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A model system of °' - t (conversion - time) data on isother'TaOl CO'Uf'Be 
of a heterogeneous reaction was used to derive a 'jYl'ocedure f01' determining the 
pcwameters of an equ&tionf01' a univeraal kinetic model of a polyreactive reac­
tant 

on the condition that 

m 

ex = L x1cx1 
i=I 

CXJ = I - exp (---r1t), 

where r1 is a para,neter expressing the reactivity of a homoreactive fraction 
whose content in the reactant in question is x1•

The method is based on determining the minim'l.lm BU1118 of dwiationa 
squared (MSDS) and thus the optimum values of the para1neters at gradually 
increasing number m of the equation terms. Equalization of MSDS is a Mi­
terion f01' the effective value of m. As parmneters of the model are then regardf.d 
those values which describe adequately the given a - t relationship with the 
me of the effective number m of homoreactivefractions. 

INTRODUCTION 

Solid-state reactions constitute the basic element of technological processes 
in commercial production of inorganic materials. The aim of studying the reactions 
is to learn their kinetics and to utilize the knowledge for the purpose of intensi­
fying effectively the respective process, first of all its controlling stage. If the 
reaction mechanisms are unknown or even for the sake of simplicity, relation­
ships derived from kinetic modAls (formal kinetics) are often used to describe 
their course. 

Uni v e rs a l  kinetic  model  of a po lyre a c t ive rea ct a n t  

The classical kinetic models were mostly created o n  the assumption that the 
particle of the reactant is situated in a continuous homogeneous medium of an 
excess of the other reactant, that it can be regarded as a geometrically simple 
body and that it can be considered to be energetically homogeneous with respect 
to its reactivity. The models usually did not take into account other parameters 
of the reactant such as the distribution of its particles in the reaction mixture, 

smkaty f. 4. 1990 289 



V. Kovar, J. Bachan:

the particle size distribution, the complexity of their shape and above all their 
energetical inhomogeneity. Although in some instances the equations yielded 
by such models describe acceptably the changes of quantities characterizing the 
course of the reaction (most frequently the time dependence of conversion of the 
reactant, or its temperature dependence), the width of their applicability was 
quite limited. Extensjve utilization of these equations in the description of pro­
cesses where the assumptions of their derivation are demonstrably not met, tends 
to degrade them to mere empirical regressive relationships and there is no reason 
to believe that they provide any information on the mechanism of the respective 
process. 

In 1973, Jesenak [l] suggested a universal kinetic model that eliminated some 
of the drawbacks of the previous models, being based on the assumption of reacti­
vity distribution. According to the model the reactant is a polyreactive substance 
and the reaction units (kinetic particles) whose reactivities, i.e. manifestations 
during the reaction, are identical (wherever they might be distributed in the 
reaction space) thus form the so-called phenomenological homoreactive (PH) 
fraction of the reactant. Although the reactivity distribution of the reactant is 
assumed to be continuous, owing to the possible division of each reactant into 
phenomenological proportions with approximately the same reactivity within 
the framework of each proportion (homoreactive fractions), the general form of 
the equation for a universal model of a polyreactive reactant (MPR)*) can be 
written in the form 

10 

IX= I XjtXj 
i=l 

where IX is the fraction of conversion of the reactant as a whole, at time t, 
x1 is the portion of the j-th PH-fraction in the reactant, 
mis the number of phenomenological homoreactive fractions. 

(1) 

Equation (1) is formally identical with the basic Sasaki's equation [3] (poly­
dispersion kinetic model). In contrast to the latter, however, x1 signifies the portion 
of j-th phenomenological homoreactive fraction of the reactant and not the gra­
nulometric one. Similarly to Sasaki's model it holds, of course, that the sum of x1 
fractions is equal to unity. 

Sasaki proposed to express the conversion of each fraction in terms of time 
«j = hW in a standard way by the Valensi-Carter equation [ 4, 5]:

z 1 
--------[l + 1XJ(z-1)]2f3_ (1- a1)2f3 = k1t 
z-1 z-1 

(2) 

wliifre z, k1 are parameters. 
· Such a requirement does not arise with the polyreactive reactant model;
reaction path of each PH fraction can be described by an arbitrary suitable growth
function!J(t) [2, 6].

The polyreactive reactant model is a phenomenological model of a statistical 
system where a process with a complex mechanism takes place. In spite of this, 
not even this model provides information on the process mechanism. It demonstra­
tes its effectiveness mainly in correlation of its parameters (or its statistical mo-

*) Jesenak calls his model' relaxation polyreactive kinetic model (RPKM), regarding the 
reaction as elimination of thermodynamic stresses in the reaction system {for details refer e.g. 
to [2]). 
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ments) with the pre-history of the reactant (time of grinding, conditions of heat 
treatment, etc.), reaction mixture preparation (homogenization, compacting 
pressure, etc.) and the conditions of the reaction (temperature, pressure, composi­
tion of the atmosphere, etc.). 

Concret iz ing the  analyt ical  form o f  the MPR equat ion 

Application of a certain classical kinetic model to  description of an experimental 
time dependence of conversion represents in fact the task of finding also the model 
parameters, if they exist, so that the resulting equation would adequately and 
acceptably describe the given relationship. The term acceptable description is 
usually understood to mean such a model relationship from which the experimental 
points do not deviate by more than the maximum actual measuring error, i.e. 
3s, where s is the standard deviation of the individual measurements (a sufficient 
condition). With such an acceptability condition, a problem for only one model 
may have an infinite number of solutions, and even several kinetic models can be 
ex1wcted to conform to the given acceptability criterion. At the same time it 
is obvious that the following necessary condition will hold for the sums of devi­
ations squared of all the acceptable relationships: 

n 

( L, Llf )ace < 9 ns2 
, 

i=l 

(3) 

where n is the number of experimental data, 
.d1 is the deviation of an individual measurement. 

The suitable kinetic models should be selected on the basis of the form of the 
experimental relationship and of the properties of functions following from the indi­
vidual models. Among the acceptable relationships, further attention is usually 
paid to that considered optimal with respect to some criterion (usually the sum 
of deviations squared). In evaluating practice, the approach is quite the opposite: 
tlw optimum relationship is first found for the criterion selected, and only then 
the intervals of parameters, for which the relationships are acceptable, are determi­
ned. 

Whereas with the classical models the analytical forms of their kinetic equations 
are unambiguously defined, the form of the equation is not precisely specified 
in the case of the model of a polyreactive reactant, as this depends on the form 
of functions IY.J = f,(t). Their form again depends on the evaluator's approach, 
because a single reactant can be modelled in several ways. 

From the standpoint of subsequent evaluation of tb parameters of the indi­
vidual PH fractions, however, it is convenient to model the reactant by means 
of fractions whose reaction path can be described by function IY.J = f,(t) 
of identical analytical form. Having chosen the form of this function, the problem 
of concretizing the kinetic equation is transformed into one of determining the 
number of its terms m. With increasing number of terms, the description of the 
experimental relationship will obviously be precisioned, and starting with a cer­
tain effective number m, all of the additional equations will be acceptable for 
certain intervals of their parameter values. A higher number of terms in equation 
(1) will therefore yield a smaller sum of deviations squared, but from the stand­
point of reproducibility of experimental values, the results will be equivalent with
those already obtained by means of the first (optimum) acceptable model rela-

Si!ikaty I!. f 1990 291 



V. Kovar, J. Bachan:

tionship. From this it follows that the use of numbers of terms higher than the 
optimal one is not effective, and moreover the accuracy of the estimated para­
meters decreases with increasing m.

In evaluations of the oc = f(t) relationships free of inflexions, convenient use 
wa.s made of the a.1 growth function in the form 

°'i = 1- exp (-r1t), (4) 

where r1 is a parameter expressing the reactivity ofj-th PH fraction of the reactant. 
The present paper had the aim to derive a simple procedure for determining 

the number of terms m of the first acceptable model relationship on the assumption 
that the reaction paths of the individual fractions are described in a standard 
form given by equation (4). 

DETERMINING THE NUMBER OF TERMS IN EQUATION MPR 

The method for determining the minimum required number of terms for equation 
(1) was derived in a model system whose data were calculated by means of Jan­
der's equation in the form (theoretical relationship)

a = 1 - (1 - V1 X 10--s,p. (5) 

In the literature, Jander's equation is often successfully used to describe expe­
rimental relationships of conversion in terms of time. 

The times t for which the conversion values were calculated, were first dt?termi­
ned from Jander's equation in the form 

3 

t = 1 X 103 (1 - Vl - oc)2 (6) 

for °' = 0.04i, where i E {l, 2, ........ , 24}, and rounded to one decimal, 
thus covering, with respect to conversion values, the entire range with ·an appro­
ximate spacing of 0.04 between the points. For the times obtained, the 'theoreti­
cal' values of conversion were calculated and loaded with the generated random 
error in the third decimal place ('experimental' values). The rounding up of the 
times and adjustment of the conversion values were chosen so as to correspond 
to the accuracy of a standard experiment. The times t and the 'experimental' 
values of the model system are listed in Table I and in part plotted in Fig. 1. 

The 'experimental' values of conversion showed absolute deviations j A, I from 
the theoretical ones over the interval of 9.1 x 10-3 to 2.1 x 10-6 with a mean 
absolute deviation 121 I = 4.1 x 10-3. The sum of deviations squared of 'experi­
mental' points from the 'theoretical' relationship was 0.626 X I0-3, and the 
calculated standard deviation, on the assumption of normal distribution of the 
measuring error and equal dispersion over the entire interval measured was 

-v 0.626 X 10-3 - 5 1 10-3 
8- 24 - . X • (7) 

From this it follows that as acceptable model relationships one can regard all 
those whose deviation of points does not exceed the value 3s = 15.3 x 10-3 and 
the sum of deviations squared is smaJler than 9 ns2 = 5.63 x 10-3. 
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Table I 

The model set and its deviations from MPR equations for m ":' 1-4 

i t/min I 103<Xexp I 103.d l 103Lh I 103L:h I 103,14 

l 0.2 42 -39 -30 -18 -0 

2 0.8 82 -71 -37 -4 2 
3 1.7 121 -97 -33 6 -4 

4 3.2 156 -111 -8 14 5 
5 5.1 208 -138 -3 -5 -5
!I 7.6 246 -143 12 -9 -2
7 10.7 276 -134 28 -2 6
8 14.5 314 -127 28 0 5
9 19.J 363 -125 11 -7 -6

10 24.5 405 -110 -1 -6 -9
11 30.9 431 -75 3 10 5
12 38.4 472 -51 -5 10 5
13 47.1 520 -31 -19 1 -2 
14 57.3 566 -8 -27 -5 -7
15 69.3 592 35 -13 7 8
16 83.3 640 55 -18 -3 -] 

17 99.9 675 84 -8 0 4 
18 119.5 719 99 -5 -4 -1
19 143.3 766 104 -4 -11 -8
20 172.4 795 119 14 2 3
21 209.0 837 112 19 2 1
22 256.8 880 94 20 1 -1
23 323.9 920 70 20 3 -1
24 433.0 954 44 20 7 4

Table II 

Characteristics of MPR equations form = 1-4 (SOS - sum of deviations squared) 

m I Xj I r1/min-1 I 103 sos I !JI

1 1.000 1.42 X 10-2 213.677 0.087 

2 0.283 1.92 X 10-1 

0.716 7.68 X 10-3 8.807 0.016 

3 0.128 8.87 X 10-1 
0.263 4.86 X 10-2 
0.610 6.37 X 10-, 1.253 0.006 

4 0.050 5.33 
0.129 2.77 X 10-1 
0.255 3.26 X 10-2 
0.567 6.00 X 10-3 0.526 0.004 
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The optimized relationships according to equations (1) and (4) were then plotted 
through the 'experimental' points while the number of terms of the sum was gra­
dually changed (m = 1, 2, 3, 4). The sum of deviations squared was employed 
as the optimizing criterion, the simplex method being used in the optimizing pro­
cedure. The calculation results (values of the optimum parameters, minimum 
sums of deviations squared and mean absolute deviations) are listed in Table II; 
deviations LlH through Liu of inversely calculated conversion values for m = 1- 4 
are listed in Table I; the optimum relationships for various values of m are repre­
sented in Fig. 1. 

ex 

050 

025 

0 20 

-·-·-·-m= 1

-··-··- m = 2 

---m = 3 

----- --m = 4 

40 60 t/min 

Fig. 1. Model set and the relationshipsfollowingfrom MPRfor m = 1 - 4. 

Mere visual evaluation of the individual model relationships plotted in Fig. 1 
shows that the curves with m = 1 and m = 2 are not acceptable for this model 
system. According to Table 2, the 'experimental' values in these two instances have 
mean absolute deviations 121 \ equal to 0.087 and O.Ol6 respectively, i.e. values 
higher by up to 20.9 and 3.9 respectively than the mean absolute deviation of 
the data system from the original 'theoretical' relationship (0.004). The minimum 
sums of deviations squared (MSDS) for these curves are also quite high (213,677 X 
X 10-3 and 8,807 X 10-3) and compared to the sum of deviations squared of the 
'experimental' points from the 'theoretical' relationship (0.626 X I0-3) they are 
higher by a factor of more than 9 (341.4 and 14.1 respectively). 

In contrast to this, the third curve shows deviations of only ±0.006 (higher 
1.4 times), thus attaining the level of the original 'experimental' curve (121 I =
= 0.004). The sum of deviations squared from the 'experimental' points is 1.253 X 
x I0-3, i.e. a value only double that of the sum of deviations squared of these 
points from the original relationship (0.626 x I0-3). The deviations of points from 
this curve, with the exception of four points (17 % of 'experimental' data), are 
of the order 0f 10-3 and smaller; of the four cases .mentioned, only one (Ll13 = 
= 17.9 X }0-3) exceeds slightly the limit 3s = 15.3 x I0-3. In view of the account 
given above, thib model relationship already can be considered acceptable. 

The model curve with m = 4 exhibits still better parameters than the third 
one; its values are approximately identical with those of the 'theoretical' relation­
ship. The curves with m = 5 would obviously be also acceptable and provide 
still more favourable results. 
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On working with a real experimental system where the standard deviation 
value s is often unknown, one should take into account that the ratio of the mi­
nimum sums of deviations squared is the more sensitive of the characteristic data 
followed, as it tends to change at a higher rate. 

The mutual ratio of consequent minimum sums of deviations squared at an 
gradually increasing value of m converges to the limit value of 1.0, and for the 
model system considered acquires the values MSDS1 : MSDS2 = 24.3, MSDS2 : 

: MSDS3 = 7.0 and MSDS3 : MSDS4 = 2.4. All this shows that an acceptable 
equation with the lowest number of terms m is that optimized equation whose 
sum of deviation squared no longer changes singificantly with further increasing 
the number of terms. 

DISCUSSION 

For the model system considered, the first acceptable equation has therefore 
3 terms which express a model of a reactant comprising three PH fractions. The 
fractions have representations of approximately 13, 26 and 61 % while their 
reactivities differ by an order of magnitude. This means in practice that the indi­
vidual fractions take different parts in different stages of the reaction. 

The fastest reacting fraction (r1 ='= 0.9 min-1) reacts almost entirely (90 %) 
within about 2.6 min while the portions of the other two fractions in the overall 
conversion at that time are still relatively small (about 20 % and 6 % respectively). 
In this stage the overall course of the reaction is therefore decribed approximately 
by the reaction of the fraction reacting at the highest rate using the equation 

(8) 

In the following reaction stage the share of this fraction in the overall conversion 
is already almost constant, so that the time dependence of the conversion can 
be described by the approximate equation 

3 

IX = Xi + L x1[l - exp (-r1t)]. 
1=2 

(9) 

A considerable proportion (75 %) of the fraction reacting at the medium rate 
(r2 ='= 5.0 X 10-2 min-1) will react within about 28.5 min and till that the other 
two fractions take a minor share in the conversion increment. During. the stage 
when the contribution by the slowest fraction to the overall conversion inorement 
is of small significance, the reaction· can be described by the approximate rela­
tionship 

IX= X1 + x2[1-exp (-r2t)]. (10) 

In the last stage of the reaction when the main share of the overall conversion 
increment is provided by the fraction showing the lowest reaction rate (r3 _:__ 

= 6.4 x 10-3 min-1), the basic equation can be analogously adjusted to the forin 

(11) 

From the account it follows that such a modelling of the reactant divides the 
course of the reaction into m = 3 stages (rapid start, a medium part and gradual 
conclusion) and that the values of overall conversion yield various information 
about the parameter values in different stages of the course of the reaction. For 
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example, in the given model case the reactivity r1 is determined above all by 
'experimental' points up to 2.6 min, only three points, the r2 by five to six points 
over the time interval of 2.6-28.5 min, while the reactivity of the slowest frac­
tion is given by a.bout a double number of points. 

The accuracy of determining the values of reactivity r1 can be said to depend 
substantially on the distribution of experimental points along the curve. For 
example, if the set would not include the first data, reactivity r1 could not be 
determined. In that case only the limit value of r1 could be determined, namely 
such a value for which equation (9) would describe the further course of the rea­
ction. Similarly, if data from the last stage of the reaction were not available, 
it would only be possible to determine the limit value of r3 the effect of which 
could not have influenced the previous stages of the reaction. 

More favourable conditions exist in the determination of values x1 which ma­
nifest themselves in all stages of the reaction (cf. equations 8, 9, 10 and 11). Possi­
ble absence of the first points thus does not hinder determination of x1 and the 
value of x3 can also be calculated additionally without any experimental data from 
the end of the reaction. 

CONCLUSION 

Application of the universal kinetic model of a polyreactive reactant to the 
description of relationships in the conversion of reactants in terms of time in the 
course of heterogeneous isothermal reactions allows a more complex characte­
cteristic of the reacting substance to be established (particularly with respect 
to reactivity distribution). In the simpler case the model serves to the :fitting 
of conversion relationships without any restriction. Its multi-purpose character 
has been attained at the expense of simplicity of the equation, as also proved 
by the model set, where :five parameters were necessary for describing a single­
-parameter relationship. 

Possible further utilization of these parameters in the study of heteromogeneous 
reactions would require a simple reliable method for their determination. The 
submitted study demonstrates, on a model set of data, the possibility of resolving 
these problems under certain conditions. At the same time it points out the varia­
bility in the accuracy of parameters resulting from their number and relation 
to the individual stages of the reaction. In the authors' laboratory, the method 
for determining the parameters of the kinetic model is successfully utilized in 
the study of the kinetics of solid-state reactions. 
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METODIKA VYHODNOCOVANIA PARAMETROV UNIVERZALNEHO 

KINETICKEHO MODELU POLYREAKTfVNEHO REAKTANTA Z UDAJOV 

0 IZOTERMICKOM PRIEBEHU HETEROGENNEJ REAKCIE 

Vladimir Kovar, Jozef Bachan 

Katedra chemickej teclmoloyie silikat<YV, Chemickotechnoloyicka fakulta SVST, Radlinskiho 9, 
812 37 Bratislava 

Univerzalny kineticky model polyreaktivneho reaktanta modeluje reaktanta pomocou fe. 
nomenologickych frakcii (FH) s navz,tjom roznou reaktivitou a pre pripad nespojitej distribucie 
reaktivity poskytuje rovnicu v tvare 

m 

IX = L XjlXJ' 
i=I 

kde IX je zlomok premeny (konverzia) reaktanta aka celku v l\ase t, 
IXj - konverzia j-tej FH frakcie v tom istom case, 
Xj - podielj-tej FH frakcie v reaktante, 
m - po/\et FH frakcii 

Praca riesi problem ur/\enia parametrov modelu na modelovom subore IX - t udajov za pred­
pokladu, ze fnnkcie IXJ = fJ(t) maju jednotny tvar 

IXJ = 1 - exp (-r1t), 

kcle r. je parameter vyjadrujuci reaktivitu j-tej FR frakcie reaktanta. 

Metbda spo/\iva v tom, ze pri postupne sa zviiMujucom po/\te /\lenov m ur/\uje vypracovany 
vypo/\tovy program minimalne su/\ty stvorcov odchflok (MSBO). Ukazalo sa, ze hodnota MSBO 
je takmer nemenna od takeho m, pre ktore spatne vypo/\itana zavislost IX = f(t) uz dobre fituje 
experimenta!ne udaje. 

Parametre rovnice s efektfvnym po/\tom cleno,· m sa povazuju za parametre modelu. 

Obr. 1 Modelovy subor a zavislosti vyplyvajuce z Ml'R pre m = 1 - 4. 

l\lETO,I..(HRA PACCMUTPEHHH ITAPAMETPOB ¥HHBEPCAJibHOW 
h IIH ETI1q ECROM M O,I..( E JI II ITO JIHPEART HB H oro PEART AHT A 

HA OCHOBAHHI1 Jl,AHHhlX OTHOCJITEJibHO H30TEPMI1qECR0f0 
XO,I..(A rETEPOfEHH0:0 PEARI�HI1 

Bm1,unm1p RoB1ip, 0:oaeqi BaxaH 

XU.MU/.omex1-tOJWcU'teC1.Uii <p111,ya1bmern CaWBUl(h'020 /lO/l,U/ileX1-tU1/RCh'O<!O Ul-tCfllUlllyma, 1.a<jiefJpa 
mex1-10J10<!1tll 1·11.1111.amoe, Pao11,uu.c1.o<!o 9, 812 37 B pamuc.n,aaa 

¥mrnepcaJibHUH IUIHCTll'ICt'I\'.aH MO;:{l'.'Ib nom1pea1'Tl!BHOJ'O peaKTaHTa MOACJIHpyeT peai;:­
TaHT C IlOMOru;bIO qieaoMeHO:IQJ Il'lC('!{HX qipa1n111ii: (FH) c B:Jal!MHO pa3HOH peaKTiiBHOCTblO 
H B \'JI,Y'JaC HCf'BII3aHHOl'O parnpe;Il',ICHIIII peaKTHBHOCTII npe;:iocTaBJIIICT ypaBHCHIIC B BH/IC 

m 

IX = L XjlXJ, 
j=l 

rµ,e IX - ,UOJIH upcBpaII\CIIIIH (mrnBepcnn) pearnaHTa i-;ai-; u;e.:rnro BO BpeMCHH t, IXJ - 1WH­
Bepcm1 i-Hoii: FH qipam�nu B TOM me BpCMCHII, Xj - /(OJlH j-HOl! FH qipa«u;1rn B pea«TaHTC, 
m - 1wm1qecTBO F H qipam.1;11ii:. 

B IIpe,uJiaraeMOH pa6oTe peurneTCII npoGJICMa orrpl';(C,'.!CHHH napaMeTpon MO,UCJIII Ha MO­
ACJlbHOM Ha6opc IX - t /WHHblX np11 rrpe,UIIOJIOiKCHIIH, 'ITO cfiYHKf(lfH IXJ = t,(t) UMCIOT CTaH­
):(a pTHbiii: BUA 
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a.; = 1 - exp (-r1t), 

J'),\e r; - napaMeTp, Bl>1pama10rrmii peaHTHBHOCTh ;-TOH FH q,paHit;HH peaKTaHTa. 

IlpHBOAHMLill MeTOA aaKJIIOqaeTcll B TOM, qTo npH IIOCTeJieHHO pacTym;eM KOJUlqecTBe 
11Jl0HOB m ycT8H8BJIHB8eT paapa60T8HHal1 nporpaMMa BhlqHcJieHHll MHHHMUJibHble cyM:Mhl 
KBaApaTHHOB OTKJIOHeHHH (MSSO). BhlJIO ;rioKaaano, qTo BeJIHq1rna MSSO HBJIHeTcll noqTH 
HeH3MeHHOii: C TaKOI'O m, IIPH KOTOpOM o6paTHO pacrqHTUHHaH 38BHCHMOCTh cc = /(t) y,ne 
xoporno cornacyeTCll c ;mcnepHMeHTUJihHhlMH )l,aHHhIMII. 

IlapaMcTpbi ypaBHeHHll C aq,q,eKTHBHbJM }(OJIHqecTBOM qJieHOB m cqHTaIOTCll napaMeTpaMH 
MO;\c.,11. 

Pul'. 1. JfoiJeAbHblU na6op u aa6ucu.Mocmu, ewne1.a10u,iue ua MflP O.l!JJ m = 1 - 4.
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