CERAMICS — silikity, 34, s. 9—19 (1990)

APPLICATION OF STATISTICAL IDENTIFICATION
TO PHYSICAL MODELS OF GLASS FURNACES; II

StaNisLAv Kasa, ANToNiN Lisy, Roman Vicar*

Institute of Chemical Technology, Department of Stilicate Technology, Suchbdatarova 5, 166 28 Prague 6

* [nstitute of the Chemistry of Glassy and Ceramic Materials, Czechoslovak Academy of Sciences,
Lipovea §, 120 00 Prague 2

Received 9. 1. 1990

From the mathematical point of view and with respect to control, a glass
furnace can be regarded as a multidimensional system which can be described
by appropriate differential equations. Estimation of the parameters of the
differential equations was verified on a physical model of a glass furnace and
the dynamic properties of the furnace were measured on the model by selected
jump changes of the input electric power. The responses of the output variables,
i.e. temperatures at the chosen points of the physical model of the melting furnace
section, were studied by application of a pseudo-random binary signal to the
input. The estimates of the differential equation parameters were likewise
established by calculation, using the least square method and the extended
least square method. The final results describe very satisfactorily the dynamic
behaviour of the furnace.

INTRODUCTION

A glass melting furnace is a multidimensional system with significant input
and output quantities such as power input, rate of batch feeding, glass melt
temperature, rate of melt withdrawal, etc. A model including all of the important
input and output quantities would be complex and very difficult to resolve. It is
therefore usually simplified to a single-dimensional system called SISO (single-
input single-output), where electric input is the sole input quantity and all the
others influencing the output quantities are regarded as defect quantities. Glass
melt temperature (that of the model liquid) is the most frequently employed
output quantity which, however, depends considerably on the point in the furnace
chosen for its measurement. The values of current and voltage between the
electrodes and the respective resistance, corresponding to a certain temperatur:,
may also be used as an output quantity.

Identification of the system model, i.e. determination or calculation of the
coefficients in equation (1),

[1 + A(z™)] y(k) = B(z™*) u(k) + er(k) (n

by means of some of the statistical identification methods, must precede the pro-
posal of the control mechanism. To yield satisfactory results, the statistical iden-
tification has to make use of such input signals which ensure adequate excitation
of the system in the frequency range affecting significantly the dynamic behaviour
of the system. Choice of a suitable period for sampling the system is also impor-
tant. Application of pseudo-random binary signals at the system input during
changes in the electric power input appears to be the most convenient method.
However, use of such a signal on an actual furnace would mean a rough interfe-
rence with the technological schedule of the furnace. This disadvantage can be
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eliminated in two ways: the calculations can cither be carried out from operational
technological records, or the measurcments are perfornied on a physical model
of the furnace which simulates the behaviour of the actual furnace.

DESCRIPTION OF THE PHYSICAL MODEL

The methods of statistical identification involving the testing of input and
output signals and verification of the final results were eniployed on a physical
model of an all-electric tank furnace of type Gell, made on a 1:15 scale. The model
liquid simulating by its properties the SIMAX glass melt was heated by passage
of clectric current, introduced into the liquid through plate- and rod-shaped
electrodes placed in the side walls of the model. The model liquid at the required
temperature was fed into the model by a plunger pump. The feeding circuit also
included a flowmeter, ensuring supply of a constant amount of the liquid into
the model in the course of the experiment. Copper-constantan thermocouples
placed in the model (Fig. 1) and connected to an automatic change-over switch
provided temperature measurement. The temperatures were recorded conti-
nuously by a printer.

MELTING END

WORKING END

e

7

/ X THROAT

ROD ELECTRODES  PLATE ELECTRODES

X PLACE OF TEMPERATURE
MEASURING

Fig. 1. Powsition of the measuring thermocouple in the glass furnuce model.

MEASURING THE TRANSITION CHARACTERISTIC
OF THE SYSTEM

The first important information on the dynamic behaviour of the system is
provided by measuring the transition characteristic as a response to an input
jump. The transition characteristic thus obtained then yields another significant
characteristic for the design of the experiment, namely the time constant of the
system 7', sometimes also designated rmax. The time constant established allows
the input signal to be estimated, in the case of a pseudo-random binary signal
jointly with its change period and its sampling period T. In the course of expe-
riments with measuring the transition characteristic, an input jump from 60 W
to 70 W was used. The time constant of the model was established from three
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approximation measurements and its values amounted to 120 minutes (Fig. 2).

The measurement was always concluded as soon as the system attained a steady
state.
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Fig. 2. Transition characteristics of the system.

DESIGN OF THE INPUT SIGNAL

The sequence length P and the interval of changes in the pseudo-random binary
signal A4# are important factors for the actual selection of the pseudo-random
binary signal. The following equations (2) and (3) hold for the two respective

factors:
At < 0.314 rpay, (2)

Pg > 12.56 tmax/At- (3)
For the time constant Tmax established for the furnace model employed, it is
convenient that P; > 40 and A¢ < 37.7 minutes. From the value of tpayx it is

also possible to calculate the maximum frequencies arising in the system. For
a signal to cover both frequencies, it must hold that

fd <fmln and fh > fmax, (4)

where fq is the bottom frequency of the input signal and fj is the top frequency
of the input signal. With the use of the pseudo-random binary signal, the para-

Table 1
Parameters of input signals

Set | b ' ‘ fer o LTl ELinput PRBS
No. Yl [min] [min] [min] [mm | [W] value
1 |
1 92 20 | 5.1 X 104 (.026 16 80---75 1 0
2 56 16 1.2 x 10—# 0.033 12 80--..76 1 0
8 46 10 2.1 x 104 0.060 8 80—176 1 0
[ 38 10 2.6 % 104 0.060 8 80—T75 1 0
6 35 15 1.9 x 104 0.033 12 80—175 1 0
[} 30 15 2.2 x 104 0.033 12 82—175 1 0
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meters of the input signals employed in the measurements on the physical model
are listed in Table I together with the sampling period 7' chosen.

The physical model was always in the steady state before starting the measu-
rement of data for identification. The electric input for the model electrodes was
chosen as the input signal and temperature at a chosen thermocouple as the output
signal. A pseudo-random binary signal generating the values of 0 and 1 was applied
to the model input so that the value O corresponded to the input of 75 W and the
value 1 to electric input of 80 W or 82 W. The change of power input by 5—10 %,
in steady state was chosen so as to bring about an adequate response at the sy-
stem output but at the same time to avoid transgression of the system to its non-
linear region in view of the linear model employed.

TESTING THE SIGNALS BY STATISTICAL METHODS

All of the experimental data sets were tested by autocorrelation and correlation
functions (Rzz, Rzy, Ry,) as well as by output spectral density S;;. The mean
value of the signal was also determined.
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Fig. 3. Autocorrelation function of the pseudo-random binary signal.

The autocorrclogram of the pseudo-random signal (Fig. 3) corrcsponded by its
course to a theoretical random phenomenon and amplitude 42 had the value
of 0.2499. The low value of output spectral density (Szz < 0) proves that the
sequence does not contain any unidirectional component. The autocorrelograms
of the input signals of sets 1, 2 and 3 are not shown as their course was similar
to that of the pseudo-random binary signal and exhibited increasing dependence
of the output signal on the input one. The shape of the course of the output spectral
density for set 1 was similar to that resulting from the pseudo-random binary
signal (Fig. 4) and its value at point f = 0 did not indicate the content of the
unidirectional component. The shape of the output spectral density for sets 2 and
3 also resembles the course of 8z, for the pseudo-random binary signal and is cons-
tant in the frequency band fq = 0.025 min-t and fj = 0.0375 min—1. The values
of Szz (0) and the rapid decrease of the subsequent values indicated to a high
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content of the unidirectional component. In the case of set 4, the estimate of the
statistical properties of the signal was proved unsatisfactory as it length was too
small.
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Fig. 4. The course of output spectral density (model No. 1).

THE STAGES AND PROCEDURE OF TDENTIFICATION

The input sets were proposed so as to ensure their meeting the respective re-
quirements and to allow for their testing by statistical methods after the measu-
rement. The input and output signals were processed by the statistical identi-
fication method with a predetermined order of the mathematical model, the trend
coefficient and the calculation method. All of the results obtained were verified.
From this it follows that the best describing models can be used either separately
or as averaged models based on these results.

VERIFYING THE MODELS OBTAINED FROM
STATISTICAL IDENTIFICATION

The term verifying a mathematical model is understood to mean the testing
of results obtained from statistical identification in a way ensuring summarization
and providing evidence on the fact that the model actually describes the beha-
viour of the system and corresponds to it by its order. The main criteria employed
were the prediction error expressed as the mean prediction error R, the mean
relative quadratic prediction error R1 and the mean linear prediction error R3,
whose values should ideally be zero. It is also possible to interpret directly the
predicted value of output signal y(k) at the k-th moment, which should be identi-
cal with the value of the output signal measured at the k-th moment. For a de-
cision on the suitability of a chosen order of the model it is possible to use the test
for the content of white noise and that for normal noise distribution: the values
obtained should also be as low as possible.

In evaluating the models describing dynamic behaviour of a system it is impor-
tant to evaluate the criteria in a complex way. On this basis, altogether six models
were selected, and their coefficients of the differential equation are summarized
in Table II.
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0.00755
—0.0258

0.0244
---0.00393

0.00517
—-0.00421

Table 11
Values of the coefficients of the differential equation
A, A, B, Il B, B;
-—0.0111 0.0163 0.0173 —0.00464 0.173
0.0136 0.0119 0.0256 —0.0281 0.00572
-—0.0135 0.0206 0.0097 —0.0181 0.0106
0.014 0.0244 0.0154 0.00602 —-0.0052
0.0154 0.0281 —0.0137
0.0316 0.029 i —0.0284

The resultant models were converted (by means of the ZPT program) to an
external continuous description of the system where the individual coefficients
of the polynomial A(2~!) and B(z~!) were the input variables. For the models
listed in Table 2, the results are summarized in Table III. The A(2~}) polynomials
were tested for stability in the complex plane by the STABPOL program and found
to be situated in the stable region, because the absolute value of the criterion was
always low.r than unity. The results are summarized in Table IV,

Table 111
Coefficients of the continuous description of the system
Model
No. 1 2 3 1 2 3
1 0.05427 --0.07514 0.08784 0.0947 0.08624 0.06809
2 0.0441 0.3536 1.166 0.02717 0.03457 0.05036
3 0.055696 0.4393 1.468 0.09046 0.08023 0.06669
4 0.04875 0.3793 1.379 0.02417 0.02333 0.0128
5 0.1291 0.6588 0.00409 ---0.00131
6 0.1169 —0.0564 0.00637 0.00753
Table IV
Values of the stability criterion
Model Stability
No. criterion

1 7.82 x 103

2 2.66 x 102

3 2.45 X 10-2

4 4.23 x 1073

5 5.09 x 10-3

6 4.08 x 1073
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DISCUSSTON OF THE RESULTS

A physical model of an all-electric glass tank furnace was employed for measu-
ring the dynamic properties of the melting furnace which at present are very
difficult to determine under operational conditions and with the available techni-
cal means, because any deviation from the standard technological schedule would
be extremely uneconomical and could lead to a number of additional difficulties.
For these reasons, the method of statistical identification was applied to a physi-
cal model of the Gell furnace, intended for melting the SIMAX glass. The model
simplifies the relationships between the technological quantities and allows the
pseudo-random binary signal to be employed for selected ranges of abrupt changes
in input, while respecting the conditions and requirements for the frequency
spectrum of the signal. Temperatures at several preselected points in the furnace
were considered as output quantities. The data measured by a thermocouple
at the centre of the melting tank zone, i.e. the region of maximum temperature,
was chosen for the calculation proper of the mathematical model (determination
of the coefficients of the differential equation), describing the dynamic behaviour
of the furnace.

The methods of statistical identification (LS and ELS) were employed in the
determination of the coefficients of the differential equations describing the dy-
npamic behaviour of the system. Better results were obtained from the ELS method.
The chosen order of the differential equation, equal to three, was proved correct
by verification of the resultant models according to the prediction error and the
test for the content of white noise w,, whose value amounted to 0.65, and by the
test for normal noise distribution 4.

The overall evaluation of criteria employed in verification of the mathematical
models of the system in question in the form of a differential equation (Table II)
indicates that the cxperimental data sets yielded results describing very well the
dynamic behaviour of the system. The models were then transformed into a conti-
nuous region by means of the ZPT program and are given in Table III. As negative
results were obtained for some models by transformation into a continuous form
(the models described inadequately the dynamic behaviour of the system and are
not shown), the stability of the polynomial in the complex plane was tested by the
STABPOL program with all of the models. The testing showed that for models
situated in the unstable region of the complex plane (where the absolute value
of the stability criterion is larger than, or equal to, unity), it is impossible to use
the given way of transforming the model to the continuous region by the ZPT
program. In the case of the transformed models (Table II) the polynomials were
in the stable region of the complex plane, because the absolute value of the sta-
pility criterion was always lower than unity. The results are summarized in
Table IV.

The effect of errors of the temperature measuring devices (1°C) was found to
be the main source of errors, as one should keep in mind that the data processing
was effected by mathematical apparatus which is highly accurate. The computer
technology employed likewise did not provide any major sources of errors. A com-
parison of the verification results (Table II), where the relative linear prediction
error amounted to 1.59, (0.65°C) and the measuring errors to 1°C, allows to
conclude that the measuring equipment can affect the results of statistical identi-
fication to a substantial degree.
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The estimation of coefficients for the differential equation of the system is po-
sitively affected by the length of the experimental data sequence which permits
the properties of the statistical methods to manifest themselves fully. This can be
observed on the course of the prediction errors (Figs. 5 and 6) which should appro-
ach zero as a limit. Positive use can also be made of the coefficient of exponential
forgetting in the mathematical apparatus, which makes the model adapt itself
more rapidly to changes in technological conditions. The coefficient of exponential
forgetting should of course not exceed a minimum value with respect to the se-
quence length.

The models established hold over a range where linear behaviour can be expected
with respect to the requirements for the model formulated in its selection, namely
for small changes in the electric power input of up to about 5 to 109,

Because of the dispersion of the experimental output parameters, electric
resistivity between the electrodes was found to be more convenient, as it could
be measured with higher accuracy than temperature by means of thermocouples.
The second reason why the resistivity between electrodes was preferred as a value

R3
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Fig. 5. The course of the mean relative linear prediction error (model No. 3).
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Fig. 6. The course of the mean relative quadratic error of prediction (model No. 3).
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determining the glass melt temperature was the fact that temperature is only
rarely measured directly in the glass melt in actual tank furnaces, where it is
mostly assesSed on the basis of temperatures measured in the crown, the tank side
walls, etc.

Measurements on the physical model also demonstrated that both the melting
furnace and its physical model showed a tendency to non-linearity. For this rea-
son, it is recommended to attach a computer to the furnace as well as to the model
in order to calculate continuously the constants of the mathematical model of
the system. In this way one obtains a highly advantageous adaptive control
system utilizing in-line identification, based on the records of time sequences
of technological data.

CONCLUSION

A physical model of an all-electric tank furnace was used to determine its dy-
namic behaviour, and the respective mathematical models in both discrete and
continuous form were devised. The constants of the suggested mathematical
models in the form of differential equations were calculated by the methods of
statistical identification (LS and ELS). The models were verified on the basis
of selected criteria. The models obtained were transformed into a continuous
description and tested for stability in the complex plane

The mathematical models calculated describe very well the dynamic behaviour
of the system and can be applied to the actual furnace. It has been proved advan-
tageous to connect a computer to the physical model or the furnace, and to calcu-
late continuously the constants of the model, thus improving their accuracy
according to the changing conditions,
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APLIKACE STATISTICKE IDENTIFIKACE NA FYZIKALN |
MODEL SKLARSKE TAVICI PECE

Stanislav Kasa, Antonin Lisy, Roman Vichr*

Vysoka 8kola chemicko-technologickd, katedra technologie silikdti, Suchbdatarova 5, 166 28 Praha 6
*stav chemie skelnych a keramickych materidlic CSAV, Lipovd 5, 120 00 Praha 2

Na fyzikalni model celoelektrické sklafské tavici pece byla aplikovana metoda statistické
identifikace poskytujici informace o dynamickém chovéni pece pro potfeby jejiho Fizeni. Dy-
namické vlastnosti pece byly vysetfovany na zéklads odezvy vystupni velidiny (teplota) na sko-
kové zmény velidiny vstupni (elektricky pFikon). Po vysetfeni vlastnosti vstupnich signalii byl
na vstupu pouzivdn pseudo-nédhodny binarn{ signal. Metodami statistické identifikace (metoda
nejmensfch 8tverch a roziifend metoda nejmensich &tverct) byly uréeny jak koeficienty dife-
renénich rovnic, tak i jejich Fdd, ktery se rovna 3. Tyto hodnoty byly potvrzeny verifikaci vy-
slednych modeli podle testu.

Po vyhodnocenf matematickych modelii soustavy na zdklad® hodnoticich kritérif bylo mozné
konstatovat, Zze dosaZené vysledky dobfe vystihuji dynamické chovéni soustavy. Pfi pfevodu
nékterych modelua z diskrétni do spojité oblasti bylo vsak dosazeno negativnich vysledku, a proto
byla u viech modelu testovéna jejich stabilita programem STABPOL.

Béhem méfen{ byly také odhaleny zdroje chyb, které mohou negativn® ovlivnit vysledky
statistické identifikace. Jako nejdulezit®jsi zdroj chyb byly uréeny chyby mé&ficfho zaFizeni
(napf. teploty). Tento nedostatek byl odstrandn postupem, navrZenym autory, na jehoz zdklad&
bylo doporugeno pouzivat k uréenf teploty elektricky odpor mezi elcktrodami, jehoz méfeni
je mnohem presndjsi. Vyhodnym se rovnéz ukézalo pfipojeni poditade k modelu, ktery umoznuje
neustale dopoditavat konstanty modelu a zpfeshovat je podle ménicich se podminek provozu

Obr. 1. Umisténi mérictho termobldnku v modelu tavict pece.

Obr. 2. Pfechodovd charakteristika soustavy.

Obr. 3. Prubéh autokorelaéni funkce pseudo-ndhodného bindrniho signdlu.
Obr. 4. Priubéh vykonové spektrdlni hustoty (model &. 1).

Obr. 5. Prubéh primérné pomérné linedrni chyby predikce (model &. 3).
Obr. 6. Prabéh primérné pomérné kvadratické chyby predikce (model é&. 3).

INPUMEHEHUE CTATUCTHYECKON MAEHTUOUKAIIMU
HA ®PU3NUYECKON MOJEJU CTEKJOBAPEIIHONR NEYHU

CrannciaB Kaca, Anronun JIincer, Poman Buxp*

Xumuro-mexrosozuveckuti uncmumym, xagedpa mexrosoeuu CUAUEAMOG,
Cyxz6amaposa b, 166 28 ITpaza 6
*Hricmumym zumuu cmexaosudnbix u kKepamuveckuxr mamepuasos Y4CAH,

Junoea 6, 120 00 Hpaza 2

I1a ¢pu3myeckoit MOJEIIN HOJTROCTEIO 3J1EKTPU(NILY POBAHHOIM CTEKJI0BA PEHHOI MeYn HCIOIIb -
30BaJIM MCTOJ ¢cT3THCTHUECKOH HaeHTHM(HKAIMM, NpefocTaBAIONEeR JaHHbEE OTHOCHMTEIIBHO
AMHAMUYECKOI'0 TNOBefieHHA eyl JJA ee HeobOxojimMoro oGopymoBanudA. JlnmHaMuueckue
CBOMCTBA NMeYH PacCMATPHB3JIN HA OCHOBAHMHM PeaKIMM BHIXOJ{HOH BeJIMMHHBI (TemIepaTypa)
Ha cKakoo0pasHile H3MEHEHNs! BXOJIHON BeINYEHU (JEKTpuueckas MOMmHocTh). Ha ocHo-
BaHMHM N¢(JICIOBABHA CBOWCTB BXOJIHBIX CHI'HAJIOB Ha BXOjle McIIOJIL30BaJIi NCeBO-cayvai-
Hutil OnHapHMil curHa). C noMOMIbI0 METOXOB cTATHCTHYecKOH npeHTHdMKanun (MeToj1 Hau-
MEHBIIINX KBAJIPaTOB H pacHpocTpaHeHMHIH MeTOji HAMMEHBIIHX KBaJiPATHKOB) ycTaHaBJIH-
Bamu¢bh KaK KoaipuimeHTw AnddepeHINalIbHEIX ypaBHEHHI TaK M HX NOPAOK, KOTOPLIi
paBHsercs 3. IIpuBojuMble BeJn4MHH ObINHM JlOKadaHb!l BepHPHKamuedl OKOHYATEJLHBIX MO-
JeNell corjlacHo TecTaM.
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Ha ocHOBaHMHM OlLIEHKM MaTeMaTHYeCKHX MojieIcil ¢McTeMBl M H8 CCHOBAHHH OHLEHOYRBIX
KPNTEepieB MOMKHO YTBEpPIK/ATL, UTO MO.IY4eHHbIG Pe3yJbLTATHL XOPOIRO OTPaMKalOT AMHAMH-
4yecKoe I0oBejeHUHe cHeTeMbl. (O/\HAKO TPH MepeBo;lc HCKOTOPHIX MojelleH ¢ JAMCKPEeTHOR
00;JacTH B HeTIpepLBHYI0 Obl:IM MosTyveHul OTPHIlaTe;IbHble Pe3ySIbTaThl, H IO3TOMY Y Beex
MoOjie1eil TeeTHPOBAIM MX ¢TalIibHOCTH 1pH noMontn nporpammel STABPOL.

Bo Bpemsi namepennii (L TaxKe pPacKpLITH e TOYHHKI MOrPEITHOCTEH, KOTOpBie MOI'YT
OKA3aTh OTPHMIIaTeJIbHOE BIIMfiHHE HA Pe3yAbTaThl cTATHCTHYecKOH MjieHTH(HKammuu. Herou-
HHKOM BaJKHEAMIMX MOIPCIHOCTCH OKA3LIBAIOTC A MOI'PEMIHOCTH M3MEPHTEIBHOH YCTAHOBKM
(#amp. temnepatypnt). IipnBo;inmbiii HejlocTaTOK ULLJI MCKIIOYEH ¢MOCO0OM, MpejiiaraeMhiM
#BTOpaMM, HA OCHOBAHMH KOTOPOTO PEeKOMEHAYeTcs ucII0Tb30BaHie [Is OIpejlesieHHsl TeM-
nepaTypsl 3JleRTpHuecKoe cOIPOTAB/eHIe MCHIY 37eKTPOjaMy, l3MepeHne KOTOPOI'Oo OKa-
3pIBAaeTCH 1'0padilo TouHee. 11 puro/JHBIM TakiKe OKA3LIBACTC S MPACOeiiHer e BLMUCTHTeNLHO
MAIIHHBL K MO/1e:IM, ¢ NOMOIIlbIO KOTOPOii MOKHO HelpPepPLIBHO YTOUHATE KOHCTAHTHL €OIJIacHO
HAMEHHIONAMC 5t Ve IOBUAM NPOM3BO,ICTBA.

Puc. 1
Puc. 2. Ilepexodias rapaxmepucmura cucmemsl.

Puc. 3. X0d aemoroppearyuonunoli Gynryuu neeedo-cayvainoze Gunaphozo (iznaaa.

Puc. 4. X00 sowyrocmmoti cnexmpaavroiti naomuocmu (modeav N 1),

Puc. 5. Xod cpedneii omuocumeavhoit aunelnoit nozpewiocmu npedukyiu (modeas Né 3).
Puc. 6. X00 cpedneit keadpamuueckolii noepewrocmu npeduxyuu (wmodeav N 3).

. P(l&‘Mqu(’lHte uamepumeabHo20 mepsmodaemerma ¢ Modeau ('memweapmmm‘t nevu,
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