactive substance
and the reaction units (kinetic particles) whose reactivities, i.e. manifestations
during the reaction, are identical (wherever thoy might be distributed in the
reaction space) thus form the so-called phenomenological homoreactive (PH)
fraction of the reactant. Although the reactivity distribution of the reactant is
assumed to be continuous, owing to the possible division of each reactant into
phenomenological proportions with approximately the same reactivity within
the framework of each proportion (homoreactive fractions), the general form of
the equation for a universal model of a polyreactive reactant (MPR)*) can be
written in the form

o = Z Xj oy (1)
=1
where « is the fraction of conversion of the reactant as a whole, at time ¢,
x; is the portion of the j-th PH-fraction in the reactant,
m is the number of phenomenological homoreactive fractions.

Equation (1) is formally identical with the basic Sasaki’s equation [3] (poly-
dispersion kinetic model). In contrast to the latter, however, #; signifies the portion
of j-th phenomenological homoreactive fraction of the reactant and not the gra-
nulometric one. Similarly to Sasaki’s model it holds, of course, that the sum of z;
fractions is equal to unity.

Sasaki proposed to express the conversion of each fraction in terms of time
o; = f4(¢) in a standard way by the Valensi—Carter equation [4, 5]:

A L g e — (L — g = ®
z—1 z—1
where 2z, k; are parameters.

Such a requirement does not arise with the polyreactive reactant model,;
reaction path of each PH fraction can be described by an arbitrary suitable growth
function f(¢) [2, 6].

The polyreactive reactant model is a phenomenological model of a statistical
system where a process with a complex mechanism takes place. In spite of this,
not even this model provides information on the process mechanism. It demonstra-
tes its effectiveness mainly in correlation of its parameters (or its statistical mo-

*) Jesendk calls his model’ relaxation polyreactive kinetic model (RPKM), regarding the
reaction as elimination of thermodynamic stresses in the reaction system (for details refer o.g.
to [2]).
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ments) with the pre-history of the reactant (time of grinding, conditions of heat
treatment, etc.), reaction mixture preparation (homogenization, compacting
pressure, etc.) and the conditions of the reaction (temperature, pressure, composi-
tion of the atmosphere, etc.).

Concretizing the analytical form of the MPR equation

Application of a certain classical kinetic model to description of an experimental
time dependence of conversion represents in fact the task of finding also the model
parameters, if they exist, so that the resulting equation would adequately and
acceptably describe the given relationship. The term acceptable description is
usually understood to mean such a model relationship from which the experimental
points do not deviate by more than the maximum actual measuring error, i.e.
3s, where s is the standard deviation of the individual measurements (a sufficient
condition). With such an acceptability condition, a problem for only one model
may have an infinite number of solutions, and even several kinetic models can be
expected to conform to the given acceptability criterion. At the same time it
is obvious that the following necessary condition will hold for the sums of devi-
ations squared of all the acceptable relationships:

(%, ADaec < 9 nst, (3)

where » is the number of experimental data,
Ay is the deviation of an individual measurement.

The suitable kinetic models should be selected on the basis of the form of the
experimental relationship and of the properties of functions following from the indi-
vidual models. Among the acceptable relationships, further attention is usually
paid to that considered optimal with respect to some criterion (usually the sum
of deviations squared). In evaluating practice, the approach is quite the opposite:
the optimum relationship is first found for the criterion selected, and only then
the intervals of parameters, for which the relationships are acceptable, are determi-
ned.

Whereas with the classical models the analytical forms of their kinetic equations
are unambiguously defined, the form of the equation is not precisely specified
in the case of the model of a polyreactive reactant, as this depends on the form
of functions a; = fy(¢). Their form again depends on the evaluator’s approach,
because a single reactant can be modelled in several ways.

From the standpoint of subsequent evaluation of thc parameters of the indi-
vidual PH fractions, however, it is convenient to model the reactant by means
of fractions whose reaction path can be described by function o = fs(f)
of identical analytical form. Having chosen the form of this function, the problem
of concretizing the kinetic equation is transformed into one of determining the
number of its terms m. With increasing number of terms, the description of the
experimental relationship will obviously be precisioned, and starting with a cer-
tain effective number m, all of the additional equations will be acceptable for
certain intervals of their parameter values. A higher number of terms in equation
(1) will therefore yield a smaller sum of deviations squared, but from the stand-
point of reproducibility of experimental values, the results will be equivalent with
those already obtained by means of the first (optimum) acceptable model rela-
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tionship. From this it follows that the use of numbers of terms higher than the
optimal one is not effective, and moreover the accuracy of the estimated para-
meters decreases with increasing m.

In evaluations of the « = f(?) relationships free of inflexions, convenient use
was made of the «; growth function in the form

oy = 1 — exp (—rjt), (4)

where 7; is a parameter expressing the reactivity of j-th PH fraction of the reactant.

The present paper had the aim to derive a simple procedure for determining
the number of terms m of the first acceptable model relationship on the assumption
that the reaction paths of the individual fractions are described in a standard
form given by equation (4).

DETERMINING THE NUMBER OF TERMS IN EQUATION MFPR

The method for determining the minimum required number of terms for equation
(1) was derived in a model system whose data were calculated by means of Jan-
der’s equation in the form (theoretical relationship)

«=1—(1—]1 X 10-5p. (5)

In the literature, Jander’s equation is often successfully used to describe expe-
rimental relationships of conversion in terms of time.

The times t for which the conversion values were calculated, were first determi-
ned from Jander’s equation in the form

3
t=1x 103 (1 —[T—ap (6)

for o= 0.04¢, where 7€e{l, 2, ........ , 24}, and rounded to one decimal,
thus covering, with respect to conversion values, the entire range with ‘an appro-
ximate spacing of 0.04 between the points. For the times obtained, the ‘theoreti-
cal’ values of conversion were calculated and loaded with the generated random
error in the third decimal place (‘experimental’ values). The rounding up of the
times and adjustment of the conversion values were chosen so as to correspond
to the accuracy of a standard experiment. The times ¢ and the ‘experimental’
values of the model system are listed in Table I and in part plotted in Fig. 1.
The ‘experimental’ values of conversion showed absolute deviations | A‘| from
the theoretical ones over the interval of 9.1 x 10-3 to 2.1 x 10-6¢ with a mean
absolute deviation |4| = 4.1 X 10-3. The sum of deviations squared of ‘experi-
mental’ points from the ‘theoretical’ relationship was 0.626 x 10-3, and the
calculated standard deviation, on the assumption of normal distribution of the
measuring error and equal dispersion over the entire interval measured was

-3
s = I/_O'G%2—:1°~ — 5.1 x 103, (1)

From this it follows that as acceptable model relationships one can regard all
those whose deviation of points does not exceed the value 3s = 15.3 x 103 and
the sum of deviations squared is smaller than 9 ns2 = 5.63 x 10-3.
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Table 1
The model set and its deviations from MPR equations for m = 1—4
T ¢/min 103aexp 1034, 1034, 10345 1034,
1 0.2 42 —39 —30 —18 —0
2 0.8 82 —171 —37 —4 2
3 1.7 121 —97 —33 6 —4
4 3.2 156 —111 —8 14 6
5 5.1 208 —138 —3 —b —b
6 7.6 246 —143 12 —9 —2
7 10.7 276 —134 28 —2 6
8 14.6 314 —127 28 0 5
9 19.} 363 —125 11 —17 —6
10 24.56 406 —110 —1 —6 —9
11 30.9 431 —176 3 10 5
12 38.4 472 —51 —b 10 6
13 47.1 520 —31 —19 1 —2
14 57.3 566 —8 —27 —5b —17
15 69.3 592 36 —13 7 8
16 83.3 640 56 —18 —3 —1
17 99.9 675 84 —8 0 4
18 119.6 719 99 —b —4 —1
19 143.3 766 104 —4 —11 —8
20 172.4 796 119 14 2 3
21 209.0 837 112 19 2 1
22 256.8 880 94 20 1 —1
23 323.9 920 70 20 3 —1
24 433.0 954 44 20 7 4
Table 11

Characteristics of MPR equations for m = 1—4 (SDS — sum of deviations squared)

m 2y 7;/min-1 103 SDS | 4]
1 1.000 1.42 x 102 213.677 0.087
2 0.283 1.92 10-1

0.716 7.68 10-3 8.807 0.016
3 0.128 8.87 x 101

0.263 4.86 x 102

0.610 6.37 x 103 1.263 0.006
4 0.060 5.33 .

0.129 2.77 x 10—t

0.256 3.26 x 102

0.667 6.00 X 103 0.5626 0.004
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The optimized relationships according to equations (1) and (4) were then plotted
through the ‘experimental’ points while the number of terms of the sum was gra-
dually changed (m = 1, 2, 3, 4). The sum of deviations squared was employed
as the optimizing criterion, the simplex method being used in the optimizing pro-
cedure. The calculation results (values of the optimum parameters, minimum
sums of deviations squared and mean absolute deviations) are listed in Table II;
deviations 4;; through 44 of inversely calculated conversion values for m =1 —4
are listed in Table I; the optimum relationships for various values of m are repre-
aented in Fig. 1.

0SsG

025

60 t/min
Fig. 1. Model set and the relationships following from MPR form = 1 — 4.

Mere visual evaluation of the individual model relationships plotted in Fig. 1
shows that the curves with m = 1 and m = 2 are not acceptable for this model
system. According to Table 2, the ‘experimental’ values in these two instances have
mean absolute deviations |4| equal to 0.087 and 0.016 respectively, i.e. values
higher by up to 20.9 and 3.9 respectively than the mean absolute deviation of
the data system from the original ‘theoretical’ relationship (0.004). The minimum
sums of deviations squared (MSDS) for these curves are also quite high (213,677 x
x 103 and 8,807 x 10-3) and compared to the sum of deviations squared of the
‘experimental’ points from the ‘theoretical’ relationship (0.626 X 10-3) they are
higher by a factor of more than 9 (341.4 and 14.1 respectively).

In contrast to this, the third curve shows deviations of only 4-0.006 (higher
1.4 times), thus attaining the level of the original ‘experimental’ curve (|4| =
= 0.004). The sum of deviations squared from the ‘experimental’ points is 1.253 X
X 1073, i.e. a value only double that of the sum of deviations squared of these
points from the original relationship (0.626 x 10-3). The deviations of points from
this curve, with the exception of four points (179, of ‘experimental’ data), are
of the order of 10-3 and smaller; of the four cases mentioned, only one (4,5 =
= 17.9 x 10-3) exceeds slightly the limit 3s = 15.3 x 10-3. In view of the account
given above, this model relationship already can be considered acceptable.

The model curve with m = 4 exhibits still better parameters than the third
one; its values are approximately identical with those of the ‘theoretical’ relation-
ship. The curves with m = 5 would obviously be also acceptable and provide
still more favourable results.

294 Silikdty & 4, 1990



A Method for Evaluating the Parameters of a Universal Kinetic Model...

On working with a real experimental system where the standard deviation
value s is often unknown, one should take into account that the ratio of the mi-
nimum sums of deviations squared is the more sensitive of the characteristic data
followed, as it tends to change at a higher rate.

The mutual ratio of consequent minimum sums of deviations squared at an
gradually increasing value of m converges to the limit value of 1.0, and for the
model system considered acquires the values MSDS, : MSDS, = 24.3, MSDS; :
:MSDS; = 7.0 and MSDS; : MSDS, = 2.4. All this shows that an acceptable
equation with the lowest number of terms m is that optimized equation whose
sum of deviation squared no longer changes singificantly with further increasing
the number of terms.

DISCUSSION

For the model system considered, the first acceptable equation has therefore
3 terms which express a model of a reactant comprising three PH fractions. The
fractions have representations of approximately 13, 26 and 619, while their
reactivities differ by an order of magnitude. This means in practice that the indi-
vidual fractions take different parts in different stages of the reaction.

The fastest reacting fraction (r; = 0.9 min—!) reacts almost entirely (909}
within about 2.6 min while the portions of the other two fractions in the overall
conversion at that time are still relatively small (about 20 %, and 6 9, respectively).
In this stage the overall course of the reaction is therefore decribed approximately
by the reaction of the fraction reacting at the highest rate using the equation

w = 2y[1 — exp (—rit)]- (8)

In the following reaction stage the share of this fraction in the overall conversion
is already almost constant, so that the time dependence of the conversion can
be described by the approximate equation

3
o=z + ) [l —exp (—rt)] (9)
j=2

A considerable proportion (759%,) of the fraction reacting at the medium rate
(r2 = 5.0 X 102 min—?) will react within about 28.5 min and till that the other
two fractions take a minor share in the conversion increment. During the stage
when the contribution by the slowest fraction to the overall conversion inerement
is of small significance, the reaction can be described by the approximate rela-
tionship

a = 1 + x[1 —exp (—r)]. (10)

In the last stage of the reaction when the main share of the overall conversion
increment is provided by the fraction showing the lowest reaction rate (rz =
= 6.4 X 1073 min—?), the basic equation can be analogously adjusted to the forin

o=z + 22 -+ 23[1 — exp (—r3t)]. (11)

From the account it follows that such a modelling of the reactant divides the
course of the reaction into m = 3 stages (rapid start, a medium part and gradual
conclusion) and that the values of overall conversion yield various information
about the parameter values in different stages of the course of the reaction. For
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example, in the given model case the reactivity r, is determined above all by
‘experimental’ points up to 2.6 min, only three points, the r, by five to six points
over the time interval of 2.6—28.5 min, while the reactivity of the slowest frac-
tion is given by about a double number of points.

The accuracy of determining the values of reactivity r; can be said to depend
substantially on the distribution of experimental points along the curve. For
example, if the set would not include the first data, reactivity r; could not be
determined. In that case only the limit value of r, could be determined, namely
such a value for which equation (9) would describe the further course of the rea-
ction. Similarly, if data from the last stage of the reaction were not available,
it would only be possible to determine the limit value of r; the effect of which
could not have influenced the previous stages of the reaction.

More favourable conditions exist in the determination of values z; which ma-
nifest themselves in all stages of the reaction (cf. equations 8, 9, 10 and 11). Possi-
ble absence of the first points thus does not hinder determination of z; and the
value of z; can also be calculated additionally without any experimental data from
the end of the reaction.

CONCLUSION

Application of the universal kinetic model of a polyreactive reactant to the
description of relationships in the conversion of reactants in terms of time in the
course of heterogeneous isothermal reactions allows a more complex characte-
cteristic of the reacting substance to be established (particularly with respect
to reactivity distribution). In the simpler case the model serves to the fitting
of conversion relationships without any restriction. Its multi-purpose character
has been attained at the expense of simplicity of the equation, as also proved
by the model set, where five parameters were necessary for describing a single-
-parameter relationship.

Possible further utilization of these parameters in the study of heteromogeneous
reactions would require a simple reliable method for their determination. The
submitted study demonstrates, on a model sct of data, the possibility of resolving
these problems under certain conditions. At the same time it points out the varia-
bility in the accuracy of parameters resulting from their number and relation
to the individual stages of the reaction. In the authors’ laboratory, the method
for determining the parameters of the kinetic model is successfully utilized in
the study of the kinetics of solid-state reactions.
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METODIKA VYHODNOCOVANIA PARAMETROV UNIVERZALNEHO
KINETICKEHO MODELU POLYREAKTIVNEHO REAKTANTA Z GDAJOV
O IZOTERMICKOM PRIEBEHU HETEROGENNEJ REAKCIE

Viadimir Kover, Jozef Bachan

Katedra chemickej technoldgie silikdtov, Chemickotechnologickd fakulta SVST, Radlinského 9,
812 37 Bratislava

Univerzélny kineticky model polyreaktivneho reaktanta modeluje reaktanta pomocou fe-
nomenologickych frakcii (FH) s navzijom réznou reaktivitou a pre pripad nespojitej distribacie
reaktivity poskytuje rovnicu v tvare

)
ax = 2 ZTjots
ji=1

kde « je zlomok premeny (konverzia) reaktanta ako celku v &ase f,
a; — konverzia j-tej FH frakcie v tom istom &ase,
x; — podiel j-tej FH frakcie v reaktante,
m — podet FH frakecii
Préca riedi problém ur&enia parametrov modelu na modelovom stbore a — ¢ idajov za pred-
pokladu, Ze funkcie a; = f;(t) maja jednotny tvar

o = 1 —eoxp (—mrjt),
kde 7. je parameter vyjadrujaci reaktivitu j-tej FH frakcie reaktanta.

Metida spodiva v tom, Ze pri postupne sa zvié§ujucom podte &lenov m urduje vypracovany
vypoétovy program minimalne sGéty stvorcov odchylok (MSS0). Ukézalo sa, ze hodnota MSSO
je takmer nemennd od takého m, pre ktoré spatne vypolitana zdvislost a = f(¢) uz dobre fituje
experimentalne udaje.

Parametre rovnice s efektivnym podtom &lenov m sa povaZuju za parametre modelu.

Obr. 1 Modelovy subor a zdvislost: vyplyvajuce z MI’R pre m = 1 — 4.

METOOUKA PACCMOTPEHUA HAPAMETPOB YHUBEPCAJBHOR
KHHETUYECKON MOJEJIH MOJUPEAKTUBHOTO PEAKTAHTA
HA OCHOBAHHNUN JJAHHBIX OTHOCHTEJBHO U30TEPMHUYECHKOTO
XOJA TETEPOTEHHOW PEAKIIUN

Baagumup Kosap, Hosed Baxan

zumuromerroro2uveckuii dharyavmem Cro6miko20 noaumexnuneckoeo uncmumyma, ragedpa
mexHoaozul cuauramos, Padauncrozo 9, 812 37 Bpamucaaca

VYHHBepcasbHAA KMHETHUECKAA MOJE.Ib MOJHPEARTHBHOIO PEAKTaHTA MOJUEIHpPYeT peak-
TaHT ¢ IIOMOMEI0 JeroMeHO.101 Itvec KX ¢paruui (FH) ¢ B3aMMHO Pa3HOIf PeaKTHBHOCTHIO
W B v/Iyyae He¢BA3AHHOI'O Dacipejle;IeHuA PeaKTUBHOCTI NMPeAOCTaBlIAeT ypaBHEHie B BHJie

m
= ) zjuy,
j=1

Ifle « — j0JiA IpeBpamenns (KOHBCPCIll) PeakTaHTa KAk Le10ro BO BPEeMEHH £, o — KOH-
Bepcud j-HOM FH Qpakiui B TOM ke BPeMeHIl, x; — jioad j-Hoil FH ¢pakuun B peaKkrasTe,
m — xonndectBo FH ¢parmuii.

B npepsiaraemoit padore peuraerca npoGieMa onpe;ie/leHHA I1apaMeTPOB MOJENH Ha MO-
fe;IbHOM Habope o — ¢ JaHHBIX IPH DPEIOJI0KeHuH, 1TO (YHKOMH oy = f4(t) MMEIOT cTaH-
JIa PTHHL BHJ{
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xj = 1 —exp (_rit)v
r7e r; — napaMeTp, Bhipa;KalOONIMil peaKTUBHOCTb j-Toi FH ¢pakmuum peakTaHTa.

IIpuBOMMEIX MeTOp 3aKIiOYaeTcd B TOM, YTO NMPH IIOCTENEHHO pacTylleM KOJHAYecTBe
4IEeHOB m YCTaHaBJIMBAaeT paagaﬁo'rannaﬂ nporpaMMa BRIYMCJIEHHMA MHHUMAJbHBEIE CYMMSL
KB4IPaTHKOB oTkjaoHenni (MSSO). Buulo gokasaHo, 9T0 BesmanHa MSSO aBaserca nouru
HeM3MEeHHOH# ¢ TAKOI'0 m, OPH KOTOPOM 00paTHO paccYMTaHHAA 3aBHCHMOCTb o = f(I) ymxe
X0pOIIO cOrjIacyerca ¢ 3KCIePUMEHTRJIbHEIMU AaHHBIMIL.

ITapaMeTpsl ypaBHeHNA ¢ 3PEKTHBHEIM KOJINYECTBOM WIEHOB m CYMTAIOTCA NapaMeTpaMH
MO;(C.T11.

Puc. 1. Modeavnriti Habop u sasucumocmu, ewmeraiowue uz MIIP 0as m =1 — 4.
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