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Heat transfer inside the tunnel kiln, which serves for producing ceramic bodies by reactive
sintering of kaolinite raw material, has been modelled. The procedure for solving the model
as well as adequate computer program have been suggested in order to achieve two goals:
determining of (optimal) length of thermal treatment for required temperature in the center of
the body and vice versa, calculating the temperature in the center of the body for given length
of process. Also, correlation which defines temperature change in the center of the body along
the tunnel was determined. Computer program was applied to the tunnel kiln already installed
in IGM-Kanjiza and optimal length of thermal treatment was determined. The suggestion to
shorten the process in the examined kiln was given.

1. INTRODUCTION

In order to provide all necessary conditions for sintering process inside the hea-
vy ceramic elements they should be dried and after that heated, by combustion
products, in a tunnel kiln up to achieving optimal temperature. An optimal regime
should be kept, for a certain period of time, until all chemical as well as phase
transformation were accomplished. At the end of the thermal treatment, products
have to be cooled by the atmospheric air, with the aim to stop changes in the
material and to obtain acceptable output temperature.

Many papers, which are dealing with mathematical modelling of heat transfer
processes inside the industrial kilns, have been published till now. They shed the
light upon the problem from the point of view of kiln design, simulation, optimi-
zation and/or control. In paper [1] a thorough review of well known methods for
calculating (primary radiative) heat fluxes exchanged inside the kilns of different
types and geometries has been given.

A procedure suggested in this paper is a kind of combination, obtained by uniting
two methods: “long furnace” and “zone” method, applied to determining (convec-
tive and radiative) heat fluxes exchanged between gas and ceramic bodies, which
are assumed flat. Conductive flux through bodies is modelled by Fourier’s partial
differential equation for unsteady conduction. Its solution corresponds to the tem-
perature in the center of the ceramic body as a function of time. Once determined,
temperatures can be correlated with the body position related to the entrance of
the tunnel as the origin of coordinate system. Both results (temperature values and
the model of their changes along the tunnel) are equally important; first shows the
influence of the local thermal phenomena on the material itself while the second
concerns the equation that generalizes thermal processes.

2. SYSTEM DESCRIPTION AND ACCEPTED ASSUMPTIONS
Mathematical model which has been suggested concerns a tunnel kiln for pro-
ducing the roof tiles, which are assumed one — dimensional from the point of view

of heat transfer (see Fig. 1.). Mentioned approximation enables the application of
analytical unsteady state solution,
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Fig. 1. Temperature evolution in time in a ceramic body.

Heating and cooling processes are supposed to be consisted of successive
unsteady heat conduction steps through the ceramic bodies exposed to the influence
of gas (air) at a constant temperature. Consequently, a tunnel of a kiln could be
divided into the short zones, filled with the fluid at a constant temperature as well
as a ceramic bodies which temperature asymptotically tends to the temperature of
surrounding gas.

The heat exchange implies the ideal mixing of gas streams inside every tunnel
zone, therefore the assumption that each ceramic body is exposed to the gas streams
along both of its boundary surfaces equally might be accepted. Such zones also,
give the opportunity for expressing the fluid and material physical properties in the
form of parameters dependent on local temperatures, gas mixture composition etc.

3. MODELLING OF HEAT TRANSFER PROCESSES IN PARTICULAR ZONE
3.1. Mathematical Model
3.1.1. Heat Transfer by Coupled Convection and Radiation

Heat energy is exchanged between environment and ceramic bodies by both
convection and radiation. Mentioned phenomena define boundary condition for the
partial equation (9) of the model i.e. Fourier equation for unsteady state conduction
of thermal energy.

Typical of gas regime inside the tunnel of a kiln is: GrPr<10° so that natural
convection could be assumed as dominant. Consequently, Nu-criterion should be
calculated by applying one of very well known correlations, such as [2]:
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Nu = 0.421 (GryPr?)"/*, (1)

which lead to:
Ocon = NugA/H. (2)
As a characteristic dimension (H), a height of a ceramic bodies pile has been

accepted.

As far as radiation heat exchange between working fluid and ceramic bodies is
concerned, it has to be emphasized that the radiation should be taken into conside-
ration (especially because of the presence of CO2 and H>O molecules) inside the
heating zone while in the zone of cooling by air it can be neglected.

The “mean beam length” concept is suggested for determining of emissive cha-
racteristics of gas mixture which composition (pco, and pu,o) is known. Namely,
if a mean beam length is determined for a given system geometry [1-4] then the
emissivity of each gas component will be expressed as a function of so called
“optical dept ” (X =p- l) LECO, = f; (pco2 . l) and €H,0 = fy (szo . l)

Total emissivity of gas mixture couldn’t be obtained by simple addition of emis-
sivities determined for partial gas components because of the fact that certain parts
of two gas compounds spectra are overlapped one by another. So, a correction
should be applied:

€ = Eco, + Ben,o — Ae. (3)
Once defined, total emissivity determines total energy emitted by gas (in accordance
with Stephan-Boltzmann law):
T \4
E = £
2o 135) (@

On the other hand, the energy emitted by ceramic bodies and absorbed into gas
molecules must be in proportion with gas absorptivity. There is a general relation
among mentioned parameters:

.a: Ty ﬁE(T X) (5)
g Tm g my ?

where 7, and T,, denote absolute temperature values of gas and material
respectively.

Relation (5) is in agreement with Hottel's empirical expression for CO; (where
B = 2/3) and H2O (in which case § = 1). Total absorptivity of gas mixture is equal
to the sum of particular absorptivity values.

In the case when material emissivity (e,,) is greater than 0.8 energy exchanged
between hot fluid and ceramic bodies can be estimated by applying the approxi-
mative relation [1-4]:

d = —21—(5+ 1)Co {sg<%)4—ag(%)1 = Orad(tg — tm), (6)

that can be used for calculation of radiative heat transfer coefficient:
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(7)

Qrad = .
Tay tg‘tm

The total heat transfer coefficient of coupled convection and radiation should be
obtained by addition:

a = Ocon + Crad- (8)
In that form it can be applied in the boundary condition for analytical solving of
heat conduction equation (9).

3.1.2. One-dimensional Conduction through Ceramic Bodies

Fundamental equation which describes unsteady state conduction of heat through
a ceramic body (thin enough to be treated like one-dimensional system) is Fourier’s
equation:

89 %
o~ oar ®)
From Fig. 1 it is obvious that ¢ represents a temperature difference:

9 =t-to, (10)

which initial value starts from maximum

Yo =1t to (11)

and (exponentially) approaches zero during a heat treatment.

Due to the symmetry of heating (cooling) process and if A = const it is pos-
sible to solve the problem only for one half of a plate, using following boundary
conditions:

a) IN A CENTER OF A PLATE (x=0): (%) = 0 (symmetricity)
=0
(12)

a9 o
b) AT A SURFACE OF A PLATE (z=26): . = —Xﬂzzb‘.
=6

It is well known that so simplified model, accompanied with adequate initial and
~ boundary conditions (11) and (12), has an analytical solution. For the central plane
of a plate it can be expressed as a sum of infinite series:

[o o]

9 - 2sina; —o2Fo(r  —a2Fo(r
6(7):0—0=Z emeiFel )=Zf(Bl)iC iFo(m) (13)
i=1

a; + sin a; cos a; e

whose terms are functions of both Bi—~ and Fo— criteria. The first represents the
ratio of inside material resistance
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Ry =6/(\8) (14)

and outside gas layer resistance

R, =1/(aS). (15)

Building materials with high content of clay (kaolinite) posses thermal conductivi-
ties (A < 1 [W/mK]) between conductivity values typical of metals and insulators.
Having in mind possible a— values (for natural convection coupled with heat radia-
tion) as well as small thickness of treated samples it can be concluded that building
ceramic materials are characterized by: 0 < Bi < 10, i.e. Bi— criterion differs from
the values typical of both metals (Bi — 0) and insulators (Bi — oo). Fo— criterion,
which contains time as a parameter, influences the body temperature (Eq. (13))
exponentially.

It was proven that summarizing four terms (usually presented in tabular form
[3]) gives quite acceptable analytical solution of the time - developed process.

3.2. Computer Program
3.2.1. Data

For successful solving of mathematical model a computer program was de-
veloped, which requires several groups of input - data.

Firstly, it is necessary to know thermophysical properties of material itself
where A and C; can be specified either as the constants, for all the kiln, or as
the functions of local temperature (constants for each zone, but variable for the
kiln). The second alternative is better, because it allows more precise predicting of
material properties, primary dependent on temperature.

Geometrical characteristics of a particular ceramic body, pile of bodies as well
as a crossection and length of a tunnel have to be given. Also, data referred to gas
mixture emissivity and absorptivity should be known. Finally, vectors of gas and
air measured temperatures for each particular zone have to be specified.

Unvariable data were given in a form of three following matrices:

— thermophysical characteristics of combustion products for a relevant temperature
interval;

— thermophysical characteristics of air, for a relevant temperature interval either;

— parameters to define analytical solutions in terms of Bicriterion.

Besides necessary physical data, the procedure requires a certain number of
“numerical data” (space and time steps, tolerated calculating error etc.).

3.2.2. The Structure of the Program

General algorithm for solving a heat transfer mathematical model is presented
in Fig. 2. The algorithm starts from reading all relevant data for material, the ce-
ramic body, the pile of bodies and the kiln itself. It is followed by specifying the
temperature distribution of working fluid along the tunnel.

The next step of the procedure is providing the boundary condition for funda-
mental equation of the model (Eq. (13)) i.e. thermal characterization of fluid in
the tunnel. So, algorithm proceeds by taking the data stored in adequate files for
working fluids (combustion products for the first and air for the second stage of
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Fig. 2. General algorithm for solving of heat transfer model.

the process). By employing linear interpolation of tabulated values o, Cy, p and A
are determined, as the parameters dependent on local temperatures (constants in
a zone, but variable along the kiln). Based on thermophysical properties of fluids
Gr—, Pr— and timeless part of Fo— criteria as well as oo, are calculated, for every
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zone of a kiln. After that, the convective-radiative characterization of combustion
products, only for the zones in the heating regime, is performed.

The main part of the algorithm is solving of Fourier equation in order to deter-
mine optimal length of thermal treatment which guarantees achieving the material
temperature (in the center of the body), for all zones of the tunnel kiln, so that
predetermined sintering temperature can be reached. This part of the procedure
consists of two steps.

Firstly, hypothetical process is analyzed that lasts long enough to enable
achieving the temperature of the material which approaches the temperature of the
surrounding gas (see Fig. 3.) to a small specified difference. So, by applying equa-
tion (13), for defining material temperature in all zones of the tunnel, “theoretical
value” of thermal treatment length is determined. Because of different thermal con-
ditions inside particular zones it is obvious that so calculated lengths of treatment
differ among zones. The longest period of time should be found. It is unnecessary
to say that total length of the process will be obtained by multiplying the number
of zones and the calculated time length.

theuting

cooling

[

Fig. 3. Temperature changes in the center of ceramic body during heating and cooling by fluid
at a constant temperature.

Secondly, hypothetical process will be shortened with the aim to increase of
total annual production. So, in the last part of the algorithm the length of thermal
treatment in every zone will be reduced, under permanent calculation (control) of
material, temperature and a minimum of treatment length will be found so that
material in sintering zone reaches acceptable value.

4. TEMPERATURE - TIME EVOLUTION IN THE CENTER OF A CERAMIC BODY

When the optimal temperature values in a center of a body (in every particular
zone) were determined and stored it might be useful to determine a model of their
change during the time, i.e. a function which brings into relation material tempe-
ratures and the position of ceramic body in the tunnel. Therefore, the calculated
temperature values should be correlated with time (equivalent to the position) as
independent variable, in order to gain the expression: tma (7).
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At first a type of function should be chosen, starting from linear polynomial to
other more complicated functions. Secondly, polynomial coefficients have to be
determined by applying the least squares method. For this purpose either original
[5] or one of many published computer programs [6] can be used.

5. TEST EXAMPLE

5.1. Optimization of Thermal Treatment Length
in a Real Equipment

Procedure and computer program were applied to optimization of thermal treat-
ment length for an already installed tunnel kiln characterized by following data:

— for material: — for a ceramic body:

o = 1800 [kg/m3] 6 =0.0115 [m]

Cp = 0.88+0.023 t,, [ki/kg K] S =0.23287 [m?]

A =2x10"%p [W/m K] V =2.45255x1072 [m?]
— for a kiln: t; =29.7 [°C]

Sy = 1836.7 [m?] te = 1000 [°C]

Vi = 142275 [m3] — for a pile of bodies:

P = 98 [kPa] H =1.5 [m]

— for working fluids:

temperature distribution
Pco2 =54 [kPa]
Py,0 = 9.8 [kPa]

¢, Cp, p, A for combustion products and air.

t(*C)

900

800

700

Timin)

10 20 30 40

Fig. 4. Material temperature in last heating zone as a function of treatment period length.
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Temperature distribution of working fluid was obtained by measuring in both
directions (axial and radial) (7], whereas an average gas temperature, at one cross-
section, was estimated as an arithmetical mean value.

“Theoretical time period length” was calculated for each zone of the tunnel and
25 [min] as a minimum and 104 [min] as a maximum were obtained (with tolerated
deviation: 8 < 0.02).

Maximal value was adopted and material temperatures were recalculated. Final-
ly, by shortening of time period the optimal value 7., = 35 [min] was found so that
the temperature in the center of a body, for last zone of heating, reaches acceptable
990 [°C] (see Fig. 4).

Having in mind that time need in a real process, determined by experience, has
almost 40 % greater value than the optimal one (7s = 48 [min]), it is obvious that
shortening of thermal treatment can be suggested.

5.2.Determining of Material Temperature
Distribution along the Kiln
Calculated values of material temperatures after its heating for 35 [min] inside
every kiln zone are presented in Fig. 5. Their correlating in order to determine

tm(7) models (linear as well as quadratic polynomial) gives following expressions;
linear equation for heating

t = 21.774 + 0.93447 (16)

and cooling

t =1063.611 - 1.02887, (17)

together with quadratic equation for heating

t = 176.4795 - 0.13867 + 0.00118172 (18)

and cooling

t = 916.4998 - 0.19637 - 0.00083727. (19)

It should be noticed that time and temperature units are [min] and [°C] respectively.

At a first glance can be observed that quadratic model fits material temperatures
better than the linear one. Searching for correlation better than quadratic one might
be continued if necessary.

6. CONCLUSION

As a result of reported investigations a mathematical model, which defines heat
transfer phenomena between surrounding gas and treated one- dimensional cera-
mic bodies inside a tunnel kiln, was formulated. Its main part is Fourier’s equation
for unsteady heat conduction through ceramic bodies accompanied with adequate
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Fig. 5. Distribution of material temperature along the kiln:
a) calculated by applying a model; b) calculated by using linear correlation;
¢) calculated by using quadratic correlation.
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boundary condition; convective- radiative for heating zone and pure convective for
cooling zone.

Numerical procedure as well as computer program were developed in order to
solve the model. They imply analytical solving of conduction — equation by sum-
marizing four terms of infinite series which represents the solution. The error in
calculating made because of cutting the series is significantly less than 1 %.

Boundary condition for main equation is defined on the basis of arithmetical
mean temperature of working gas, for each tunnel zone. Obviously, error made in
this way decreases by decrease of zone volume. Also, all other assumptions (see
Chapter 2.) contribute to the increase of total error in a degree which value is
difficult to predict. Finally, unavoidable error is caused by accumulating during the
numerical procedure, where calculated (final) temperature value for one segment
is accepted as the initial value for the next one.

Having all facts in mind, temperature in last heating zone might be underesti-
mated up to 5 %.

By introducing the computer program it is possible both to optimize and to si-
mulate thermal treatment in the tunnel kiln. Namely, for required temperature in
the center of the ceramic body it is possible to calculate optimal duration of the
process, while for the specified treatment length one can predict the temperature in
the center of ceramic body.

On the other hand, program enables defining the model of material temperature
change along the tunnel kiln, which combines processes of particular zones and
allows investigating of thermal treatment at a general level.

Developed program can also be used for carrying numerical experiments on
under the conditions when changes of relevant parameters occur (such as com-
position and. characteristics of available raw material, composition and quality of
used fuel, dimension of ceramic bodies etc.). By applying the computer program
it is possible to recalculate actual process parameters permanently in order to keep
equipment capacity at optimal level.

Symbols
Bi — Biot number
Cp — Specific heat capacity J/kg
Cy -~ Boltzmann constant [W/m“K
E . - Energy emitted by radiation [W/m2]
Gr — Grashof number
H — Height (characteristic dimension) [m]
{ — Mean beam length [m]
Nu — Nusselt number

— Thermal resistance [K/W]

— Surface [m?]

— Temperature [K, °C]

— Volume [m?3]

— Optical depth [m]

— Heat transfer coefficient, eigen value in equation (13) [W/m2 K]

R <N
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— Absorptivity

— Empirical coefficient

— Ceramic body (plate) thickness [m]
— Relative emissivity

— Thermal flux [W/m?]

— Thermal conductivity [W/m K]
— Viscosity [N/m2s]

— Dimensionless temperature

— Density [kg/m3]

— Time [s, min]

— Temperature difference [°C]

o

AT O > O ST

Indices

starting k kiln
final m material
con convective rad radiative
gas s surface
height tot total

8O

TioQ
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MATEMATICKY MODEL JEDNOSMERNEHO OHREVU A OCHLAZOVANI(
PLOCHYCH KERAMICKYCH TELES V TUNELOVE PECI

Mirjana Djuri¢, Jonjaua Ranogajec, Zoltan Zavargo

Technologickd fakulta, 21000 Novi Sad, Bul. AVNOJ-a 1, Jugosldvie

V £lanku je rozpracovdn model pfenosu tepla v tunelové peci, kterd se pouZivé pfi vyrobé plochych
keramickych téles reaktivnim slinovdnim kaolinitové suroviny.

Za tcelem zjednoduSeni matematického modelu bylo zavedeno né€kolik pfedpokladi. NejdileZit&;si
Jje pfedpoklad jednorozmérosti t&les (obr. 1). Také se pfedpoklad4, Ze k ohfevu a ochlazovani dochazi
ve zvlastnich padsmech — &astech tunelu. Toto pfibliZeni umoZiiuje pouZit jednorozmérnou Fourierovu
rovnici pro neustdlené vedenf tepla testovanymi t&lesy, kterd je fefena analyticky.

Nezbytné okrajové podminky se ziskaly urenim konvektivniho a radia¢ntho pfenosu tepla v pdsmu
ohfevu a stanovenim pouze konvektivniho pfenosu v pdsmu chladnuti, a to pro viechna pasma tunelu.
Stanoveni konvek&niho koeficientu bylo provedeno na zdkladé pislu$ného vztahu. Primémy radiani
koeficient se ziskal uplatnénim koncepce ,stfedni vinové délky*.

Pro zddmé feSeni matematického modelu byl vyvinut po&itatovy program. Jeho algoritmus zachy-
cuje obr. 2.
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Program za&in4 ¢tenim viech nezbytnych ddaji o materidlu, keramickém télese, loZenf keramickych
t&€les a o vlastnf peci. Dédle ndsleduje pfesné urleni rozloZeni teploty pracovniho plynu po déice pece.
V daldim kroku algoritmu se po&itd okrajovd podminka a posledn{ krok slouZi k feSeni Fourierovy
rovnice, jehoZ cilem je definovéni optimélni doby tepelného piisobeni pro danou teplotu ve stfedu t&-
lesa a vypocet teploty uprostfed materidlu za daného prib&hu procesu. Teplota ve stfedu materidlu se
asymptoticky bliZi teplot® okolniho plynu (obr. 3). Je téZ vhodné stanovit zm&ny teploty materidlu.

Vypracovany potitatovy program byl aplikovan na jiZ instalované peci. Vysledky vypoltu uvddi
obr. 4. Na z4klad¢ nich bylo navrZeno zkriceni doby vypalu.

Z4ivérem byly modely teplotnich zm&n vyjidfeny odpovidajicimi linedrmimi a kvadratickymi vztahy
(obr. 5).

Uvedeny program je obzvl45t& vhodny pro numerické hodnoceni systému, ve kterém nastdvaji zm&ny
zékladnich parametrd jako je sloZenf a vlastnosti pouZitych surovin, sloZeni a kvalita pouZitého paliva,
tlou¥tka keramického t&lesa atd. Cilem pouZiti programu je také udrZenf optimilni kapacity zafizeni.

Obr. 1. Casovy vyvoj teploty v keramickém télese.

Obr. 2. V3eobecny algoritmus pro FeSeni modelu pFenosu tepla.

Obr. 3. Teplotni zmény ve stiedu keramického télesa béhem ohfevu a ochlazovdni plynem o konstantni
teploré.

Obr. 4. Teplota materidlu v poslednim pdsmu oh¥evu jako funkce doby tepelného piisobent.

Obr. 5. RozloZeni teploty materidlu po délce pece: a) vypocitand na zdkladé modelu; b) vypolitand
z linedrniho vztahu; c) vypocitand z kvadratického vztahu.

MATEMATHUYECKAS MOJEJIb HATPEBAHUS U OXJTAXITEHUSA INIOCKUX KEPA-
MHUYECKHX TEJI B ODTHOM HAIIPABJIEHHUY B TYHHEJIbHOHU [TEYH

Mupsina dropuu, 3ontan 3apapro, Morsya Panoraen

Texnoaozuxeckuii gpaxyavmem, 2100 Hoeu Cad, Bya. AVNOJ ~ a 1, lDzocaasusn

B npepnaraemoii ctaThe paspabaThiBacTCs MOiE]Ib TEMNIONEPENAYH B TYHHEILHOM NIEYH, CyXKa-
el 7151 NPOM3BOACTBA INIOCKOCTHBIX KEPAMHYECKHH TEJI pEaKTHBHBIM ClIEKaHHEM KaOJIHHHTOBO-
IO ChIPbA.

C UenbIo YIpOIUEHNS MaTeMaTHYECKOH MOJIENIH aBTOpPaMH BORUTCH HECKONBKO MpeAnonoxe-
Hu#. CaMbIM BaXXHBIMH3 HHX SBJISETCA ORHOpasMepHocTh Ten (puc. 1). Janee npexmnonaraeTcd,
YTO HarpeBaHNE Y OXJIAXKAEHHE IIPOUCXONAT B OCOOBIX 30HAX — YaCTAX TYHHeAs. [JaHHOE NpUGIH-
>KEHHE NPeJOCTARIAECT BO3MOXHOCTE HCIIONL30BAHUS OHOpPa3MepHOTo ypaBHeHus Pypuepa qns
TEMIONPOBOJHOCTH TECTHPOBAHHBIMH T€JIaMH, KOTOPOE aBTOPAMH PEILAETC aHAIMTHYECKUM ITy-
TEM.

Heo6xonuMmbie KpaeBble yCIOBHS NOMTyHalIHCh YCTAHOBJICHHEM KOHBEKTHBHOM U pafHaLMOHHOM
TEILTONEepeays B 30HE HarpeBa, a YCTAHOBJIEHHEM TOJBKO KOHBEKTHBHOI TeNnonepeaayy B 30He
OXJIAXJIEHHAsI, 8 HMEHHO B C/lydae BCEX 30H TYHHEJNS. Y CTaHOBJIEHHE KO3((PHINEHTa KOHBEKIMH
OPOBOAMIIA HA OCHOBAHHMH COOTBETCTBYIollero oTHoumeHus. CpenHuit KO3 hHIMEHT pagHaluK
TIOJTYYHJIM HCTIOIb30BaHHEM KOHLENUHH «CpeHell ATHHBI BOJHBI».

JIns ycnemHoro pelmeHns MaTeMaTHYecKod Mofiei Gbina pa3paGoTana RpOrpaMMa BLIYHCIIM-
TeNnbHOH MalMHbl. E€ anropuT™ n3o6paxaercs Ha puc. 2.

ITporpamMma HaYKHAETCs YTEHHEM BCEX HEOOXOAMMBIX AAHHBIX OTHOCHTENBHO MaTepHaNa, Ke-
PaMHYECKOro Tejla, yKJIagKd KEPaMHYECKHX Tel ¥ OTHOCHTENBHO MCIONb3yeMoil neud. Janee
MIPMBOJIATCS TOYHOE pacnpefieieHHe TeMIepaTyphsl pabodero ra3a Bioib ANUHbI nevn. [lanbHeil-
KA Iar aNrOPHTMA MPECTaBsAET cCO60) KpaeBoe yC/IOBAE M NOCTENHMH [Iar peHa3Ha4Y€eH s
pelieHus ypasHeus PypHepa H €ro LEJbIo ABIAETCH ONpEeNIeHHe ONTHMANLHOIO BpEMEHH Tell-
JIOBOTO BO3ICHCTBHA 171 JaHHOM TEMIIEpATyphI B CEpENMHE Tella H pacyeT TEMIIEPATYpPhI B CEpeAH-
He MaTepHaJla IIpH JaHHOM XOJie Ifpouecca. TeMnepaTtypa B cepe[lHHe MaTepHaia aCHMITOTHYECKH
npubIHXaETC K TeMIepaType OKpyxkaloulero ra3a (puc. 3). Oka3bIBaeTCs TaKXke IPHTONHBIM
yCTaHOBJIEHHE HIMEHEHHS TEMIIEPATYPhI MaTepuaa.
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PazpaGorannas nporpaMMma BbIYHCIHUTEIBHON MAalIAHB] ObLT4 HCTIONIL30BAHA yKe Ha YCTaHOB-
JleHHO! neun. Pe3yneTaThl pacyeTa NpuBOAATCs Ha pHC. 4. Ha ux ocHOBaHUM GbIIO NPENTIOXEHO
YMEHBIIeHHE BpEMEHU 00XKura.

B 3aknmroyeHue NpUBOAUMON pabOThI MOACIH TEMIIEPATYPHBIX U3MEHEHHI IIPHBOASATCS B BUJE
COOTBETCTBYIOLINX TMHEHHBIX H KBa[paTHIECKHUX OTHOIIEHHUI (pHC. 5).

IIpuBoguMasi mporpaMMa OKa3bIBaeTCs BeCbMa MPHFONHON AJIT HYMEPHUYECKOH OLEHKM CHCTE-
MBI, B KOTOPO# NPOMCXOAAT U3MEHEHHS OCHOBHBIX MIApaMeTpOB, KaK Hamp. COCTAB M CBOMCTBA
HCTIONB3YEMOTO ChIPbs M COCTaB M Kau€CTBO HCIIONB3YEMOTO TOIUIMBA, TONIIUHA KEPAMHYECKOrO
Tena u T. A. Lens ucnonb3oBaHus NporpaMMal — HCHOJIB30BaHUE ONTHMaNIbHOH MOLIHOCTH YCTa-
HOBKH.

Puc. 1. Bpemennoe passumue memnepamypbul 6 KepAMULECKOM mee.

Puc. 2. Obwuii anzopumm, cayxcawuii 01 pewleHun Moodeau menionepeoany.

Puc. 3. Temnepamypubie U3MeHEHUA 6 CepEOUHE KepAMUHECKO0 mead 60 6DeMA Hazpeea
U OXAANOCHUR 2A30M NPU NOCMOAHKOL memnepamype.

Puc. 4. Temnepamypa mamepuana 8 nocaedHeli 30He Hazpesa 8 sude PyHKUUL 6DeMERU MeNnA080-
20 8030elicmaus.

Puc. 5. Pacnpedenenue memnepamypbt Mamepuaia 6004b OAUHbL ReHU:
a) memnepamypa, pacHumanHan Ha OCHOBAHUU MOOeU,
b) memnepamypa, pacuumanHAA HA OCHOBAHUU AUHEHHO20 OMHOUEHUS,
¢) memnepamypa, pacHumaHHAA HA OCHOBAHUU K8AOPAMU1ECKO20 OMHOWEHUA.

362 Silikaty &. 4, 1991





