CERAMICS — Silikaty 35, s. 245—254 (1991)

GLASS NETWORKS VIA SEMIEMPIRICAL
QUANTUM CHEMICAL METHODS

Lapisrav Turl Nagy, MAREK LiSka

Inastitute of inorganic chemistry, Slovak Academy of Sciences
Dubravska cesta 9, 842 36 Bratislava

Received 14. 11. 1990

Various up to date approaches for theoretical tnvestigation of glasses are
compared. A new type of ZDO-class method for study of electron structurs of
glassy systems 18 proposed. The method proposed can distinguieh between
models representing network structure and the unrealistic models resembling
more 18olated structural units.

INTRODUCTION

Application of methods of quantum chemistry in the field of glass research
meets severe problems. Absence of the periodicity makes the methods used in
studies of crystalline phases difficult applicable. The problem may be solved either
by use of suitable clusters for modelling the basic units occuring in the glass or
by use of great periodic models of glass structure. However, in methods using
clusters still remains questionable how to involve the influence of the environment
as well as how to finish the cluster. On the other hand, in case of great periodic
models of glass structure the main problem for many laboratories represent the
extensive time and memory demands of such calculations. Moreover, this treat-
ment involves a fundamental contradiction between the stochastic character of
glass structure and the superimposed periodical boundary conditions.

In regard to serious questions concerning the electron—and atomic structure
of amorphous systems, there have been recently developed several theoretic
methods enabling to study disordered materials [1—4). Nevertheless, in the mean
time no method unlimitedly applicable for all kinds of objects and questions to
be studied is available. The objects to be studied may be in principle divided
in two major groups. To the first of them belong the metal glasses and the disordered
alloys. The questions most frequently occuring in respect to these systems concern
[2—4]: the density of states, partial density of states, photoelectron spectra,
relationship of the atomic and electron structure, distance of valence and con-
ductivity bands etc. The second type of objects under investigation involves
materials with defined chemical and structural short-range arrangement and
with amorphous phase consisting of non-arranged set of elementary units forming
predominantly three-dimensional network. Oxidic glasses represent a typical
example of these systems. Often asked questions, to be answered by the methods
of quantum chemistry concern the properties of elementary units forming the
three-dimensional structure: the local arrangement of a.oms, energetics of changes
in bond lengths, bond angles and dihedral angles. These properties determine the
flexibility of the elementary unit and the flexibility of their arrangement which is
closely related to the glass-forming ability [5, 6, 35, 36]. Theoretical investigations
of vibrational spectra reveals the harmonical frequencies and force constants of
suitable model clusters [7—9]. The methods of theoretical chemistry enable
standard resolution of electron structure of oxidic glasses and their models
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[1, 5—17]. Further problems which may be elucidated by means of quantum
chemical calculations are: i) changes in atomic and electron structure of the
network forming systems in regard to different additives; ii) behaviour of the
band gaps as a function of concentration of additives; iii) correlation of the density
of states with the short range environment of the atom and its binding conditions;
localization of one-electron states [10] etc. An often studied problem represent
also the optical properties of the given material [18, 19] and the influence of diverse
additives on the spectral properties of glasses [20, 21].

In small clusters modelling the basic structural units of glass moiety ab initio
methods [6—9, 14, 15, 22] were applied for resolution of their geometries and
electron properties. Ching et all. [1, 10, 12, 13, 19] used the ab initio OL LCAO
method [23] involving infinite electrostatic summation which enables to resolve
crystals. These authors [1] applied the above method in resolution of quasicubic
model of natrium silicate glass [24] consisting of three dimensionally, translatory
replicated basic cell containing 162 atoms. In principle, this method is based on
creation of a big cluster offering at three dimensional translatory replication
logically continuous structure to which the apparatus of Bloch’s functions is
applied. The problem formulated this way, may be then solved by any of the
current ab énitio methods (different bases) or semiempirical methods of quantum
chemistry.

The method of cyclic clusters involving infinite electrostatic summation of
interaction with the translatory periodic environment was successfully applied
for calculation of regular and also deffect structures of crystals and surfaces
[26—30].

METHOD

For glass as amorphous material the absence of translatory symmetry is cha-
racteristic. In this case it is extraordinary difficult to imply in calculation long
range interactions which would reflect the randomized structure.~Hence, methods
based on the presumption of three-dimensional translatory symmetry may not -
be applied for summation of the latter interactions. In the case of fluids this
problem is solved by application of diverse solvatation models which consider the
environment as a continuum [31—33). Glass preserves the dominant structural
features of liquid since it represents a frozen metastabil state which may be cha-
racterized by so called structural temperature 7'y. Accordingly, the methods valid
for liquids would provide qualitatively similar results for glass the more, that
time and ensemble means are considered as equal.

Nevertheless, the selection of an elementary representant of the structure i.e.
the true object of solvation remains still an important problem. Optimal solution
may represent the construction of a cluster topologically equivalent to the given
type of infinite structure. Such a cluster should meet the following criteria:

i) stoichiometry;

ii) chemical bonds oriented outwardly from the cluster should form pairs
capable of topological encycling as concerns their direction and the local
chemical environment as well as towards the topology of the infinite net-
work;

iii) among the bonds inside the cluster some should be equivalent to the arti-
ficially cyclized ones.
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Fulfilling the above criteria the “Topologically Cyclized Cluster” (TCC) may
be constructed in a way securing the replacement of interatomic interactions of
cyclized pairs with artificial bonds by equivalent interactions originating from
inside the cluster (Figs. 1 —3). This is correct in the framework of nearest neigh-
bour approximation. The model allows, however, to rewrite in matrix of the
Hamiltonian also elements corresponding to interaction over two, three, ... etc.
bonds.

The magnitude of error made by use of a definitive topologically cyclized cluster
instead of an infinite topologically linear one may be characterized by the error
of spectral radius of the matrix of Hamiltonian H. The estimate of the spectral
radius may be expressed [34] as

o
o(H) < max Y | ks |.
i B

Changing M = oo for M = N (definite) the estimate of the error will represent

0

Ap = hi,k .
L
When performing that with increase of the distance the nondiagonal matrix
element will decrease exponentially

hi,(v+k) = by, N . exp (—k . d) = hy, 5 . gk.
In this case
Ag(H) = | ke, n |/(1 — @)

A very rough estimate of Ag may be made from differences in the values of g for
the nearest neighbour—second nearest neighbour—third nearset neighbour—...etc.
nearest neighbour approximation in a given TCC..

The proposed method may be demonstrated on any network forming oxide.
For its testing may be with advantage to choose systems enabling construction
of several simple models of different size. This possibility is provided particularly
by three-coordinated network formers and among them the most common boron
which we have choosen too. The quantum — chemical method INDO was used.

RESBULTS AND DISCUSSION

The smallest possible stoichiometric models of B,0; glass structure consist
of five atoms and they enable to construct two TCCs. Other five-atomic models
namely involve interactions which should be, but could not betranscribed, because
they represent a real chemical bond or cluster does not contain any bonds allowing
replacement of interaction to be transcribed (Fig. 1).

Moreover, the limited cluster size allows the approximation of nearest or next
nearest neighbour only. The studied TCCs offer rather polar even explicitly ionic
bonds with small orders. The solvatation effect is further enhancing the unfavour-
able charge distribution (Tab. I).

On the other hand, ten atomic models enable to test besides the approximation
of the next nearest also the third nearest neighbour. These approximations offer
already acceptable results. With the nearest neighbour approximation the obtained
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Table I
Bond orders of five-atomic models

MODEL 4

! nearest neighb.

2%d nearest neighb.

Bond vacuum solvated vacuum solvated
B,—-0; 0.327 0.100 0.947 0.981
B;—0, 0.521 0.080 1.163 1.109
B;—0s 0.445 0.080 0.832 1.013
0;—-B; 0.414 0.141 0.974 0.925
B3;—04 0,504 0.110 0.974 1.125
B;—0, 0.517 0.101 1.054 1.249

1
MODEL B
nearest neighb. 274 nearest neighb.

Bond vacuum solvated vacuum solvated
B;—-0; 0.397 0.072 0.984 0.490
B,—0s 0.333 0.051 0.698 0.602
B,—0s 0.324 0.051 0.636 0.600
0,—B;, 0.396 0.071 0.984 0.490
B;—0y4 0.321 0.051 0.636 0.600
B3;—Os 0.333 0.051 0.698 0.602

Table 11

Bond orders of ten-atomic models. Third nearest neighbour approximation

MODEL A4 MODEL B
Bond vacuum solvated Bond vacuum solvated
0,—-B; 0.451 0.417 0:—B; 1.166 1.168
0, B¢ 1.236 1.227 0,—-B;s 1.128 1.121
B:-0; 0.459 0.429 B;-0, 1.076 1.072
B:—050 0.237 0.295 B:—04e 1.106 1.106
0;—B, 1.242 1.243 0;—Bs 1.071 1.059
B(—0s 0.937 0.909 B¢—0y 1.072 1.060
B.—0 1.109 1.103 B¢—0g 1.066 1.052
O;5;—Bg 1.106 1.096 Os—Bsg 1.047 1.035
Bs— 0, 1.253 1.258 B¢—0, 1.079 1.066
Bs—010 0.479 0.441 Bg~010 1.142 1.139
0,—B;s 1.041 1.027 0,—B;s 1.052 1.044
Bs—0, 1.139 1.139 By—0y 1.090 1.079
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Table 111

Bond orders of fifteen-atomic models. Third
nearest neighbour approximation

Bond Vacuum Solvated
0:—-B; 1.023 0.997
0,—~B, 1.017 0.985
B;—0, 0.952 0.920
B;-0, 1.009 0.974
0;—B, 0.954 0.918
B,—O0s 0.988 0.943
Os—Be¢ 0.963 0.928
Bs—0, 1.012 0.980
B¢—0s 0.879 0.825
0s—By 0.879 0.823
By—O010 0.964 0.926
By—O14 1.012 0.983
O10—Bu 0.986 0.943
B11—0n2 0.953 0.923
Bi1—0ss 1.024 0.998
012—B13 0.953 0.916
B13—Ou 1.011 0.972
B13—01s 1.017 0.983
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Fig. 1. Five-atomic B,03 clusters. A, B — true TCCs, C, D — not TCC’s.
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Fig. 2. Ten-atomic TCC, model A. The figure explicitly shows the continuation of the structure.

bond orders were small and the bonds too polar. These results are comparable
with those obtained for five-atomic TCCs.

The approximation of the second and the third nearest neighbour yields bond
orders close to one. Although the solvatation enhances the polarities of bonds but
their orders are not considerably influenced.

Two ten-atomic TCCs were studied: model A (Fig. 2) corresponds topologically
to two-dimensional surface. Nevertheless, the bond orders revealed that although
the bonds within the boroxole ring are of the order close to one, the two-dimensional
network between diverse boroxole rings contains bonds of very low order only.
Hence, the system resembles more a bunch of isolated structure units.

The ten-atomic model B (Fig. 3) represents a stripe. This model appears to be
continual (Tab. II). )

A further system studied represents the fifteen-atomic model corresponding to
two infinitive half-planes with mutual position ascertained by dihedral angles
05—Bs—0s—By and Be—0s—By—O0;, (Fig. 4). All bond orders of this model
are close to one (Tab. III) and the system _in toto” is not planar.
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Fig. 3. Ten-atomic clusters, models B, C, D, E. Cases C, D, E are not TCCs.

Fig. 4. Fifteen-atomic TCC.
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CONCLUSIONS

It could be summarized that the method proposed seems to be acceptable on
condition that the considered interactions will reach at least three bonds. The
inclusion of the enviromental effect in the model of continuum correspondingly
increases the polarities but do not influence considerably the orders of bonds.
Because of the well known limitations of the Germer’s method it seems to be
reasonable to test also some more developed methods for involvement of the
influence of fhe enviroment in the calculation of electron structure.

The method proposed seems to be capable to distinguish between models
representing network structure and the unrealistic models resembling more isolated
structural units.

The actual structure of real B,O; glass represents combination of many types
of motives, including the three-dimensional ones. Therefore, when computing the
observables of the real glass it remain still questionable how to combine for
TCC approximation the results obtained in single models. In the first approach
a perspective solution seems to be offered by the calculations of means using the
Boltzman’s relation at temperature equal to 7. -
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MODELOVANIE SIETOVEJ STRUKTURY SKIEL SEMIEMPIRICKYMI
METODAMI KVANTOVEJ CHEMIE

Ladislav Turi Nagy, Marek Liska

Ustav anorganickej chémie Slovenskej akadémie vied
Dubravskad cesta 9, 842 36 Bratislava

Porovnévaju sa rozliéné sutasné metddy teoretického studia skiel. Pre teoretické Studium
elektrénovej struktury skelnych systémov sa navrhla novd metéda ZD O typu. Navrhnuté metéda
je schopné rozlidit modely, predstavujice skutoéni sietovi dtruktiru od modelov s elektrénovou
strukturou zodpovedajicou skor stiboru vzdjomne izolovanych dtruktirnych jednotiek. Pouzite
metédy sa ilustruje na pédt, desat a pétnést atémovych topologicky cyklizovanych klastroch
modelujucich sieftova dtrukturu skelného oxidu boritého (obr. 1—4). Pritom #a porovnévaja
matice poriadkov vizieb ziskané so zahrnutim rézneho dosahu interakeii (tab. I—III). Ukézalo
sa, ze na postihnutie sieftového charakteru dtruktiry treba v modeli zahrmat minimélneinterakeie
na urovni druhych najblizaich susedov.

Obr. 1. Pitatémové B;0; klastre.
A, B — pravé TCC; C, D — nie TCC.

Obr. 2. Desatatomové TCC, model A. Na obrdzku je explicitne zndzornené pokradovanie Struktury.
Obr. 3. Desatatémové klastre, modely B, C, D, E. Pripady C, D, E nie su TCC.
Obr. 4. Pitnastatémovy TCC.

MOIOEJUPOBAHUE CETYATON CTPYKTVPHI CTEKQIJ1
C MOMOMMLIO ITOJNIYIMIIUPNYECKNX METO/JOB
KBAHTOBONl XUMHUU

JlapncraB Typn Harn, Mapex JImmka

Hrnemumym neopaanuuecxott rumuu Caoeayxoti axademuu Hayx,
Hy6pascka yecma 9, 842 36 Epamucaaca

B pa6ote comocTaBsoTCA pa3iudEEe HOBEHIINe METO/E TEOPETHIECKOTO HCCIIeI0l0BAHHA
cTexosl. JlJIA TEeOpeTHIecKOro HCCIefOBAaHHA JMeKTPOHHOH CTDYKTYPH CHCTEMEI CTEKOJI
aBTopaMu mpeasaraerca HOBHE Meron ZDO tuma. C mOMOMBI0 DPHBOJMMOTO METO/IA MOYKHO
pasimiaTh MOJeIN, IpeficTaBilAlomue JgeHcTBHTEILHYI0 CeTIATYI0 CTPYKTYPY, OT Mojelel
C DIIEKTPOHHOH CTPYKTYPOH, COOTBEeTCTBYIOmei Gojlee MeHee KOMILIEKCY B3aWMHO H3O0JIHPO-
BaHHHEIX CTPYKTYPHEIX efMEHII. McIoIb30BaHEEe METONA IIIIOCTPHpPYeTCA Ha HATH-, 1eCATH-
U OATHANIATHATOMHEIX TOIOJIOTHYECKH HHK/IN3HPOBAHHEIX KJIACTPAX, MOMENHPYIOMHX CeT-
9ATYIO CTPYKTYDPY CTerI000pasyiomero OKCHAA TpexXBajdeHTHOro Gopa (pmc.l —4). B ¢Bsisn
¢ TeM ¢.OHOCTaBJIAIOTCA MATPHILI IOPAIKOB CBA3ed, mOJydeAHEe ¢ TOMOMbBIO PAa3HOIO HIpe-
neia B3anmocBsazed (Tabs. I—I11). Bruto fokas3ano, 9To 114 ONMCAHAA CETIATOrO XapaKTepa
CTPYKTYPH IIDHXORHTCA B MOJEJb BKIIOUHTh MHHVMAJIbHEIE B3auMOfleHcTBHA HAa YpOBHe
JajdpHEHmMUX OJMKaAmux cocened.
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Puc. 1. IIamuamomndie BaOs xaacmpui: A, B — delicmeumesvusie TCC, C, [T — He Aeasiomces
deticmeumeavnuimu TCC.

Puc. 2. Jecamuamomnvie TCC, modeav A. Ha pucyrxe naeasdro usobpancaemcs npodoaxcerue
cmpysmypu.

Puc. 3. Jecamuamomnvie kaacmpty, modeau B, C, I7, E. Ipusodumvie C, I, E ne asanomca
deticmeumeavnsimu TCC.

Puc. 4. IIanmnadyamuamomrsie TCC.
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