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A general algorithm and a FORT RAN program for the calculation of isobaric 
phase diagrams of polymeric oxide systems based on the thermodynamic model 
of silicate melts was developed. Thia software enables the primary crystallization 
temperatures for a single configuration point to be determined and the phase 
diagrams for a binary or ternary systems to be constructed. 

The verification of the computational algorithm was demonstrated on simple 
ternary eutectic systems, a pseudoternary system with four crystallization phasea 
and a ternary system in which some binary and ternary compounds are formed. 

The way of using this method in structural studies of silicate melts waa 
described. 

INTRODUCTION 

In the past decades, the theoretical calculations of phase diagrams have become 
an efficient research tool in several fields of science and engineering. This fact 
is a result of the effective employment of both computer techniques and funda­
mental principles of chemical thermodynamics. The attractiveness and need of such 
calculations have also been testified by an unceasingly 1ising number of papers, 
reviews and monographs [1-5]. Interesting practical application of theoretical 
calculations of phase diagrams for silicate systems were reported in [6]. Applying 
the simplified LeChatelier-Schreder equation to binary and pseudobinary systems, 
the authors of the work cited calculated coordinates of eutectic points and by 
means of the Prigogine equation [7] determined phase separation regions in ternary 
systems. The main aim of the work [6] was to utilize calculated results in the de­
velopment of new special types of glasses with required properties. 

Each theoretical calculation of solid-liquid phase equilibria is based on the choice 
of a suitable thermodynamic model for the liquid phase which also sufficiently 
considers the structuml aspects. Owing to the polymeric character of silicate melts, 
the classic regular solution !j,pproach is not applicable, because limiting laws 
are not obeyed when the Clausius-Clapeyron equation is used. Temkin's model 
of an ideal ionic solution which has been widely employed iri molten salt systems, 
was not found suitable for silicates, as their real anionic composition, owing to 
a broad polyamonic distribution, is not known a priori. 

The optimum approach to the calculation of activity of individual components 
in silicate systems was published in [8-11] and applied to various types of silicate 
borate and aluminosilicate systems. The model is based on the definition of che­
mical potentials of all the atoms. Different energy and consequently structural 
states of the atoms are considered. In the present work a general algorithm for 
isobaric phase diagrams of polymeric oxide systems was developed. The program 
is written in FORTRAN and provides an interactive service with graphic output. 

Silikaty �. 3, 1990 215 



M. Liska, V. Danek: 

THEORETICAL 

Let us consider an arbitrary mixture in the Me0-Si02 system (Me = Mg, 
Ca, ... ). The melt of such a mixture is composed of the following types of atoms 
Mei+ cations, silicon atoms in tetrahedral coordination with oxygens, and two 
kinds of oxygen atoms - the bridging ones connecting two neighbouring Si04 

tetrahedra by means of Si-0-Si covalent bonds, and the non-bridging ones 
bound to one silicon atom only and creating the coordination sphere of Mei+ 

cations. Evidently, the two types of oxygen atoms are distinguishable by their 
energies and their mutual molar ratio defines the structure of a melt, that is its 
polymerization degree as well as the chemical potentials of its components. With 
regard to this structural aspect of silicate systems, the chemical potential of an 
arbitrary component may be defined as a sum of chemical potentials of all atoms 
forming the component considered, as their particular energy states are taken into 
account. The chemical potential of the i-th component in a solution is defined as 

µ: = I µj n1,j, 
j 

(1) 

where ni,i is the amount of atoms of the j-th type in the i-th component and µi 
is the chemical potential of atoms of the j-th type in the solution. For instance, the 
chemical potential of CaSi03, which is formed in the Ca0-Si02 system, equals 
to the sum of the chemical potentials of calcium atoms, silicon atoms, and the 
bridging and non-bridging oxygen atoms. The activity of the i-th component 
in a solution also obeys the equation 

(2) 

where µ� is the chemical potential of the pure i-th component, defined similarly 
to the chemical potential· of this component in a solution 

µi = I µf:1 ni, ,, 
j 

(3) 

where µ�,i is the chemical potential of the j-th atoms in the pure i-th component. 
Substituting eqns (1) and (3) into eqn (2) we obtain 

L µj ni,i = I, µ;1 ni,J + RT In ai. 
i I i 

(4) 

The real mole fractions of the j-th atoms in the pure i-th component and in the 
solution are given by 

0 

Yi,f = ni,:1 
"ni ,L., '1 
j 

I,nuxt 
i 

(5) 

(6) 

where Xi is the molar fraction of the i-th component in the solution. The chemical 
potentials of the j-th atoms in the pure i-th component and in the solution may 
also be expressed using eqns (5) and (6) in following way 
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µ� . = µt + RT ln y� i 
, .. , 1 .• , (7) 
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µ1 = µt + RT In Yi , (8) 

where µj is the chemical potential of a hypothetical liquid composed exclusively
of the j-th atoms. Substitution of eqns (7) and (8) into eqn (4) gives for the activity
of the i-th component in the solution the relation 

or after rearangement

ln at = L nt,i In Yi - L n;,J In Yi,i'
j j 

a;= IT -0-( Yi )n,, 1 

1 Yi,i 

(9) 

(10)

Eqn (10) for the activity of a component derived in this way is wholly universal
and may be used in any system. The calculation of the activity of a component
in an actual system according to this equation thus respects some structural
aspects, e.g. different energy states of atoms of the same type. Such cases may
occur in the presence of tri-valent atoms like B3+, AP+, FeH, etc. 

Let us assume that in a system consisting of m oxides the polymeric network
is formed by three- and four-fold coordinated atoms JA (j = 1, 2, . .. m) bound to
bridging (0°) and non-bridging (O-) oxygen atoms. Designating the fraction of k-fold
co-ordinated JA atoms as a.k,i, the following inequality has to be obeyed 

IX.3,j + IX4,j i l. (11) 

The distribution of the atoms according to their co-ordination or to their partici­
pation in a covalent network, is then determined by the material balance 

where
n0(fA\ = (1 - a.3,i - a.4 ,J) n(fA),
n3(iA) = a.3,1 n(iA),
n4(fA) = a.4,i n(iA),

(12) 

(13) 

(14) 

(15) 

where nk(iA) indicates the amount of the k-fold co-ordinated JA atoms and n0(iA)
the amount of those fA atoms which are not built into the polyanionic network.
Assuming the total amount of oxygen n(O) is divided between bridging and non­
bridging oxygen atoms, we can find their amounts n(0°) and n(O-) from the material
balances of the amounts of oxygen and iA-0 bonds 

n(O) = n(0°) + n(O-)

n(O-) + 2n(0° ) = L [n(iA) (3ix3,i + 4ix4, J)].
i=l 

(16) 

(17) 

If the solution of this system makes no physical sense (i.e. the values of n are
negative) it is necessary to assume that oxygen atoms are present as non-bridging
ones and as oxygen ions 02-. Then the material balance is represented by the fol­
lowing equations 

2 .  n(O-) = L [n(fA) (3a.3,f + 4a.4,J)]
i=l 

n(Q2-) = n(O) - n(O-).
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Typical modifying atoms such as alkali metals and alkaline earth metals are 
assumed to give 

rx.3,j = rx.4,J = 0, (20) 

while typical network forming elements of the IV-th group of the periodic system 
like silicon and germanium give 

(X.3,j = 0 and (X.4,j = 1. (21) 

In other cases the values of rx. can be determined by fitting the calculated phase 
diagrams to those determined experimentally. 

According to eqns (16) and (17), the formal polymerization degree P of a system 
with a known composition can be determined. Since the polymerization degree 
is defined as the ratio of the amount of bridging oxygen atoms to the total amount 
of oxygen, one can write 

m 

p = n(O°l_ = J1 [n
(iA) (3rx.3,J + 4rx. 4

, 1)] _ 
1.

n(O) n(O) 
(22) 

For instance, in the (1 - x) . .MeO + x Si02 mixture m = 2, 1A = .Me, 2A = Si, 
a3, 1 = rx.3,2 = a4,1 = 0 and rx. 4, 2 = 1. Then 

4x 
P=- --1. 

l+x (23) 

In such a mixture, P = 0 for x = 1/3, i.e. for the composition of orthosilicate,
and P = 1 for the pure Si02 melt. 

The calculation of liquidus temperatures for the individual components Tt , liq 

is performed using corresponding experimental values of enthalpy and temperature 
of fusion according to the simplified and adapted LeChatelier-Schreder equation 

T D.H1 . t T1. t 
i, liq = D.Ht ,t - RT1,tlnat (24) 

where Tt, t and D.H1, i are the temperature and enthalpy of fusion of the i-th com­
ponent, respectively, and at is its activity calculated according to eqn (10). The 
primary crystallization temperature of the melt with a known composition is then 
determined as the maximum liquidus temperature of all the components in question 

T
pc = max (Tt,liQ). 

i 

THE CALCULATION ALGORITHM 

(25) 

Actually it is impossible to resolve the problem described without an efficient 
computer. The aim of this work was to elaborate a general algorithm and program 
for solid liquid phase equilibria calculations in various types of polymeric oxide 
systems. An adequately general set of input makes it possible to work in diverse 
compositional spaces comprising several, up to ten, oxides, thus providing a wide 
field of application for the program. The sub-space in which the phase diagram 
is constructed, can be non-, one- or two-dimensional (a point, a line or a plane), 
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respectively, and can be defined either by the composition of the respective phases, 
or by the coordinates of the chosen compositional space. Each cation may partici­
pate in a polymeric network in three- and/or four-fold coordination and this fact 
can be specified. The program is divided into several subroutines, so that modifica­
tion of an arbitrary part of the algorithm presents no special difficulties. The 
structure of the main program FADR is presented in form of a program flowchart 
in Fig. 1. The relations between the individual subroutines are shown in Fig. 2. 

Subroutine INPUT starts the calculation and provides stoichiometric description 
of an actual oxide system 1Ax0y , j = l, 2, ... m which comprises the compositional 
space, and input of rx.3,1 and rx.4,1 for all the JA atoms. The data can be entered via 
a keyboard or from an appropriate file. Chemical elements are specified directly 
by their chemical symbols. Molar masses of oxides are calculated automatically 

Calculation 
of the temperature 

of the primary 
crystalLisaUon 

of the only 
f 1gurative point 
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Determination of the 
composdion space 
(max. 10 oxides) 

fnput of the composition 
of the expected 

crystaWne phases 

Input of ihe temperature 
and the enthalpy of fusion 

of the expected 
crystailine phases 

Def;ni/1on of the subspace 
of the concrete 
phase diagram 

Calculation 
Of the binary 
phase diqgram 

Calculation 
Of the ternary 
phase diagram 

Graphical output 

Fig. 1. Flowchart of the F ADR program. 
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from atomic mass data stored in the memory. The next step is the input of the 
stoichiometric composition and the values of !).H 1, i a T 1, i for all the crystalline 
phases being expexted to crystallize in the compositional space considered. After 
that the subroutine YCFR is called, which calculates the mole fractions y� . of all 
the atom types (i.e. atoms 1A, bridging and non-bridging oxygen atomsi"�resent 
in the crystalline phases. Then the control is returned back to the main program. 

Fig. Z. Relation6 between individual subroutines in the FADR program. 

The structure of the main program allows further direction of calculation to be 
chosen and proceeds with 

(i) determination of the primary crystallization temperature for a single com­
positional point of the system defined (subroutine UNAR); 

(ii) construction of the phase diagram for a binary system defined by two
arbitrary points of the compositional space (subroutine BINAR);

(iii) construction of the phase diagram for an arbitrary ternary system defined
by three non-colinear points of the compositional space (subroutine TERN AR).

The graphic output of phase diagrams may be chosen in coordinates of either 
mole or mass fractions. 

(i) Ca lculat ion  of  the  pr imary crystall i zat ion  temperature  fo r  a
s ingle  po int  i n  a compos it ional  space

At first, the subroutine UNAR transfers control to  subroutine INPVER, which
ensures entering of compositions for one, two or three points from the compositional 
space according to the input parameters. Then control is transferred to subroutine 
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SOLLIQ which calculates the liquidus tempe�atures of all crystalline phases 
present and the primary crystallization temperature for a considered point of the 
compositional space. 

(ii) Calcu l a t i o n  o f  a bin a r y  phase  d i a gram

Subroutine BINAR similarly to UNAR, calls at first the subroutine INPVER 
and two points of the compositional space determining a pseudobinary system are 
put in. Then follows the input of the upper and lower temperature limits for the 
temperature axis and the concentration axis division. With the help of subroutine 
SOLLIQ the primary crystallization temperatures for all concentration points 
(determined by the concentration axis division) are calculated and marked into 
the diagram. The positions of eutectic points are obtained by linear interpolation 
between two neighbouring concentration points differing in their respective primary 
crystallizing phases. The graphic output is provided by subroutine RECD2 proces­
sing the data set stored in a specified file. Owing to the software and hardware 
possibilities this data set can be used in different ways. In our case the graphic 
output was screened, and subsequently transferred to the printer to get a hard 
copy. 

(iii) The c a l c ula t ion  o f  a t e r n a r y  phase d iagram

A sophisticated algorithm was developed to calculate and draw ternary phase 
diagrams Subroutine TERN AR first determines, by means of subroutine INPVER, 
the coordinates of the concentration triangle apices in the compositional space. 
Though in general this triangle is not equilateral in a chosen compositional space, 
the phase diagram is drawn as usually in an equilateral triangle. A rhombohedral 
network is first constructed in this triangle. Its density is determined by an input 
parameter. For the nodal points of this network the primary crystallization tem­
peratures are calculated and line after line stored in the data file. To draw the 
isotherms of primary crystallization, couples of neighbouring lines are successively 
transferred to the operation memory. The direction of the respective isotherm 
is found in each rhombus using linear interpolation on the sides of the two triangles 

Fig. 3. Drawing of isotherms in the rhombohedral networl.·. 
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formed by the rhombus diagonal. An elemJntary ABCD rhombus is shown in Fig. 3. 
The isotherm is drawn in two steps. First, line EF in the ABD triangle and after 
that line FG in the second triangle BCD are found. Subroutine PLTCNT with the 
help of ISOLN, ORDER, and RECD performs the drawing of the isotherms. Sub­
routine RECD writes down the data into the graphical instruction data set, and 
recalculation of mole or mass fraction co-ordinates to cartesian is performed by 
subroutines IXCR and IYCR. 

The boundary lines between two neighbouring crystallization areas belonging to 
different crystalline phases are looked for during primary crystallization tempera­
ture calculations for nodal points of the rhombohedral network. If another crystal­
lizing phase occurs while passing from one nodal point to the neighbouring one, 
then the co-ordinates of the point in which these phases have the same temperature 
T,, liq, are determined by linear interpolation. These data are ordered by subroutine 
SORT so that the points belonging to the same boundary line are put to a. sequence 
and the line is drawn by subroutine PLTEUT. Using a sufficiently dense ne•.work, 
this method gives directly ternary eutectic points as common points of three bounda­
ry lines. 

RESUL TS OF CALCULATION AND DISCUSSION 

Three types of ternary and pseudoternary systems were considered to demons­
trate the algorithm proposed: 

i) simple eutectic systems;
ii) system with four crystallization areas where the figurative point of the fourth

crystalline phase lies beyond the pseudoternary diagram; 
iii) a system where some binary and ternary compounds are formed.

222 

Table I 

Thermodynamic data of the individual compounds used 
in the calculations 

Compound Tt 

I
/::,.HJ 

K kJmoJ-1 

CaO 2843 52.0 
AbOJ 2293 111.4 
Si02 1996 9.6 
CaO. Si02 1817 56.0 
CaO . Ah03 . 2 Si02 1826 166.8 
2 CaO . Ah03 . Si02 1868 155.9 
2 Cao. Si02 2403 55.4 
3 CaO. 2 Si02 1718 146.5 

CaO.AbOJ 1878 102.5 
12 CaO . 7 Ah03 1728 209.3 
3 Ah03 . 2 Si02 2123 188.3 
MnO. Si02 1564 66.9 
MgO .AlJ03 2408 200.0 
MgO. Si02 1850 75.2 
CaO . MgO . 2 Si02 1665 128.3 
CaO . 2 Al�03 2033 200.0 

I 
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The system;; CaO. MgO. 2 Si02 (CMS2 )-Mn0. Si02 (MS)-CaO. Ab03 • 2 Si02 

lCAS2), MgO. Si02 (MS)--CMS2-CAS2 and MgO. Al,O� (MA)-2 CaO. Si02 

(C2S)-2 CaO. Alz03 • Si02 (C!AS) were chosen as an example for the first case.
The second case was represented by the system C2AS-MA-CAS2 . To demonstrate 
the last case, the system CaO (C)-Al203 (A)-Si02 (S) was chosen. For the sake 
of comparison, the expe1imentally determined phase diagrams were taken from 
the literature [12]. The required thermodynamic data were taken from [13, 14] 
and are listed in Table I. The temperature dependence of the enthalpy of fusion 
was neglected in these calculations. In all the cases no three-fold coordinated atoms 
were considered, i.e. rx3, 1 = n for all j. It was further assumed that one half of the
aluminium atoms present were in the tetrahedral coordination throughout the 
whole concentration region in question and the rest of the AlIII atoms had a higher 
coordination, obviously an octahedral one, and so did not participate in the poly­
anionic network formation (oc4 , 1 = 0.5 for IA = Al). It is obvious that rx.4,1 = 1 for 
silicon and that for JA = Ca, Mg, Mn, rx.4 , 1 = 0. A comparison between the calcula-

Fig. 4a. Calculated phase diagram of the CMS2-MS-CAS2 system. 

Fig. 4b. Experimental phase diagram of the CMS2-MS-CAS2 system. 
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ted and experimentally determined phase diagrams is shown in Figs. 4a-8b. 
All the concentration data are in mass % and temperature is given in °C. 

In Fig. 4a the calculated phase diagram of the CMS2-MS-CAS2 system is 
shown. The experimental phase diagram [12] of the same system is shown in Fig. 4b. 
There is a discrepancy in the temperature of fusion of rhodonite, MnO . Si02, 

given in [IB] and in the experimental phase diagram [12]. The value of 1291 °C 
was used in the calculation. 

A comparison of the calculated and experimental phase diagrams for the 
MS-CMS2-CAS2 system is presented in Figs. 5a and 5b, respectively. 

For the last example of the simple eutectic systems, the MA-C2S-C2AS system, 
the results of calculation and the experimental phase diagram are shown in Figs. 6a, 
6b, respeetively. 

The systems with four crystallization areas, where the figurative point of the 
fourth crystalline phase lies outside the pseudoternary diagram, are represented 
by the C2AS-MA-CAS2 system (Figs. 7a, 7b). Because the enthalpy of fusion 
of MA has not been found in the calculation, this value was estimated on the basis 

MS mass 
0
/o CMS2 

Fig. 5a. Calculated phase diagram of the MS-Cl\182-CAS2 system. 

MS mass 
0
/o CMS 2 

Fig. 5b. Experimental phase diagram of the MS-CMS,-CAS2 system. 
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Fig. 6a. Calculated phase diagram of the MA-C2S -C2AS system. 

Fig. 6b. Experimental phase diagram of the MA-C2S-C2AS system. 

Fig. 7a. Calculated phase diagram of the C2AS-MA-CAS2 system. 
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Fig, 7b. Experimental phaae diagram of the C2AS-MA-CAS2 system. 

Si02

CaO mass c;" 

Fig. 8a. Calculated phase diagram of the C-A-S system. 

eao 

Fig. 8b. Experimental phaae diagram of the C-A-S system. 

226 Slllk6ty i!. 3, 1990 



Computer Calculation of the Phase Diagrams of Silicate Systems 

of the thermodynamic analogy (the entropy of fusion is a sum of the entropies 
of fusion of the individual oxides). 

The calculated and experimental phase diagrams of the C--A-S system, which 
represents the last type of the ternary systems considered, are shown in Figs. 8a 
and 8b respectively. In this case the immiscibility region near the Si02 apex was 
neglected in the solution since such behaviour is not considered in the thermody­
namic model. Furthermore, because otlack of thermodynamic data, the crystalliza­
tion of rankinite, tricalcium silicate, tricalcium aluminate and calcium hexaalumi­
nate were not included in the calculation. 

CONC LUSIONS 

From the comparison of the calculated and experimental phase diagrams it 
follows that the computational procedure employed is suitable for describing the 
phase equilibrium in multicomponent silicate systems. Moreover, the introduction 
of some structural aspects into the thermodynamic model permits more information 
on the structure of the silicate melts to be obtained. Some disagreements in case 
of some calculated and experimental phase diagrams are obviously caused by 
either inadequate structural assumptions or unreliable thermodynamic data. 
More precise and correct values of the thermodynamic properties are therefore 
required. The practical significance of the calculation also lies in that it can be 
used in planned experiments, and thus reduce the number of tedious experimental 
measurements. 
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POCfTAL'OVA KO), STR UKCIA F AZOVYCH DIAGRAMOV 
SILIKATOVYCH SUSTAV 

.:\larek Liska, Vladimir Danek 

Spolocne laborat6rium CCHF SA V a Fyskumneho a vyvojoveho ustavu sklarskeho, 
912 50 Trencin 

Ostav anorganickej chemie COHV SA V, 842 36 Bratislava 

Na zaklade termoclynamickeho moclelu sa navrhol vseocecny algoritmus a zostro,il sa fortra­
novsky program na vypocet izuburickych fazovych cliagramov polymernych oxidovych su.stav. 
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Programovo vybavenie umozimje urcit teplotu prim{1rnej krystaliz,icie pre jednotlivy konfi­
guracny bod a konstrukciu fazovych diagramov pre binarne a ternarne sustavy. 

Pouzitie programu sa demonstrovalo na prikladoch jednoduchych ternarnych eutektickych 
systemov, ternarnom systeme so styrmi krystalickymi fazami a na ternarnom systeme so vznikom 
viacernych binarnych zlucenin. 

Navrhol sa sposob vyuzitia vypracovaneho algoritmu pri skt'.imani struktury silikatovych 
tavenm. 

Obr. 1. Blokova schema programu FADR.

Obr. 2. Naviiznosti jednotlivych podprogramov programu F ADR. 

Obr. 3. Kreslenie izoteriem v kosolitvorcove,i siei'i. 

Obr. 4a. Vypocitany fazovy diagram sustrwy Cl\IS2-MS-CAS2• 

Obr. 4b. Experimentalny fazovy diagram sustavy Cl\IS2-MS-CAS2. 

Obr. 5a. Vypocitany fazovy diagram sustavy MS-CMS2-CAS2. 

Obr. Sb. Experimentalny fazovy diagram sustavy MS-CMS2-CAS2. 

Obr. 6a. Vypocitany jazovy diagram sustavy MA-C2S-C2AS. 
Obr. 6b. Experimentalny fazovy diagram sustavy MA-C2S-C2AS. 
Obr. 7a. Vypocitan11 jazovy diagram sustavy C2AS-MA-CAS,. 
Obr. 7b Experimentalny fazovy diagram sustavy C2AS-MA-CAS2. 

Obr. 8a. Vypocitanyjazovy diagram sustavy C-A-S. 
Obr. 8b. Experimentalny jazovy diagram sustavy C-A-S 
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C JJOMOUU,IO npoqlaMMbl MOJRI!O yrTal!OBHTJ, TCMrrepaT_vpy nepBll'IHOH KflllCTaJIJIII3ill\Hl1 
)_\.,a OT/(0.TihHOiJ TO'IJ{I{ KOHqmrypar111u II J(OH('TPYKI\1111 cfm:ciOBb!X ;1narpaMM ;vrn 6nnapm,1x 
J1 TepnapHl,IX ("IICTCM. 

I1crrOJih<IOBaHl18 nporpilMMJ,I 110Ki13h!BUCTCH Ha np1n1cpe OT;1c:IJ,Hh1X TOpHapHbIX 3BT0KTII­
'1CCKIIX Cll("TOM, TCpm1pHoii CH!"TCMhl C 'lOTblphMH 1,pnrTaWll!'lO("KIIMH cJ>a3aM11 l1 Ha TCpHapnoii 
c11rTeMc c oGpa:iomrnueM HecHOJil,!UIX 6111rnpm,1x roo;\lmem1ii. 

ABTOflHMH npcµ;m1raCT<'H cnoco6 llC'l!OhiJ;iOBHHllll pa3paoOT1lHHOl'O a.1u·op11TM1l rrpu lICCJie­
;\OB1lHlll1 c·TpyKTyp1,1 <·u.m11mTm,1x panrnaBoB. 

Puc. 1. B.rioi.-cxe.11,a npo2pn.,i.11,1,i FAD H.

Puc. 2. lloc1iecJocnme.tbHoc111b omcJe.1bH&iX noDnpo?pa.¾.lf.bi npo2pa.1r.111,z FADH.

Puc. 3. lf,106pa;,cenue uaomep.11, e po.1t6u'ieci;oit cemi.c. 
Puc. 4a. Pac'l,w11an1w.<t, rj3aaocan cJua2pa.1t.1ta cucme.11,u C'\IS2-'.\lS-CAS2. 
Puc. 4b. 9Kcnepu.11,e11,11uiJ1.bHa.<1, rj3aaoea.'I, cJuaPpn.11,,11,a c11cnie.1t1,i CMS2---SiS-CAS2. 
Puc. 5a. Pac'l,11/lia1-tnaJl rj3aaoea.'I, cJua2pa.11,.11,a r·ucnie.ini :\IS--C\IS2-CAS2. 
Puc. 5b. [hcnepuJ,t01,maJ1.bHll.'1, ;,aaoeaR, cJua2pa.1tJ,t!l cucme.w,i '\1S-C\I S2-CAS2. 
Pur. 6a. l'ac'l,1111w11,11,aR, rj3aaoeaR cJua2pa.1t.1ta cucmc.1tbt :\IA-C2S-C2AS. 
Puc. 6b. 9i.enepu.MCHma1tbna.'I, ifiaaoeaR, cJ11a21ia.1t.1ta cucnu·.,tl>t :\IA-<\S-C2AS. 
Puc. 7a. PaNwnawULR, rj3aaoua.fl cJuaepaMMa r·ucm1'.1tbl C2AS-'\IA-CAS2. 
Puc. 7b. 91.cnepu.w'1-una.ribHll,'I, r.fiaaooaR cJua2pa.u.11,a cunne.11.1,i C2A-S-}[A-CAS2. 
Puc. Sa. PaNunwHnaR rjaaoeaR, cJua2pa.1t.1ta cucme.Atbt C-A-S. 
Puc. Sb. 91.cnepu.11,ewna.ribH,a.11, rjaaocaR, cJua2pa.1t,11,a cucme.w,i C-A-S. 
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