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Heat transfer inside the tunnel kiln, which serves for producing ceramic bodies by reactive 
sintering of kaolinite raw material, has been modelled. The procedure for solving the model 
as well as adequate computer program have been suggested in order to achieve two goals: 
determining of (optimal) length of thermal treatment for required temperature in the center of 
the body and vice versa, calculating the temperature in the center of the body for given length 
of process. Also, correlation which defines temperature change in the center of the body along 
the tunnel was determined. Computer program was applied to the tunnel kiln already installed 
in JGM-Kanjiza and optimal length of thermal treatment was determined. The suggestion to 
shorten the process in the examined kiln was given. 

I. INTRODUCTION 

In order to provide all necessary conditions for sintering process inside the hea­
vy ceramic elements they should be dried and after that heated, by combustion 
products, in a tunnel kiln up to achieving optimal temperature. An optimal regime 
should be kept, for a certain period of time, until all chemical as well as phase 
transformation were accomplished. At the end of the thermal treatment, products 
have to be cooled by the atmospheric air, with the aim to stop changes in the 
material and to obtain acceptable output temperature. 

Many papers, which are dealing with mathematical modelling of heat transfer 
processes inside the industrial kilns, have been published till now. They shed the 
light upon the problem from the point of view of kiln design, simulation, optimi­
zation and/or control. In paper [ 1] a thorough review of well known methods for 
calculating (primary radiative) heat fluxes exchanged inside the kilns of different 
types and geometries has been given. 

A procedure suggested in this paper is a kind of combination, obtained by uniting 
two methods: "long furnace" and "zone" method, applied to determining (convec­
tive and radiative) heat fluxes exchanged between gas and ceramic bodies, which 
are assumed flat. Conductive flux through bodies is modelled by Fourier's partial 
differential equation for unsteady conduction. Its solution corresponds to the tem­
perature in the center of the ceramic body as a function of time. Once determined, 
temperatures can be correlated with the body position related to the entrance of 
the tunnel as the origin of coordinate system. Both results (temperature values and 
the model of their changes along the tunnel) are equally important; first shows the 
influence of the local thermal phenomena on the material itself while the second 
concerns the equation that generalizes thermal processes. 

2. SYSTEM DESCRIPTION AND ACCEPTED ASSUMPTIONS 

Mathematical model which has been suggested concerns a tunnel kiln for pro­
ducing the roof tiles, which are assumed one - dimensional from the point of view 
of heat transfer (see Fig. 1.). Mentioned approximation enables the application of 
analytical unsteady state solution. 
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Fig. I. Temperature evolution in time in a ceramic body. 

Heating and cooling processes are supposed to be consisted of successive 
unsteady heat conduction steps through the ceramic bodies exposed to the influence 
of gas (air) at a constant temperature. Consequently, a tunnel of a kiln could be 
divided into the short zones, filled with the fluid at a constant temperature as well 
as a ceramic bodies which temperature asymptotically tends to the temperature of 
surrounding gas. 

The heat exchange implies the ideal mixing of gas streams inside every tunnel 
zone, therefore the assumption that each ceramic body is exposed to the gas streams 
along both of its boundary surfaces equally might be accepted. Such zones also, 
give the opportunity for expressing the fluid and material physical properties in the 
form of parameters dependent on local temperatures, gas mixture composition etc. 

3. MODELLING OF HEAT TRANSFER PROCESSES IN PARTICULAR ZONE 

3.1. Mathematical Model 

3.1.1. Heat Transfer by Coupled Convection and Radiation 

Heat energy is exchanged between environment and ceramic bodies by both 
convection and radiation. Mentioned phenomena define boundary condition for the 
partial equation (9) of the model i.e. Fourier equation for unsteady state conduction 
of thermal energy. 

Typical of gas regime inside the tunnel of a kiln is: GrPr< 109 so that natural 
convection could be assumed as dominant. Consequently, Nu-criterion should be 
calculated by applying one of very well known correlations, such as [2]: 
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(1) 

which lead to: 

(2) 

As a characteristic dimension (H), a height of a ceramic bodies pile has been 
accepted. 

As far as radiation heat exchange between working fluid and ceramic bodies is 
concerned, it has to be emphasized that the radiation should be taken into conside­
ration (especially because of the presence of CO2 and H20 molecules) inside the 
heating zone while in the zone of cooling by air it can be neglected. 

The "mean beam length" concept is suggested for determining of emissive cha­
racteristics of gas mixture which composition (pco2 and PH2 o) is known. Namely, 
if a mean beam length is determined for a given system geometry [l-4] then the 
emissivity of each gas component will be expressed as a function of so called 
"optical depth" (X = p · l): c:co2 = f1(Pco 2 • l) and c:H2 0 = f2(PH 20 · l). 

Total emissivity of gas mixture couldn't be obtained by simple addition of emis­
sivities determined for partial gas components because of the fact that certain parts 
of two gas compounds spectra are overlapped one by another. So, a correction 
should be applied: 

(3) 

Once defined, total emissivity determines total energy emitted by gas (in accordance 
with Stephan-Boltzmann law): 

E = c:gCo(~or (4) 

On the other hand, the energy emitted by ceramic bodies and absorbed into gas 
molecules must be in proportion with gas absorptivity. There is a general relation 
among mentioned parameters: 

ag = ( ;: ) /3 cg(Tm, X), (5) 

where Tg and Tm denote absolute temperature values of gas and material 
respectively. 

Relation (5) is in agreement with Hottel's empirical expression for CO2 (where 
f3 = 2/3) and H20 (in which case /3 = 1). Total absorptivity of gas mixture is equal 
to the sum of particular absorptivity values. 

In the case when material emissivity (cm) is greater than 0.8 energy exchanged 
between hot fluid and ceramic bodies can be estimated by applying the approxi­
mative relation [1-4]: 

(6) 

that can be used for calculation of radiative heat transfer coefficient: 
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<I> 
Orad = --. 

tg -tm 
(7) 

The total heat transfer coefficient of coupled convection and radiation should be 
obtained by addition: 

Cl = Ocon+ Orad· (8) 

In that form it can be applied in the boundary condition for analytical solving of 
heat conduction equation (9). 

3.1.2. One-dimensional Conduction through Ceramic Bodies 

Fundamental equation which describes unsteady state conduction of heat through 
a ceramic body (thin enough to be treated like one-dimensional system) is Fourier's 
equation: 

arJ a2rJ 
8T 8x2 . 

(9) 

From Fig. 1 it is obvious that rJ represents a temperature difference: 

rJ = t-t00 , (10) 

which initial value starts from maximum 

rJo = to - too (11) 

and (exponentially) approaches zero during a heat treatment. 
Due to the symmetry of heating ( cooling) process and if .X = const it is pos­

sible to solve the problem only for one half of a plate, using following boundary 
conditions: 

a) IN A CENTER OF A PLATE (x = 0): ( aarJ) = 0 (symmetricity) 
X x=O 

(12) 

b) AT A SURFACE OF A PLATE (x= 8): 

It is well known that so simplified model, accompanied with adequate initial and 
boundary conditions (11) and (12), has an analytical solution. For the central plane 
of a plate it can be expressed as a sum of infinite series: 

8(T) = !!._ = ~ 2_sinai e-afFo(r) = ~f(Bi)ie-afFo(r), (13) 
rJo L.J ai + sm ai cos ai L.J 

•=1 •=1 

whose terms are functions of both Bi- and Fo- criteria. The first represents the 
ratio of inside material resistance 
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(14) 

and outside gas layer resistance 

Ra= 1/(aS). (15) 

Building materials with high content of clay (kaolinite) posses thermal conductivi­
ties (A < 1 [W/mK]) between conductivity values typical of metals and insulators. 
Having in mind possible a- values (for natural convection coupled with heat radia­
tion) as well as small thickness of treated samples it can be concluded that building 
ceramic materials are characterized by: 0 < Bi < 10, i.e. Bi- criterion differs from 
the values typical of both metals (Bi --, 0) and insulators (Bi --, oo). Fo- criterion, 
which contains time as a parameter, influences the body temperature (Eq. (13)) 
exponentially. 

It was proven that summarizing four terms (usually presented in tabular form 
[3]) gives quite acceptable analytical solution of the time - developed process. 

3.2. Computer Program 

3.2.1. Data 

For successful solving of mathematical model a computer program was de­
veloped, which requires several groups of input - data. 

Firstly, it is necessary to know thermophysical properties of material itself 
where A and Cp can be specified either as the constants, for all the kiln, or as 
the functions of local temperature ( constants for each zone, but variable for the 
kiln). The second alternative is better, because it allows more precise predicting of 
material properties, primary dependent on temperature. 

Geometrical characteristics of a particular ceramic body, pile of bodies as well 
as a crossection and length of a tunnel have to be given. Also, data referred to gas 
mixture emissivity and absorptivity should be known. Finally, vectors of gas and 
air measured temperatures for each particular zone have to be specified. 

Unvariable data were given in a form of three following matrices: 
- thermophysical characteristics of combustion products for a relevant temperature 

interval; 
- thermophysical characteristics of air, for a relevant temperature interval either; 
- parameters to define analytical solutions in terms of Bicriterion. 

Besides necessary physical data, the procedure requires a certain number of 
"numerical data" (space and time steps, tolerated calculating error etc.). 

3.2.2. The Structure of the Program 

General algorithm for solving a heat transfer mathematical model is presented 
in Fig. 2. The algorithm starts from reading all relevant data for material, the ce­
ramic body, the pile of bodies and the kiln itself. It is followed by specifying the 
temperature distribution of working fluid along the tunnel. 

The next step of the procedure is providing the boundary condition for funda­
mental equation of the model (Eq. (13)) i.e. thermal characterization of fluid in 
the tunnel. So, algorithm proceeds by taking the data stored in adequate files for 
working fluids ( combustion products for the first and air for the second stage of 
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Fig. 2. General algorithm for solving of heat transfer model. 

the process). By employing linear interpolation of tabulated values e, Cp, µ and ,\ 
are determined, as the parameters dependent on local temperatures ( constants in 
a zone, but variable along the kiln). Based on thermophysical properties of fluids 
Gr-, Pr- and timeless part of Fo- criteria as well as O:con are calculated, for every 
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zone of a kiln. After that, the convective-radiative characterization of combustion 
products, only for the zones in the heating regime, is performed. 

The main part of the algorithm is solving of Fourier equation in order to deter­
mine optimal length of thermal treatment which guarantees achieving the material 
temperature (in the center of the body), for all zones of the tunnel kiln, so that 
predetermined sintering temperature can be reached. This part of the procedure 
consists of two steps. 

Firstly, hypothetical process is analyzed that lasts long enough to enable 
achieving the temperature of the material which approaches the temperature of the 
surrounding gas (see Fig. 3.) to a small specified difference. So, by applying equa­
tion (13), for defining material temperature in all zones of the tunnel, "theoretical 
value" of thermal treatment length is determined. Because of different thermal con­
ditions inside particular zones it is obvious that so calculated lengths of treatment 
differ among zones. The longest period of time should be found. It is unnecessary 
to say that total length of the process will be obtained by multiplying the number 
of zones and the calculated time length. 

!~------
----------- -------~-~-:... 

tcooling 

Fig. 3. Temperature changes in the center of ceramic body during heating and cooling by fluid 
at a constant temperature. 

Secondly, hypothetical process will be shortened with the aim to increase of 
total annual production. So, in the last part of the algorithm the length of thermal 
treatment in every zone will be reduced, under permanent calculation (control) of 
material, temperature and a minimum of treatment length will be found so that 
material in sintering zone reaches acceptable value. 

4. TEMPERATURE-TIME EVOLUTION IN THE CENTER OF A CERAMIC BODY 

When the optimal temperature values in a center of a body (in every particular 
zone) were determined and stored it might be useful to determine a model of their 
change during the time, i.e. a function which brings into relation material tempe­
ratures and the position of ceramic body in the tunnel. Therefore, the calculated 
temperature values should be correlated with time (equivalent to the position) as 
independent variable, in order to gain the expression: tmat ( T). 
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At first a type of function should be chosen, starting from linear polynomial to 
other more complicated functions. Secondly, polynomial coefficients have to be 
determined by applying the least squares method. For this purpose either original 
[5] or one of many published computer programs [6] can be used. 

5. TEST EXAMPLE 

5.1. Optimization of Thermal Treatment Length 
in a Real Equipment 

Procedure and computer program were applied to optimization of thermal treat­
ment length for an already installed tunnel kiln characterized by following data: 

- for material: 
e = 1800 [kg/m3 ] 

- for a ceramic body: 
8 = 0.0115 [m] 
S = 0.23287 [m2] Cp = 0.88+0.023 tm [kJ/kg K] 

.X = 2x 10-4 e [W/m K] 
- for a kiln: 

V = 2.45255 x 10-3 [m3 ] 

t1 = 29.7 [0 C] 
sk = 1836.7 [m2] 

Vic = 1422.75 [m3 ] 

Piot = 98 [kPa] 

t2: 1000 [0 C] 
- for a pile of bodies: 

H = 1.5 [m] 

- for working fluids: 
temperature distribution 
Pco2 = 5.4 [kPa] 
Ptt2 0 = 9.8 [kPa] 

e, Cp, µ, .X for combustion products and air. 

t!"Cl 

900 

800 

700 
't(minl 

10 20 30 

Fig. 4. Material temperature in last heating zone as a function of treatment period length. 
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Temperature distribution of working fluid was obtained by measuring in both 
directions (axial and radial) [7], whereas an average gas temperature, at one cross­
section, was estimated as an arithmetical mean value. 

"Theoretical time period length" was calculated for each zone of the tunnel and 
25 [min] as a minimum and 104 [min] as a maximum were obtained (with tolerated 
deviation: 9 ::; 0.02). 

Maximal value was adopted and material temperatures were recalculated. Final­
ly, by shortening of time period the optimal value Topi= 35 [min] was found so that 
the temperature in the center of a body, for last zone of heating, reaches acceptable 
990 [°C] (see Fig. 4). 

Having in mind that time need in a real process, determined by experience, has 
almost 40 % greater value than the optimal one (rreal = 48 [min]), it is obvious that 
shortening of thermal treatment can be suggested. 

5. 2. Determining of Mater i a 1 Temper at u re 
Distribution along the Kiln 

Calculated values of material temperatures after its heating for 35 [min] inside 
every kiln zone are presented in Fig. 5. Their correlating in order to determine 
tm(r) models (linear as well as quadratic polynomial) gives following expressions; 
linear equation for heating 

t = 21.774+ 0.93447 

and cooling 

t = 1063.611 - 1.02887 , 

together with quadratic equation for heating 

t = 176.4 795 - 0.13867 + 0.001181 r 2 

and cooling 

t = 916.4998- 0.19637 - 0.000837272
. 

(16) 

(17) 

(18) 

(19) 

It should be noticed that time and temperature units are [min] and [°C] respectively. 
At a first glance can be observed that quadratic model fits material temperatures 

better than the linear one. Searching for correlation better than quadratic one might 
be continued if necessary. 

6. CONCLUSION 

As a result of reported investigations a mathematical model, which defines heat 
transfer phenomena between surrounding gas and treated one- dimensional cera­
mic bodies inside a tunnel kiln, was formulated. Its main part is Fourier's equation 
for unsteady heat conduction through ceramic bodies accompanied with adequate 
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boundary condition; convective- radiative for heating zone and pure convective for 
cooling zone. 

Numerical procedure as well as computer program were developed in order to 
solve the model. They imply analytical solving of conduction - equation by sum­
marizing four terms of infinite series which represents the solution. The error in 
calculating made because of cutting the series is significantly less than 1 %. 

Boundary condition for main equation is defined on the basis of arithmetical 
mean temperature of working gas, for each tunnel zone. Obviously, error made in 
this way decreases by decrease of zone volume. Also, all other assumptions (see 
Chapter 2.) contribute to the increase of total error in a degree which value is 
difficult to predict. Finally, unavoidable error is caused by accumulating during the 
numerical procedure, where calculated (final) temperature value for one segment 
is accepted as the initial value for the next one. 

Having all facts in mind, temperature in last heating zone might be underesti­
mated up to 5 %. 

By introducing the computer program it is possible both to optimize and to si­
mulate thermal treatment in the tunnel kiln. Namely, for required temperature in 
the center of the ceramic body it is possible to calculate optimal duration of the 
process, while for the specified treatment length one can predict the temperature in 
the center of ceramic body. 

On the other hand, program enables defining the model of material temperature 
change along the tunnel kiln, which combines processes of particular zones and 
allows investigating of thermal treatment at a general level. 

Developed program can also be used for carrying numerical experiments on 
under the conditions when changes of relevant parameters occur (such as com­
position and. characteristics of available raw material, composition and quality of 
used fuel, dimension of ceramic bodies etc.). By applying the computer program 
it is possible to recalculate actual process parameters permanently in order to keep 
equipment capacity at optimal level. 

Symbols 

Bi - Biot number 
Cp - Specific heat capacity [J/k.~ K] 
C0 - Boltzmann constant [W /m K4

] 

E - Energy emitted by radiation [W/m2 ] 

Gr - Grashof number 
H - Height (characteristic dimension) [m] 
l - Mean beam length [m] 
Nu - Nusselt number 
R - Thermal resistance [K/W] 
S - Surface [m2 ] 

T, t - Temperature [K, 0 C] 
V - Volume [m3 ] 

X - Optical depth [m] 
a - Heat transfer coefficient, eigen value in equation (13) [W/m2 K] 
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ag - Absorptivity 
(3 - Empirical coefficient 
8 - Ceramic body (plate) thickness [m] 
e - Relative emissivity 
4> - Thermal flux [W/m2 ] 

.X - Thermal conductivity [W/m K] 
µ - Viscosity [N/m2s] 
e - Dimensionless temperature 
p - Density [kg/m3 ] 

r - Time [s, min] 
{} - Temperature difference [0 C] 

0 
00 

con 
g 
H 

starting 
final 
convective 
gas 
height 

Indices 

k 
m 
rad 
s 
tot 
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MATEMATICKY MODEL JEDNOSMERNEHO OH~EVU A OCHLAZOVANf 
PLOCHYCH KERAMICKYCH TELES V TUNELOVE PECI 

Mirjana Djuric, Jonjaua Ranogajec, Zoltan Zavargo 

Technologickafakulta, 21000 Novi Sad, Bui. AVNOJ-a 1, Jugos/avie 

V clanku je rozpracovan model pfenosu tepla v tunelove peci, ktera se pouzfva pfi vyrobe plochych 
keramickych teles reaktivnfm slinovanfm kaolinitove suroviny. 

Za ucelem zjednodusenf matematickeho modelu bylo zavedeno nekolik pfedpokladu. Nejdulezitejsi 
je pfedpoklad jednorozmernosti teles (obr. I). Take se pfedpoklada, ze k ohfevu a ochlazovani dochazi 
ve zvlastnfch pasmech - castech tunelu. Toto pfiblizeni umoziluje pouzft jednorozmernou Fourierovu 
rovnici pro neustalene vedenf tepla testovanymi telesy, ktera je fesena analyticky. 

Nezbytne okrajove podmfnky se zfskaly urcenfm konvektivnfho a radiacnfho pfenosu tepla v pasmu 
ohfevu a stanovenfm pouze konvektivnfho pfenosu v pasmu chladnutf, a to pro vsechna pasma tunelu. 
Stanovenf konvekcnfho koeficientu bylo provedeno na zaklade pnslusneho vztahu. Prumerny radiacnf 
koeficient se zfskal uplatnenfm koncepce ,stfednf vlnove delky". 

Pro zdarne fesenf matematickeho modelu by! vyvinut pocftacovy program. Jeho algoritmus zachy­
cuje obr. 2. 
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Program zacfna ctenfm vsech nezbytnych udaju o materialu, keramickem telese, lozenf keramickych 
teles a o vlastnf peci. Dale nasleduje pfesne urcenf rozlozenf teploty pracovnfho plynu po deice pece. 
V dalsfm kroku algoritmu se pocfta okrajova podmfnka a poslednf krok slouzf k fesenf Fourierovy 
rovnice, jehoz cflem je definovanf optimalnf doby tepelneho ptlsobenf pro danou teplotu ve stfedu te­
lesa a vypocet teploty uprostred materialu za daneho prubehu procesu. Teplota ve stredu materialu se 
asymptoticky blfzf teplote okolnfho plynu (obr. 3). Je tez vhodne stanovit zmeny teploty materialu. 

Vypracovany pocftacovy program by! aplikovan na jiz instalovane peci. Vysledky vypoctu uvadf 
obr. 4. Na zaklade nich bylo navrzeno zkracenf doby vypalu. 

Zaverem byly modely teplotnfch zmen vyjadfeny odpovfdajfcfmi linearnfmi a kvadratickymi vztahy 
(obr. 5). 

Uvedeny program je obzvlaste vhodny pro numericke hodnocenf systemu, ve kterem nastavajf zmeny 
zakladnfch parametru jako je slozenf a vlastnosti pouzitych surovin, slozenf a kvalita pouziteho paliva, 
tlousl'ka keramickeho telesa atd. Cflem pouzitf programu je take udrzenf optimalnf kapacity zal'izenf. 

Ohr. 1. Casovy vyvoj teploty v keramickem telese. 
Ohr. 2. Vseohecny algoritmus pro i'eseni modelu pi'enosu tepla. 
Ohr. 3. Teplotni zmeny ve sti'edu keramickeho telesa hehem ohi'evu a ochlazowini plynem o konstantni 

teplote. 
Ohr. 4. Teplota materialu v poslednim pasmu ohi'evu jako funkce dohy tepelneho pusoheni. 
Ohr. 5. Rozloteni teploty materialu po deice pece: a) vypoi'itana na zaklade modelu; h) vypocitana 

z linearniho vztahu; c) vypocitana z kvadratickeho vztahu. 

MATEMATJiqECKA51 MO.[(EJlb HAfPEBAHJ151 If OXJIA)K.[(EHJ151 IIJIOCKMX KEPA­
MJiqECKMX TEJI B 0.[(HOM HAIIPABJIEHJflf B TYHHEJibHOH fIEqJi 

TexHo.11ozu<tec1<uu <jJa1<y.11bmem, 2100 Hoeu Cao, Ey.11. AVNOJ - a 1, /Owc.11aeUJ1 

B npe11JiaraeMoii CTaThe pa3pa6aTb1BaeTcll MO/leJib TenJionepe11aqH B TYHHeJibHOH neqH, CJiy)Ka­

~eii /IJlll npOH3BO/ICTBa UJIOCKOCTHblX KepaMHqecKHH TeJI peaKTHBHblM cneKaHHeM KaOJIHHHTOBO­

ro Cblpbll. 

C ~eJiblO yrrpo~eHHll MaTeMaTHqecKOH MO/leJIH aBTopaMH BO/IHTCll HeCKOJibKO npe11noJIO)Ke­

HHH. CaMblM B8)l{Hb1MH3 HHX llBJilleTCll O/IHOpa3MepHOCTb TeJI (pHC. 1) . .[(aJiee npe11noJiaraeTCll, 

qTQ HarpeaaHHe H OXJI8)K!leHHe npOHCXO/lllT B OCOOblX 30Hax - qaCTllX TYHHeJill • .[(aHHOe npHOJIH­

)KeHHe npe11ocraam1eT B03M0)KH0CTb HCUOJlb30BaHHll O/IHOpa3MepHoro ypaBHeHHll ct>ypHepa /IJlll 

TellJiorrpOBO/lffOCTH TeCTHpOBaHHblMH TeJiaMH, KOTOpoe aBTOpaMH pewaeTC!I aHaJIHTHqecKHM ny­

TeM. 

HeoOXO/IHMble KpaeBbie YCJIOBHll llOJiyqaJIHCh ycTaHOBJieHHeM KOHBeKTHBHOH H P8/1Ha~OHHOH 

TellJionepe11aqH B 30He Harpeaa, a yCTaHOBJieHHeM TOJlhKO KOHBeKTHBHOH TerrJionepe11aqH B 30He 

OXJI8)K!leHHll, a HMeHHO B CJiyqae acex 30H TYHHeJill. Y CTaHOBJieHHe K03q>q>H~HeHTa KOHBe~H 

npOBO/IHJIH Ha OCHOBaHHH COOTBeTCTBYID~ero OTHOWeHHll. Cpe/lHHH K03q>q>H~HeHT P811Ha~HH 

UOJiyqHJIH HCUOJib30BaHHeM KOH~en~H «cpe11Heii /IJIHHhl BOJIHhl». 

,[(Jill ycneurnoro peweHHll MaTeMaTHqecKoii MO/leJIH OhIJia pa3pa6oTaHa nporpaMMa BbiqHCJIH­

TeJihHOH MaIIIHHhl. Ee aJiropHTM H300pa)KaeTC!I Ha pHC. 2. 
IlporpaMMa HaqHHaeTCll qTeHHeM acex HeOOXO/IHMblX 11aHHbIX OTHOCHTeJibHO MaTepHaJia, Ke­

paMHqecKoro TeJia, yKJia/lKH KepaMHqecKHX TeJI H OTHOCHTeJibHO HCilOJlb3YeMOH neqH. ,[(aJiee 

npHBO/IHTCll ToqHoe pacnpe11eJieHHe TeMnepaTYPbI paooqero raJa B/IOJib /IJIHHhI neqH • .[(aJihHeii­

WHH war aJiropHTMa npe11CTaBJ1lleT co6oii Kpaeaoe yCJIOBHe H noCJie/lHHH IIIar npe11HaJHaqeH /IJill 

peweHHll ypaBHeHll ct>ypHepa H ero ~eJiblO llBJIHeTCll onpe11eJieHHe OUTHMaJibHOro BpeMeHH Ten­

JIOBOro B03/leHCTBHll /lJlll 11aHHOH TeMnepaTypbl B cepe/lHHe Tena H pacqeT TeMnepaTypbl B cepe11H­

He MaTepHaJia npH 11aHHOM xo11e npo~ecca. TeMnepaTypa B cepe/lHHe MaTepHaJia acHMUTOTHqecKH 

npHOJIH)KaeTCll K TeMneparype OKpy)KaID~ero raJa (pHc. 3). 0Ka3bIBaeTcll TaK)Ke npHro/lHhtM 

yCTaHOBJieHHe H3MeHeHHll TeMneparypbl MaTepHaJia. 
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Pa3pa6oTaHHaSI rrporpaMMa BhlqHCJIHTeJihHOH MaIIIHHhl 6hIJia HCIIOJih30BaHa y)Ke Ha ycTaHOB­

JieHHOH rreqH. Pe3yJihTaThl pacqeTa rrpHBOASITCSI Ha pttc. 4. Ha HX OCHOBaHHH 6hIJIO rrpeAJIO)KeHO 

yMeHhIIIeHHe BpeMeHH 06)1mra. 

B 3aKmoqeHHe rrpHBOAHMOH pa60Thl MO):\eJIH TeMrrepaTypHh!X H3MeHeHHH rrpHBOASITCSI B BH):\e 

COOTBeTCTBYIO~HX JIHHeHHh!X H KBa):\paTHqecKHX OTHOIIIeHHH (pHC. 5). 
IlpHBOAHMaSI rrporpaMMa OKa3hIBaeTCSI BeChMa rrpHrOAHOH AJISI HyMepHqecKOH ou;eHKH CHCTe­

Mhl, B KOTOpOH rrpoHCXOASIT H3MeHeHHSI OCHOBHhIX rrapaMeTpOB, KaK Harrp. COCTaB H CBOHCTBa 

HCIIOJlh3YeMoro ChlphSI H COCTaB H KaqeCTBO HCIIOJ!h3yeMoro TOllJIHBa, TOJI~HHa KepaMHqecKoro 

TeJia HT. A- U:eJih HCil0Jlh30BaHHSI rrporpaMMhl - HCll0Jlh30BaHHe OllTHMaJihHOH MO~HOCTH ycTa-

HOBKH. 

Puc. 1. 
Puc. 2. 
Puc. 3. 

Puc. 4. 

Puc. 5. 
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Bpe.MeHHoe paaeumue me.Mnepamypbt e Kepa.Mu'-tecKo.M me11e. 
06U{uii a11wpum.M, c11y:J1CaU{uii OIIR pezueHUR .Mooe11u men11onepeoa'-tu. 
TeMnepamypHbte ua.MeHeHUR e cepeouHe Kepa.MU'-tecKow me11a eo epe.MR Hazpeea 
u ox11a:J1COeHUR zaao.M npu nocmoRHHoii me.Mnepamype. 
Te.Mnepamypa .Mamepua11a 6 noc11e0Heii aoHe Hazpeea 6 euoe <jJyHKU,UU epe.MeHu men11oeo­
w eoaoeiicmeUR. 
Pacnpeoe11eHue me.Mnepamypbt .Mamepua11a 600/lb OllUHbt ne'-tu: 
a) me.Mnepamypa, pac'-tumaHHaR Ha ocHo6aHuu .Mooe11u, 
b) me.Mnepamypa, pac'-tumaHHaR Ha OCH06aHUU /lUHeUHOW omHOZUeHUR, 
c) me.Mnepamypa, pac'-tumaHHaR Ha ocHo6aHuu Keaopamu'-tecKow omHozueHUR. 

Silikaty c. 4, 1991 




