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From the mathematical point of view and with respect to control, a glass 
furnace can be regarded a.Y a multidimensional system which can be described 
by appropriate differential equations. Estimation of the parameters of the 
differential equations was verified on a physical model of a glass furnace and 
the dynamic properties of the furnace were measured on the model by selected 
jnmp changes of the input electric power. The responses of the output variables, 
i.e. temperature.sat the chosen point.Y of the phy,Yical model of the melting furnace
.oection, were studied by application of a pseudo-random binary signal to the
foput. The e.stimates of the differential equation parameters were likewise
establi.shed by calculation, using the lea.st square method and the extended
least square method. 'l'he final results describe very satisfactorily the dynamic
behaviour of the furnace.

INTRODUCTION 

A glass melting furnacl' is a multidimensional system with significant input 
and output quantities such as power input, rate of batch feeding, glass melt 
temperature, rate of melt withdrawal, etc. A model including all of the important 
input and output quantities would be complex and very difficult to resolve. It is 
therefore usually simplified to a single-dimensional system called SISO (single­
input single-output), where electric input is the sole input quantity and all the 
others influencing the output quantities arc regarded as defect quantities. Glass 
melt temperature (that of the model liquid) is the most frequently employed 
output quantity which, however, depends considerably on the point in the furnace 
chosen for its measurement. The values of current and voltage between the 
electrodes and the respective resistance, corresponding to a certain temperatur,.', 
may also be used as an output quantity. 

Identification of the system model, i.P. determination or calculation of the 
coefficients in equation (1), 

[I + A(z-1)] y(k) = B(z-1) u(k) + e,(k) (1) 

by means of some of the statistical identification methods, must precede the pro­
posal of the control mechanism. To yield satisfactory results, the statistical iden­
tification has to make use of such input signals which ensure adequate excitation 
of the system in the frequency range affecting significantly the dynamic behaviour 
of the system. Choice of a suitable period for sampling the system is also impor­
tant. Application of pseudo-random binary signals at the system input during 
changes in the electric power input appears to be the most convenient method. 
However, use of such a signal on an actual furnace would mean a rough interfe­
rence with the technological schedule of the furnace. This disadYantagc can be 
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eliminated in two ways: tlw cal('lllations can either be carried out from operational 
technological records, or the measurements arc performed on a physieal model 
of the furnace which simulates the behaviour of the aetual furnace. 

DESCRIPTION OF THI•: PHYSICAL MODEL 

The methods of statistical identification involving the testing of i11p11t and 
output signals and verification of the final results were employed on a physirnl 
model of an all-electric tank furnace of type Gell, made on a I: 15 scale. The modd 
liquid simulating by its properties thP SIMAX glass melt was heated by passage 
of electric current, introduced into the liquid through plafr- and rod-shaped 
electrodes placed in the side walls of the model. The model liquid at the r('quirPd 
temperature was fed into the model by a plunger pump. The feeding circuit also 
included a flowmeter, ensuring supply of a constant amount of the liquid into 
the model in the course of the experiment. Copper-constantan thermocouples 
placed in the model (Fig. 1) and connected to an automatic change-over switch 
provided temperature measurement. The temperatures were recorded conti­
nuously by a printer. 

MELTING END 

r----------------

: ')( 
L----------------

WORKING END 

ROD ELECTRODES 

THROAT 

PLATE ELECTRODES 

X PLACE OF TEMPERATURE 

MEASURING 

Firt• 1. r'o8ition of the rnea�uring thermocouple in the gla8s furnace model. 

MEASURING THE TRANSITION CHARACTERISTIC 

OF THE SYSTEM 

The first important information on the dynamic behaviour of the system is 
provided by measuring the transition characteristic as a response to an input 
jump. The transition characteristic thus obtained then yields another signifieant 
characteristic for the design of the experiment, namely the time constant of the 
system T8, sometimes also designated Tmax· The time constant established allows 
the input signal to be estimated, in the case of a pseudo-random binary signal 
jointly with its change period and its sampling period T. In the course of expe­
rimf'nts with nwasuring the transition characteristic, an input jump from 50 W 
to 70 W was used. The time constant of the model was established from three 

10 
Silikaty c. 1, 1991 



Application of Statistical Identification to Physical Models of Glass Furnaces - II. 

approximation measurements and its values amounted to 120 minutes (Fig. 2). 
The measurement was always concluded as soon as the system attairn'd a steady 
state. 
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Fig. 2. Transition characteristics of the system. 

DESIGN OF THE INPUT SIGN AL 

300 "t'(min) 

The sequence lc>ngth P, and the interval of changes in the pseudo-random binary 
signal ,H are important factors for the actual selection of the pseudo-random 
binary signal. The following equations (2) and (3) hold for the two respective 
factors: 

/:lt < 0.314 Tmax, 

Pt > 12.56 Tmax/ /:lt.

(2) 

(3) 

For the time constant Tmax established for the furnace model c>mployed, it is 
convenient that P, > 40 and l:lt < 37.7 minutes. From the value of Tmax it is 
also possible to calculate the maximum frequencies arising in the system. For 
a signal to cover both frequencies, it must hold that 

/a < !min and !11 > fma.x, (4) 

where fa is the bottom frequency of the input signal and f h is the top frequency 
of the input signal. With the use of the pseudo-random binary signal, the para-
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meters of the input signals employed in the measurements on the physical modl'l 
are listed in Table I together with the sampling period T chosen. 

The physical model was always in the steady state before starting the measu­
rement of data for identification. The electric input for the model electrodes was 
chosen as the input signal and temperaturp at a chosen thermocouple as the output 
signal. A pseudo-random binary signal generating the values of O and 1 was applied 
to the model input so that the value O corresponded to the input of 75 W and the 
value 1 to electric input of 80 W or 82 W. The change of power input by 5-10 % 
in steady state was chosen so as to bring about an adequate response at the sy­
stem output but at the same time to avoid transgression of the system to its non­
linear region in view of the linear model employed. 

TESTING TH_E SIGNALS BY STATISTICAL l\lETHODS 

All of the experimental data sets were tested by autocorrelation and correlation 
functions (Rxx, Rxy, Ryz) as well as by output spectral density Sxx · The mean 
value of the signal was also determined. 

Fig. 3. Autocorrelationjunction of thr, pseudo-random binary signal. 

The autocorrclogram of the pseudo-random signal (Fig. 3) corresponded by its 
course to a theoretical random phenomenon and amplitude A2 had the value 
of 0.2499. The low value of output spectral density (Sxx < 0) proves that the 
sequence does not contain any unidirectional component. The autocorrelograms 
of the input signals of sets 1, 2 and 3 arc not shown as their course was similar 
to that of the pseudo-random binary signal and exhibited increasing dependence 
of the output signal on the input one. The shape of the course of the output spectral 
density for set 1 was similar to that resulting from the pseudo-random binary 
signal (Fig. 4) and its value at point f = 0 did not indicate the content of the 
unidirectional component. The shape of the output spectral density for sets 2 and 
3 also resembles the course of Sxx for the pseudo-random binary signal and is cons­
tant in the frequency band fa = 0_025 min-1 and f h = 0.0375 min-1

• The values 
of Sxx (0) and the rapid decrease of the subsequent values indicated to a high 
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content of the unidirectional component. In the case of set 4, the estimate of the 
statistical properties of the signal was proved unsatisfactory as it length was too 
small. 

0,2 

0,1 

0 

f 

Fig. 4. The course of output spectral density (model No. J). 

THE STAGES AND PROCEDURE OF IDENTIFICATION 

The input sets were proposed so as to Pnsure their meeting the respective re­
quirements and to allow for their testing by statistical methods after the measu­
rement. The input and output signals were processed by the statistical identi­
fication method with a predetermined order of tho mathematical model, the trend 
coefficient and the calculation method. All of the results obtained were verified. 
From this it follows that the best describing models can be used either separately 
or as averaged models basPd on thPse results. 

VERIFYING THE MODELS OBTAINED FROM 

STATISTICAL IDENTIFICATION 

The term verifying a mathematical model is understood to mean the testing 
of results obtained from statistical identification in a way ensuring summarization 
and providing evidence on the fact that the model actually describes the beha­
viour of the system and corresponds to it by its order. The main criteria employed 
were the prediction error expressed as the mean prediction error R, the mean 
relative quadratic prediction error RI and the mean linear prediction error R3, 
whose values should ideally be zero. It is also possible to interpret directly the 
predicted value of output signal y(k) at the k-th moment, which should be identi­
cal with the value of the output signal measured at the k-th moment. For a de­
cision on the suitability of a chosen order of the model it is possible to use the test 
for the content of white noise and that for normal noise distribution: the values 
obtained should also be as low as possible. 

In evaluating the models describing dynamic behaviour of a system it is impor­
tant to evaluate the criteria in a complex way. On this basis, altogether six models 
were selected, and their coefficients of the differential equation are summarized 
in Table II. 
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Table II 

Values of the coefficients of the differential equation 

I
Model i 

I I I
I

INo. I 
A, A2 AJ Bo 

I 
B, B2 

I �---·- ----------

1 0.00755 -0.0111 0.0163 0,0!73 -0.00464 0.173 
2 -0.0258 0.0136 0.0119 0.025 -0.0281 0.00572 
3 0.0244 -0.0135 0.0206 0.0097 -0.0181 0.0106 
4 ---0.00393 0.014 0.0244 0.0154 0.00602 ---0.0052 
5 0.00517 0.0154 0.0281 

I
--0.0137 

I 6 --0.00421 0.0316 0.029 -0.0284 

The resultant models were converted (by means of the ZPT program) to an 
external continuous description of the system where the individual coefficients 
of the polynomial A(z-1) and B(z-1) were the input variables. For the models 
listed in Table 2, the results are summarized in Table III. The A(z-1) polynomials 
were tested for stability in the complex plane by the STABPOL program and found 
to be situated in the stable region, because the absolute value of the criterion was 
always low.,r than unity. The results are summarized in Table IV.

Table III 

Coefficients of the continuous description of the system 

----- -� -- -- -- - - ---�- ---------- -�- - - -

_:�Y:� 1--------�----�2 �J�3=T 

1 0,05427 
2 0.0441 
3 0.05595 
4 0.04875 
5 0.1291 
6 0.1169 

14 

----0.07 514 0.08784 0.0947 
0.3536 1.166 0.02717 
0.4393 1.468 0.09046 
0.3793 1.379 0.02417 
0.6588 0.00409 

-0.0564 0.00637 

Table IV 

Values of the stability criterion 

I 
2 
3 
4 
5 
6 

7 .82 X 10-, 
2.56 X 10-2 
2.45 X 10-2 

4.23 X 10-3 

5.09 X 10-3 

4.08 X 10-3 

2 

0.086U 
0.03457 
0.08023 
0.02333 

---0.00131 
0.00753 

3 

0.06809 
0.05036 
().06669 
0.0128 
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DISCUSSION OF THE RESULTS 

A physical model of an all-elPctric glass tank furnace was employed for measu­
ring the dynamic properties of the melting furnace which at present are VC'ry 
difficult to determine under operational conditions and with the available techni­
cal means, because any deviation from the standard technological schedule would 
he extremely uneconomical and could lPad to a number of additional difffoulties. 
For these reasons, the method of statistical idPntification was applied to a physi­
cal model of the Ge 11 furnace, intended for melting the SIMAX glass. The model 
Rimplifies the relationships between the technological quantities and allows the 
p,,eudo-random binary signal to be employed for selected ranges of abrupt changeR 
in input, while respecting the conditions and requirements for the frequency 
spectrum of the signal. Temperatures at several preselected points in the furnace 
were conRidered as output quantities. The data measured by a thermocouple 
at the centre of the melting tank zone, i.e. the region of maximum tempNature, 
was chosen for the calculation proper of the mathematical model (determination 
of the coefficients of the diffen'ntial equation), describing the dynarnic behaviour 
of the furnace. 

The methods of statistical identification (LS and ELS) were employed in the 
determination of the coefficients of the differential equations describing the dy­
pamic behaviour of the system. Better results were obtained from the ELS method. 
The chosen order of the differential equation, equal to three, was proved correct 
by verification of the resultant models according to the prediction error and the 
tPst for the content of white noise We, whose value amounted to 0.65, and bj the 
test for normal noise distribution J.. 

The ovnall evaluation of criteria employed in verification of the mathematical 
models of the system in question in the form of a differential equation (Table II) 
indicates that the experimental data sets yielded results describing very well the 
dynanuc behaviour of the system. The modds were then transformed into a conti­
nuous region by means of the ZPT program and are given in Table III. As negative 
rP:mlts were obtained for some models by transformation into a continuous form 
(the models describPd inadequately tlw dynamic behaviour of the system and arP 
not shown), the stability of tlw polynomial in the complex plane was tested by thP 
STABPOL program with all of the modds. The testing showed that for models 
sitnatPd in the unstable region of the complex plane (whPre thP absolute value 
of the stability critPrion is largN than, or equal to, unity), it is impossible to usn 
the given way of transforming the model to the continuous region by the ZPT 
program. In the case of the transformed models (Table II) the polynomials wer(1 
in the stable region of the complex plarn·, because the absolute value of the sta­
oility critPrion was always lower than unity. The results are Rllmmarized in 
Table IV. 

The effect of errors of the temperature measuring devices (1 QC) was found to 
be the main Rource of errorR, aR one should kt>ep in mind that the dn.ta processing 
was effected by mathematical apparatus which is highly accurate. The computer 
technology employed liki,wise did not provide any major sources of errors. A com­
parison of the verification results (Table II), where the relative linear predietion 
error amounted to 1.5 % (0.65 QC) and the measuring errors to 1 QC, allowR to 
conclude that the measuring equipment can affect tlw rPsults of statistical idc>nti­
fication to a substantial degrc>c. 
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The estimation of coefficients for the differential equation of the system is po­
sitively affected by the length of the experimental data sequence which permits 
the properties of the statistical methods to manifest themselves fully. This can be 
observed on the course of the prediction errors (Figs. 5 and 6) which should appro­
ach zero as a limit. Positive use can also be made of the coefficient of exponential 
forgetting in the mathematical apparatus, which makes the model adapt itself 
more rapidly to changes in technological conditions. The coefficient of exponential 
forgetting should of course not exceed a minimum value with respect to the se­
quence length. 

The models established hold over a range where linear behaviour can be expected 
with respect to the requirements for the model formulated in its selection, namely 
for small changes in the electric power input of up to about 5 to 10 %, 

Because of the dispersion of the experimental output parameters, electric 
resistivity between the electrodes was found to be more convenient, as it could 
be measured with higher aceuracy than temperature by means of thermocouples. 
The second reason why the resistivity between electrodes was preferred as a value 

R3 

0,5 

0 

10 20 30 40 k 

Fig. 5. The course of the mean relative linear prediction error (model No. 3). 

R1 

0 

10 20 30 40 k 

F'ig. 6. The cour.•e of the mean relative quadratic error of prediction (model No. 3). 
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detc,rmining thP glass melt temperature was the fact that temperature is only 
rarely measured directly in the glass melt in actual tank furnaces, where it is 
mostly assPssed on the basis of temperatures measured in the crown, the tank side 
walls, ;;tc. 

Measurenwnts on the physical model also demonstrated that both the melting 
furnace and its physical modPl showed a tendency to non-linearity. For this rea­
son, it is recommended to attach a computer to the furnace as well as to the model 
in order to calculate continuously the constants of the mathematical model of 
the system. In this way one obtains a highly advantageous adaptive control 
system utilizing in-lim' identification, based on the records of time sequencPs 
of tPchnological data. 

CONCLPSJON 

A physical model of an all-electric tank furnace was usrd to determine its dy­
namie behaviour, and the respective mathematical models in both discrett• and 
continuous form were devised. The constants of the suggc-sted mathematical 
models in the form of differential equations were calculated by the methods of 
statistical identification (LS and ELS). The models were verified on the basis 
of selected criteria. The models obtained were transformed into a continuous 
description and tested for stability in the complex plane 

The mathematical models calculated describe very well the dynamic behaviour 
of the system and can be applied to the actual furnace. It has been proved advan­
tageous to connect a computer to the physical model or the furnace, and to calcu­
late continuously the constants of the model, thus improving their accuracy 
according to the changing conditions, 
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APLIKACE STATISTICKE IDENTIFIKACE NA FYZIKALN f 

MODEL SKLARSKE TAVICl PF.CE 

Stanislav Kasa, Antonin Lisy, Roman Vichr* 

Vy.soka lkola chemicko-technologickri, katedra technologie siliktitu, S11chbcitarova 5, 166 28 I'ralw 6 
*U,ita,v chemie ,,h·elnych a keramickych materialu CSA V, Lipo,va 5, 120 (}(I l'raha 2

Na fyzikalni model celoelektricke sklatske tavicl pece byla aplikovana metoda statisticke 
idcntifikace poskytujlci informace o dynamickem chovani pece pro potteby jejiho l'izeni. Dy­
namicke vlastnosti pece byly vysetfovany na zaklade odezvy vystupni veliciny (teplota) na sko­
kove zmeny veliciny vstupni (elektricky ptikon). Po vysetteni vlastnosti vstupnich signali1 byl 
11n vstupu pouzivan pseudo-nahodny binarnl signal. Metodami statisticke identifikaee (metoda 
ncjmeni\ich ctvercu a rozsitena metoda ncjmenMch ctrnrcu) byly urceriy jak koeficicnty difc­
rcncnich rovnic, tak i jejich tad, ktery se rovna 3. Tyto hodnoty byly potvrzeny verifikaci vy­
slednych modelu podle testu. 

Po vyhodnocenf matematickych modeli1 soustavy na zaklade hodnotfcich kriterif bylo mozne 
konstatovat, ze dosazene vysledky dobte vystihuji dynamicke chovani soustavy. Pti ptevodu 
nekter)·ch modehi z diskretnl do spojite oblasti bylo vsak dosazeno negativnlch v.)'.'sledk1'.1, a proto 
hyla u vsech modelu testovana jejich stabilita programem ST ABPOL. 

Behem mefenf byly take odhaleny zdroje chyb, ktere mohou negativne ovlivnit vysledky 
statisticke identifikace. Jako nejdulezitejsi zdroj chyb byly urceny chyby mliticlho zatlzenl 
(napf. teploty). Tento nedostatek by! odstranen postupem, navrzenym autory, na jehoz zaklade 
hylo doporuceno pouzivat k urcenl teploty elektricky odpor mezi elcktrodami, jehoz mel'eni 
je nmohem ptesnejsi. Vyhodnym se rovnez ukazalo pl'ipojeni pocitace k modelu, ktery umozirnje 
ncustale dopocitavat konstanty modelu a zptesnovat je podle m/lnicich sc podrnlnek provozu 

Obr. 1. U misteni mel'iciho termollanku v modelu tavici pece. 
Obr. 2. Pl'echodova charakteristika sou.,tavy. 
Obr. 3. Prublh autokorelacn,ifunkce paeudo-nahodnelw bintirniho ,,igntilu. 
Obr. 4. l'rublh vykonove spektralni hustoty (model c. 1). 

Obr. 5. Prublh prumerne pomerne linearni chyby predikce (model c. 3). 

Obr. fJ. l'ritblh priimlrne pomlrne kvadraticke chyby predikce (model c. 3). 

IIPllMEHEHllE CTATHCTHqECH0:0: II,nEHTI1<DHHA�l1H 
HA ([) 113 J1lIE CHO 1l lvlO ,n E Jill CT EH JI OB APE II HO :0: IIE q 11

CTaH11cJiaB Haca, AHTOHIIH JlHCLI, PoMaH B11xp* 

Xu.1iu,w-rnexno11,oeu<U?c,cuu uncmumym, ,caffieopa mexH011,oeuu cu11,u1.amoe, 
Cyx6amapoaa 5, 166 28 Ilpaea 6 

• H1tcmumym x1wuu cmei.11,oauonwx u i.epa.,w,u11,eci.ux .11,amepua11,oe lJCAH, 
J/unoea 5, 120 00 Ilpaea 2 

Ila 4Jll31I'IeC}WH MOAeJIH IlOJIROCTblO :me1npmpm�up0BaHHOH cTeKJJOBapeHHOH neq11 IICil0Jib-
30BaJIH MCTOJJ. l'T3Tl1CTl1'IeCJWH llACHTHq>lllrnJlmI, npe):{OCTaBJIHIDmei ARHHbie OTHOCHTeJlbHO 
AllH3MllqecKOJ'O noBe/:{eHllfl IJe'Ill )IJIH ee HC06XOl(IIM01'0 06opy)l.0BaHHfl. ,n11HaMnqeCKH0 
CBOHCTBa neqll paccMaTpHB3JIJ{ Ha OCHOB3HHH peaK!lHH Bh!XOJJ.HOH BeJIH'IllHhl (TeMnepaTypa) 
Ha CKR'IK006pa3Hhle Il3MeHeHHH BXOJ,\HOH Bem1qI1Hhl (aJieKTp11qecKaH MOmHOCTb). Ha OCHO­
B3HHH Jl('l:JIC)IOB3Bllfl CBOllCTB BXOJIHhIX cnrHaJIOB Ha BXO)le llCI10Jlb30BaJIJt rrceB)lO-cJiyqaii­
HhIH 6mmpHhlll cnrHaJI. C UOMOII�blO MeTOAOB CT3THCTH'leCKOH H)l.eHTmfJHH3Jlllll (MeTOJl H8H­
MeHhillHX KB1li(J)3TOB ll pacnpocTpaHeHHLIH MCTOH H!lHMeHbIIll!X 1rna11paTl!HOB) ycTaHaBJIII­
BamH'h 1mK H03q>«plllVIeHThl AH«pqiepeHI�ll3JlhHhIX ypaBHeHl!ll T3K 11 IIX nopHAOK, KOTOph!H 
paBHHCTl'll 3. Tip11BOAHMble Bem1•1HHhl Gwm1 AOHaaaHbl uepuqiuKaJlUeii OHOHqaTeJibBblX MO­
,:i.eJieii corJiacHo TecTaM. 
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Ha O('HOBaHHH Ol_\eHJrn MaTeMaTu•ienrnx MO;JeJieii ('lICTeMI,I H Ha OCHOBaHHH Ol_\eHO'IBI,IX 
1-.p11Tep11cB MOlliHO YTBepm;(aTI,, 'ITO rro:Iy<JeHHbW pC3YJibTaTbl xopomo OTpamaIOT AHHaMU­
'lC(']{()e !IOBB;\BHl!e (')ll'TCMbl. O;�H3KO np11 nepeB(qC HCKOTOpb!X MOAeJieH C AHCKpeTHOH 
oo:rncTn B mmpcpLIBHYIO 61,1:111 nony•rnHu oTpmwTB:IbHhie pe3y;11,TaThl, n noaToMy y Bcex 
Mo;1enei'.i TCCT11poBaJ111 nx ('Taun!IbHO<·n, upn 110Mon111 nporpaMMhl STABPOL.

Bo BpeMH 113MepcHllll 01,l:lll Ta1-.me pacHpbIThl II('TO'IHUHII norpeIIIHOCTeii, HOTOpbIC MoryT 
OH<l38Th OTpH1{3TeJlhHOe B:numne na peay,lhTaTb) l'T1lTHCTli'JeCf;Oii H;\eHTllqJHKal_\JIH. l1eTO'I­
Hl!IWM Ba»meiiJIIHX norpcrnnorTeii omrn1,1Ba10w H norpenrnocTu 1t3Mep11TeJihHOH ycTaHoBmt 
(uanp. Te!,lllepaTypM). II pI!BOi\llMhlll He)IO("filTOH Oh!JI nrmlID'leH l'IIO('OUOM, npe)IJraraeMJ,IM 
aBTopa�m, Ha OCHOBaHllll KOToporo peKOMeHP,yeTCH ll('II0;[h30Bamie ;(:Ill onpeneJWHHH TeM­
nepaTypu 3Jie1npwierKoe co11ponrn:1emie MClliA,Y 3,,e1-.Tpo;1aM11, U3Mepem,e 1-.0Topo1·0 oml-
3hIBaeTe H 1·opa:lil0 T(l'IHee. fl pHn);\HhlM THJ,lli(' OKa3blBHCTCJT rrpnroe;111nemie BhI'IHCJIHTeJibHOii 
MHIIII!Hhl n Mo,1e:111, l' IlOMOII\hlO JWTopoii M())KHO uenpepL!BHO YTO'IHIITI JWHCTaHThl rorJiaCHO 
JJ:lMeHHK)J]\l!Ml'H y('.-[()BJlHM Ilf)OH:1BO/!CTBII. 

Pnr. 1. Pna.1u'u4ntne ua.11epwneAbH020 m.ep.1toa,ie.«e11ma e ,woiJe.!lu cmei.,wcape1uwii ne,iu. 

Puc. 2. llepexoiJna.n xapai.nupnr·mnh·a cncml'.\fbl. 

Pnr. 3. XoiJ llemoi.oppe.!lRljUOHHoii ¢y1-ti.lj1m 11reeiJo-r.1y1ta111w20 6u1-tap1w20 , 1121rn.ia. 

Pur·. 4. XoiJ .11ou+1wcm11oii c11ei.mpa.11,b1101'i n.wm11ocmn (.110iJe.1.b M 1). 

Puc. 5. XoiJ rpeiJ111'i1 omHocwne.ib1101i .!lUHei11to1i 1102peu11wcmu npeiJni.lfllU (.w,iJe,u, JVJ 3). 

Puc. 6. XniJ rpeiJ11eii i.eaiJpllnll/WCJ.oii 11oepeiu11ocmn 11peiJ1.1i.lj1tu (.iwiJe.ib N, 3). 
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