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A general algorithm and a FORTRAN program for the calculation of isobaric
phase diagrams of polymeric oxide systems based on the thermodynamic model
of silicate melts was developed. This software enables the primary crystallization
temperatures for a single configuration point to be determined and the phase
diagrams for a binary or ternary systems to be constructed.

The verification of the computational algorithm was demonstrated on stmple
ternary eutectic systems, a pseudoternary system with four crystallization phases
and a ternary system in which some binary and ternary compounds are formed.

The way of using this method in structural studies of silicate melts was
described.

INTRODUCTION

In the past decades, the theoretical calculations of phase diagrams have become
an efficient research tool in several fields of science and engineering. This fact
is a result of the effective employment of both computer techniques and funda-
mental principles of chemical thermodynamics. The attractiveness and need of such
calculations have also been testified by an unceasingly rising number of papers,
reviews and monographs [1—5]. Interesting practical application of theoretical
calculations of phase diagrams for silicate systems were reported in [6]. Applying
the simplified LeChatelier-Schreder equation to binary and pseudobinary systems,
the authors of the work cited calculated coordinates of eutectic points and by
means of the Prigogine equation [7] determined phase separation regions in ternary
systems. The main aim of the work [6] was to utilize calculated results in the de-
velopment of new special types of glasses with required properties.

Each theoretical calculation of solid-liquid phase equilibria is based on the choice
of a suitable thermodynamic model for the liquid phase which also sufficiently
considers the structural aspects. Owing to the polymeric character of silicate melts,
the classic regular solution gpproach is not applicable, because limiting laws
are not obeyed when the Clausius-Clapeyron equation is used. Temkin’s model
of an ideal ionic solution which has been widely employed in molten salt systems,
was not found suitable for silicates, as their real anionic composition, owing to
a broad polyanionic distribution, is not known a priori.

The optimum approach to the calculation of activity of individual components
in silicate systems was published in [8—11] and applied to various types of silicate
borate and aluminosilicate systems. The model is based on the definition of che-
mical potentials of all the atoms. Different energy and consequently structural
states of the atoms are considered. In the present work a general algorithm for
isobaric phase diagrams of polymeric oxide systems was developed. The program
is written in FORTRAN and provides an interactive service with graphic output.
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THEORETICAL

Let us consider an arbitrary mixture in the MeO—SiO, system (Me = Mg,
Ca, ...). The melt of such a mixture is composed of the following types of atoms
Me2* cations, silicon atoms in tetrahedral coordination with oxygens, and two
kinds of oxygen atoms — the bridging ones connecting two neighbouring SiO,
tetrahedra by means of Si—O—Si covalent bonds, and the non-bridging ones
bound to one silicon atom only and creating the coordination sphere of Me2+
cations. Evidently, the two types of oxygen atoms are distinguishable by their
energies and their mutual molar ratio defines the structure of a melt, that is its
polymerization degree as well as the chemical potentials of its components. With
regard to this structural aspect of silicate systems, the chemical potential of an
arbitrary component may be defined as a sum of chemical potentials of all atoms
forming the component considered, as their particular energy states are taken into
account. The chemical potential of the i-th component in a solution is defined as

B =, Minig, (1)

J

where n; ; is the amount of atoms of the j-th type in the 7-th component and u;
is the chemical potential of atoms of the j-th type in the solution. For instance, the
chemical potential of CaSiO;, which is formed in the CaO—SiO, system, equals
to the sum of the chemical potentials of calcium atoms, silicon atoms, and the
bridging and non-bridging oxygen atoms. The activity of the ?-th component
in a solution also obeys the equation

i = p; + RTIna; (2)

where u; is the chemical potential of the pure i-th component, defined similarly
to the chemical potential-of this component in a solution

B =D Moy g, (3)
3
where u? ; is the chemical potential of the j-th atoms in the pure ¢-th component.
Substituting eqns (1) and (3) into eqn (2) we obtain
Z B M5 =l Z uijmi,y + BT In a;. (4)
j J

The real mole fractions of the j-th atoms in the pure 7-th component and in the
solution are given by

LY | ’ (5)

(6)

where z; is the molar fraction of the 7-th component in the solution. The chemical
potentials of the j-th atoms in the pure 7-th component and in the solution may
also be expressed using eqns (5) and (6) in following way

pig = i + RTIn g3, ™)
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= ‘u; + RT In Yis (8)

where p; is the chemical potential of a hypothetical liquid composed exclusively
of the j-th atoms. Substitution of eqns (7) and (8) into eqn (4) gives for the activity
of the 7-th component in the solution the relation

mag=7Y nijlny; — Y nijln g, 9)
Fi J

or after rearangement

o= T1(2)" (10)
J

-
Yi.;

Eqn (10) for the activity of a component derived in this way is wholly universal
and may be used in any system. The calculation of the activity of a component
in an actual system according to this equation thus respects some structural
aspects, e.g. different energy states of atoms of the same type. Such cases may
occur in the presence of tri-valent atoms like B3+, A3+, Fe3+, etc.

Let us assume that in a system consisting of m oxides the polymeric network
is formed by three- and four-fold coordinated atoms 74 (j = 1,2, ... m) bound to
bridging (0°) and non-bridging (0~) oxygen atoms. Designating the fraction of k-fold
co-ordinated /4 atoms as ay,;, the following inequality has to be obeyed

a3, + ey < L (11)

The distribution of the atoms according to their co-ordination or to their partiei-
pation in a covalent network, is then determined by the material balance

n(fA) = no(J4) + ns(f4) + na(74) (12)
where

no(fAY = (1 — 3,5 — ag,3) n(f4), (13)

n3(l4) = as,; n(I4), (14)

nyfA) = ay,;n(IA), (15)

where ng(/4) indicates the amount of the k-fold co-ordinated 74 atoms and no(f4)
the amount of those /4 atoms which are not built into the polyanionic network.
Assuming the total amount of oxygen 7(0) is divided between bridging and non-
bridging oxygen atoms, we can find their amounts #(0°) and n(0~) from the material
balances of the amounts of oxygen and 74—O bonds

n(0) = n(0°) + n(0-) (16)
n(0-) + 2n(0°) = fl [n(74) (3 ; + 4t 5)]- (17)
i=

If the solution of this system makes no physical sense (i.e. the values of »n are
negative) it is necessary to assume that oxygen atoms are present as non-bridging
ones and as oxygen ions 02-. Then the material balance is represented by the fol-
lowing equations

2. n(0-) = fl [n(14) (3as,5 + 4ote,5)] (18)
j=
n(027) = n(0) — n(0™). (19)
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Typical modifying atoms such as alkali metals and alkaline earth metals are
assumed to give
03,] = 4,5 = 0, (20)

while typical network forming elements of the IV-th group of the periodic system
like silicon and germanium give

o3; =0 and o, = L. (21)

In other cases the values of « can be determined by fitting the calculated phase
diagrams to those determined experimentally.

According to eqns (16) and (17), the formal polymerization degree P of a svstem
with a known composition can be determined. Since the polymerization degree
is defined as the ratio of the amount of bridging oxygen atoms to the total amount
of oxygen, one can write

.Zl [(n(7A) Bz, 5 + 4oua, 5)]

_ —J
P=—5 0] ~ L (22)

For instance, in the (1 — z). MeO + x SiO; mixture m = 2, 14 = Me, 24 = Sij,
&3,1 = a3,2 = 04,1 = 0 and a,, = 1. Then

4z

=1r7 (23)

In such a mixture, P = 0 for x = 1/3, i.e. for the composition of orthosilicate,
and P =1 for the pure SiO, melt.

The calculation of liquidus temperatures for the individual components 7%, 1iq
is performed using corresponding experimental values of enthalpy and temperature
of fusion according to the simplified and adapted LeChatelier-Schreder equation

AHf,i Tf’i
AHf,i — RTf,i In a;

Ti, qu == (24)
where Ty ; and AHy,; are the temperature and enthalpy of fusion of the ¢-th com-
ponent, respectively, and a; is its activity calculated according to eqn (10). The
primary crystallization temperature of the melt with a known composition is then
determined as the maximum liquidus temperature of all the components in question

Tpc = mgx (Tt,uq). (25)

THE CALCULATION ALGORITHM

Actually it is impossible to resolve the problem described without an efficient
computer. The aim of this work was to elaborate a general algorithm and program
for solid liquid phase equilibria calculations in various types of polymeric oxide
systems. An adequately general set of input makes it possible to work in diverse
compositional spaces comprising several, up to ten, oxides, thus providing a wide
field of application for the program. The sub-space in which the phase diagram
is constructed, can be non-, one- or two-dimensional (a point, a line or a plane),
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respectively, and can be defined either by the composition of the respective phases,
or by the coordinates of the chosen compositional space. Each cation may partici-
pate in a polymeric network in three- and/or four-fold coordination and this fact
can be specified. The program is divided into several subroutines, so that modifica-
tion of an arbitrary part of the algorithm presents no special difficulties. The
structure of the main program FADR is presented in form of a program flowchart
in Fig. 1. The relations between the individual subroutines are shown in Fig. 2.

Subroutine INPUT starts the calculation and provides stoichiometric description
of an actual oxide system 4,0y, j = 1, 2, ... m which comprises the compositional
space, and input of a3 ; and a4 ; for all the 74 atoms. The data can be entered via
a keyboard or from an appropriate file. Chemical elements are specified directly
by their chemical symbols. Molar masses of oxides are calculated automatically

Determination of the
composition space
(max. 10 oxides)

Input of the composition

of the expected
crystollrne phases

Input of the temperature
ond the enthalpy of fusion

of the expected
crystoiline phases

Definition of the subspace
of the concrele
phase diagram

Colculation
of the temperafure Calculotion Calculation
&,ﬁ?ﬁuﬂ’é’e’?‘éﬁ’ of the binary of the ternary
of the only phase diagram phase diagram
figurative point :

Graphical output

Fig. 1. Flowchart of the FADR program.
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from atomic mass data stored in the memory. The next step is the input of the
stoichiometric composition and the values of AHy ; a T',; for all the crystalline
phases being expexted to crystallize in the compositional space considered. After
that the subroutine YCFR is called, which calculates the mole fractions y; ; of all
the atom types (i.e. atoms 74, bridging and non-bridging oxygen atoms) present
in the crystalline phases. Then the control is returned back to the main program.

FADR

INPUT UNAR BINAR TERNAR

YCFR SOLLIQ RECD2 INPVER SORT PLTCNT PLTEUT

ISOLN ORDER RECD

IXCR IYCR

Fig. 2. Relations between individual subroutines in the FADR program.

The structure of the main program allows further direction of calculation to be
chosen and proceeds with

(i) determination of the primary crystallization temperature for a single com-
positional point of the system defined (subroutine UNAR);

(ii) construction of the phase diagram for a binary system defined by two
arbitrary points of the compositional space (subroutine BINAR);

(iii) construction of the phase diagram for an arbitrary ternary system defined
by three non-colinear points of the compositional space (subroutine TERNAR).

The graphic output of phase diagrams may be chosen in coordinates of either
mole or mass fractions.

(i) Calculation of the primary crystallization temperature for a
single point in a compositional space

At first, the subroutine UNAR transfers control to subroutine INPVER, which
ensures entering of compositions for one, two or three points from the compositional
space according to the input parameters. Then control is transferred to subroutine
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SOLLIQ which calculates the liquidus tempe.ratures of all crystalline phases
present and the primary crystallization temperature for a considered point of the
compositional space.

(i) Calculation of a binary phase diagram

Subroutine BINAR similarly to UNAR, calls at first the subroutine INPVER
and two points of the compositional space determining a pseudobinary system are
put in. Then follows the input of the upper and lower temperature limits for the
temperature axis and the concentration axis division. With the help of subroutine
SOLLIQ the primary crystallization temperatures for all concentration points
(determined by the concentration axis division) are calculated and marked into
the diagram. The positions of eutectic points are obtained by linear interpolation
between two neighbouring concentration points differing in their respective primary
crystallizing phases. The graphic output is provided by subroutine RECD2 proces-
sing the data set stored in a specified file. Owing to the software and hardware
possibilities this data set can be used in different ways. In our case the graphic
output was screened, and subsequently transferred to the printer to get a hard
copy.

(iii) The calculation of a ternary phase diagram

A sophisticated algorithm was developed to calculate and draw ternary phase
diagrams Subroutine TERNAR first determines, by means of subroutine INPVER,
the coordinates of the concentration triangle apices in the compositional space.
Though in general this triangle is not equilateral in a chosen compositional space,
the phase diagram is drawn as usually in an equilateral triangle. A rhombohedral
network is first constructed in this triangle. Its density is determined by an input
parameter. For the nodal points of this network the primary crystallization tem-
peratures are calculated and line after line stored in the data file. To draw the
isotherms of primary crystallization, couples of neighbouring lines are successively
transferred to the operation memory. The direction of the respective isotherm
is found in each rhombus using linear interpolation on the sides of the two triangles

Fig. 3. Drawing of isotherms in the rhombohedral network.
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formed by the rhombus diagonal. An eleméntary ABCD rhombus is shown in Fig. 3.
The isotherm is drawn in two steps. First, line EF in the ABD triangle and after
that line FG in the second triangle BCD are found. Subroutine PLTCNT with the
help of ISOLN, ORDER, and RECD performs the drawing of the isotherms. Sub-
routine RECD writes down the data into the graphical instruction data set, and
recalculation of mole or mass fraction co-ordinates to cartesian is performed by
subroutines IXCR and TYCR.

The boundary lines between two neighbouring crystallization areas belonging to
different crystalline phases are looked for during primary crystallization tempera-
ture calculations for nodal points of the rhombohedral network. If another crystal-
lizing phase occurs while passing from one nodal point to the neighbouring one,
then the co-ordinates of the point in which these phases have the same temperature
Ty, 1iq, are determined by linear interpolation. These data are ordered by subroutine
SORT so that the points belonging to the same boundary line are put to a. sequence
and the line is drawn by subroutine PLTEUT. Using a sufficiently dense network,
this method gives directly ternary eutectic points as common points of three bounda-
ry lines.

RESULTS OF CALCULATION AND DISCUSSION

Three types of ternary and pseudoternary systems were considered to demons-
trate the algorithm proposed:

i) simple eutectic systems;

ii) system with four crystallization areas where the figurative point of the fourth
crystalline phase lies beyond the pseudoternary diagram;

iii) a system where some binary and ternary compounds are formed.

Table I

Thermodynamic data of the individual compounds used
in the calculations

Compound Y —AHf

K kJ mol-t
CaO 2843 52.0
Al;O3 2293 111.4
SiO; 1996 9.6
CaO . SiO; 1817 56.0
CaO . Al;0; . 2 SiO; 1826 166.8
2 CaO . Al,0; . SiO, 1868 1556.9
2 Ca0 . SiO2 2403 55.4
3 Ca0. 2 8i0; 1718 146.5
CaO . Al,O0; 1878 102.5
12 CaO . 7 Al;,0; 1728 209.3
3 Al,0; . 2 SiO; 2123 188.3
MnO . SiO, 1564 66.9
MgO . Al ;0 2408 200.0
MgO . SiO; 1850 75.2
CaO . MgO. 2 SiO, 1665 128.3
Ca0.2Al.0s 2033 200.0
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The systems CaO . MgO . 2 SiO; (CMS;)—MnO . Si0, (MS)—CaO . AL:O; . 2 SiO,
(CAS;), MgO . 8i0, (MS)——CMS,—CAS, and MgO . Al,0; (MA)—2 CaO . SiO,
(C28)—2 Ca0 . ALLO; . SiO; (C.AS) were chosen as an example for the first case.
The second case was represented by the system C;AS—MA—CAS;. To demonstrate
the last case, the system CaO (C)—ALO; (A)—SiO, (S) was chosen. For the sake
of comparison, the experimentally determined phase diagrams were taken from
the literature [12]. The required thermodynamic data were taken from [13, 14]
and are listed in Table I. The temperature dependence of the enthalpy of fusion
was neglected in these calculations. In all the cases no three-fold coordinated atoms
were considered, i.e. o3,5 = 0 for all j. It was further assumed that one half of the
aluminium atoms present were in the tetrahedral coordination throughout the
whole concentration region in question and the rest of the AIIIIl atoms had a higher
coordination, obviously an octahedral one, and so did not participate in the poly-
anionic network formation (a4,; = 0.5 for 44 = Al). It is obvious that as,; = 1 for
silicon and that for /4 = Ca, Mg, Mn, a,4,; = 0. A comparison between the calcula-

S
e
L

</

. e e
20 40 60 80, -
c™M SZ mass %o MS

Fig. 4a. Calculated phase diagram of the CMS;—MS—CAS, system.

cMs, mass % Ms

Fig. 4b. Experimental phase diagram of the CMS;—MS—CAS, system.
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ted and experimentally determined phase diagrams is shown in Figs. 4a—8b.
All the concentration data are in mass 9, and temperature is given in °C.

In Fig. 4a the calculated phase diagram of the CMS,—MS—CAS, system is
shown. The experimental phase diagram [12] of the same system is shown in Fig. 4b.
There is a discrepancy in the temperature of fusion of rhodonite, MnO . SiO,,
given in [13] and in the experimental phase diagram [12]. The value of 1291 °C
was used in the calculation.

A comparison of the calculated and experimental phase diagrams for the
MS—CMS,—CAS, system is presented in Figs. 5a and 5b, respectively.

For the last example of the simple eutectic systems, the MA—C,S—C,AS system,
the results of calculation and the experimental phase diagram are shown in Figs. 6a,
6b, respectively.

The systems with four crystallization areas, where the figurative point of the
fourth crystalline phase lies outside the pseudoternary diagram, are represented
by the C;AS—MA—CAS; system (Figs. 7a, 7b). Because the enthalpy of fusion
of MA has not been found in the calculation, this value was estimated on the basis

MS mass %o CMSZ
Fig. 5a. Cdculated phase diagrem of the MS—CMS,—CAS, system.

MS mass %o CMSI
Fig. 5b. Experimental phase diagrem of the MS—CMS,—CAS, system.
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C,AS

MA mass s C2$
Fig. 6a. Calculated phase diagram of the MA—C,S—C,AS system.

CAS

20 40 60 80
MA mass o C,S

Fig. 6b. Experimental phase diagram of the MA—C,S—C,;AS system.

CAS,y

20 40 60 80
C,AS mass %/ MA

Fig. 7a. Calculated phase diagram of the C;AS—MA—CAS; system.
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20 40 60 80
CAS mass °/a MA

Fig. 7b. Ezperimental phase diagram of the CotAS—MA—CAS, system.

Av3
20 40 C,,A,60CA CA,80
GO mass % A|203

Fig. 8a. Calculated phase diagram of the C—A—S system.

$i0,

y AN AN
20 C,A40 CpA, 60CA CAB0 CA,
GO0 mass o, Al O,

Fig. 8b. Experimental phase diagram of the C—A—S system.
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of the thermodynamic analogy (the entropy of fusion is a sum of the entropies
of fusion of the individual oxides).

The calculated and experimental phase diagrams of the C—A—S system, which
represents the last type of the ternary systems considered, are shown in Figs. 8a
and 8b respectively. In this case the immiscibility region near the SiO, apex was
neglected in the solution since such behaviour is not considered in the thermody-
namic model. Furthermore, because oflack of thermodynamic data, the crystalliza-
tion of rankinite, tricalcium silicate, tricalcium aluminate and calcium hexaalumi-
nate were not included in the calculation.

CONCLUSIONS

From the comparison of the calculated and experimental phase diagrams it
follows that the computational procedure employed is suitable for describing the
phase equilibrium in multicomponent silicate systems. Moreover, the introduction
of some structural aspects into the thermodynamic model permits more information
on the structure of the silicate melts to be obtained. Some disagreements in case
of some calculated and experimental phase diagrams are obviously caused by
either inadequate structural assumptions or unreliable thermodynamic data.
More precise and correct values of the thermodynamic properties are therefore
required. The practical significance of the calculation also lies in that it can be
used in planned experiments, and thus reduce the number of tedious experimental
measurements.
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POCITACOVA KONSTRUKCIA FAZOVYCH DIAGRAMOYV
SILTKATOVYCH SUSTAV
Marek Ligka, Viadimir Dané&k

Spoloéné laboratérium CCH1 SAV a Vyskumného a vyvojového ustavu skldrskeho,
912 50 Trentin
Ustev anorganickej chémie CCHV SAV, 842 36 Bratislava

Na zéklade termodynamického modelu sa navrhol vieotecny algoritmus a zostro,il sa fortra-
novsky program na vypoctet izobarickych fédzovych diagramov polymérnych oxidovych sustav.
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Programové vybavenie umoinuje uréit teplotu primérnej krystalizdcie pre jednotlivy konfi-
guraény bod a konstrukeiu fazovych diagramov pre bindrne a ternarne sustavy.

Pouzitie programu sa demonstrovalo na prikladoch jednoduchych ternarnych eutektickych
systémov, terndrnom systéme so 8tyrmi krystalickymi fdzami a na terndrnom systéme so vznikom
viacernych bindrnych zldéenin.

Navrhol sa spdsob vyuiitia vypracovancého algoritmu pri skiumani $truktary silikdtovych
tavenn.

Obr. 1. Blokovd schéma programu FADR.

Obr. 2. Naviiznostt jednotlivjch podprogramov programu FADR.
Obr. 3. Kreslenie izotertem v kosoStvorcovej sieti.

Obr. 4a. Vypoéitany fazovy diagram sustavy CMS;—MS—CAS;.
Obr. 4b. Experimentdlny fazovy diagram sustavy CMS,—MS—CAS;.
Obr. 5a. Typoéitany fazovy diagram sustavy MS—CMS,—CAS;.
Obr. 5b. Experimentdlny fazovy diagram sustavy MS—CMS,—CAS,.
Obr. 6a. Vypoéitany fazovy diagram sustavy MA—C,S—C,AS.

Obr. 6b. Experimentdlny fazovy diagram sustavy MA—C,S—C,AS.
Obr. 7a. Vypobitany fazovy diagram sustavy C;AS—MA—CAS;.
Obr. 7b Experimentdlny fazovy diagram sustavy C;AS—MA—CAS,;.
Obr. 8a. Vypoéitany fazovy diagram sustavy C—A—S.

Obr. 8b. Experimentdlny fazovy diagram sustary C—A—S

ROHCTPYRUNA ®A30BBIX JUATPAMM CUJIUKRATHBIX CUCTEM
C NOMOMbIO BLIYUCAUTEJALHON MAHIMH LI

Maper Tuura, Baaumnp Jla\er

O6wan wabopamopus L enm pa zumunecroeo uccaedosanus CAH 1w Haywno-uccacdosamenvcrozo
u npoexmuozo uwcmumyma cmersa, 912 50 T pervun

Hremumym neepearuveckoti zumuu
Ilenmpa zumuneckoeo uccaedesartus CAH, 8§42 36 5 pamucaaca

Ha ocHOBaHMM TCPMOJIMHAMMUCCKOM Mo;ie;1sl aBTOPAMI Hpe;liaractest oO0IMi aJropuT™
M TocTpocHHe OPTPAHOBCKON HMPOI'DAMMLI, MPCHABHAUCHHON LI pacucTa H300a PIYeCKHX
(a30BLIX ;IMarpAMM II0JIMMEPHLIX CHCTCM OKC H;lOB.

C 110MOUIBLIO IPOI'PAMMBI MOKIO YCTAHOBUT), TCMIIEPATVPY MCPBUYHOR KPHCTAJIII3AIAM
TS OT/(e/TBHOH TOUKU KOHPUIYDPALMH ¥ KOHCTPYKIUIH (Da30BLIX [(HaIrpaMM Uisi OMHAPHLIX
W TEPHAPHLIX (HCTCM.

HWcnoiib30BaH1e 1IPOrPIMMEI IOKA3LIBACTCS HA IIPHMCPE OT(C.ILHLIX TCPHAPHLIX 3BTEKTH-
YCCKUX € MCTCM, TCPHA PHOH CHCTCMBI ¢ UCTHIPLMT KPUCTAILIMUCT KIM M (PA3aMM 1 Ha TCDHA PHOM
cucteMe ¢ 00Pa30BAHMEM HECKOJLKHX OMIAPHBIX ¢OC;IHHEHMI,

ABTOpaMH IIPEIUIATACTCH CHOCO0 UCIIOBI30BAHMA Pa3padOTAHHOIO AJ'OPHTMA NPH HcCIe-
J\OBAHUM (TPYKTYPDL CHMIIMKATHLIX PacILIABOB.

Puc. 1. Baor-cxema npoepammsn FADR.

Puc. 2. Hocaedocameavrocms omdeavnbir nvdonpozpammst npoepayast FADR.
Puc. 3. Haobpancenue usomepm 6 pombuuecroit cemee.

Puc. 4a. Pacwumannas gasocas duazpamma cucmemsr CMS;—MS—CAS,.

Puc. 4b. Fxcnepumenmaavras Paszosas duaspamma cucmemn CMS;--MS—CAS,.
Puc. 5a. Pacuumannas @asosas duaepamma cucmenvr MS—CMS; —CAS,,

Puc. 5b. Frcnepumenmanvrias cazosan duazpamma cucmeany MS—CNS,—CAS,.
Pur. 6a. Pacvumannas gasosas duazpasma cucmesmvr MA—C;5—CAS.

Puc. 6b. Ircnepumenmanvnas gazogas duazpamma cucmennt MA—C,5—C2AS.
Puc. 7a. Pacuumarias gasosas duacpamma cucmeast C2AS—MA—CAS,.

Puc. 7b. rcnepumenmanvras gazocas duazpamma curmess C2A—S—MA—CAS,.
Puc. 8a. Pacuwmannaa asosas duazpamma cucmesvr C—A—S.

Puc. 8b. Jicnepumenmanvras Pazosan duazpavma cucmemsy C—A—S.
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