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The aim of this work was to test Monte Carlo method for the guantitative analysis of silicate glass. The
binary glass PbO-Si0; was chosen for ezpected big atomic number correction and absorption correction due
to large atomic number difference of elements contained in it. It was shown that it is sufficient to simulate
some hundreds of trajectories of primary electrons for obtaining the stable values of measured intensity.
Linear division of trajectory is more convenient for routine quantitative analysis as well as finest division

of the trajectory in steps.
INTRODUCTION

The present extention of computers brings the
new possibilities in using theoretical correction pro-
cedures even in current practice of quantitative mi-
croanalysis. Beside the routine corrections so called
ZAF procedure which gives the reliable results in
case of bulk sample limited by perfectly flat and
smooth surface the simulation of electron penetration
through the solid and characteristic X-ray excitation
by Monte Carlo method is more frequent at present.
This method permits to analyse quantitatively such
samples where the excited volume includes more ar-
eas with different chemical composition as thin lay-
ers, inclusions and free particles. The principle of this
method consists in simulation of the individual elec-
trons trajectories penetrating through the solid with
simultaneous calculation of the characteristic photons
arising along their path. Because the electron pene-
trating and X-ray emission are random processes the
estimations of modelled intensities of X-ray acquired
must be necessarily treated by the theory of proba-
bility and mathematical statistics. Many models were
published [1-5] differing in the description of individ-
ual physical phenomena occuring during the scatter-
ing of primary electrons in solid and characteristic
X-ray excitation. Seldom is this method used in an-
alytical practice. Analysis of metal alloys and semi-
conductors gives some good results only. The authors
have not found any example of the application to sil-
icates in literature. The aim of this work was to use
Monte Carlo method for the quantitative analysis of
silicate glass.

MONTE CARLO MODEL

The simulation of the electron penetration into
glass was performed by means of the Monte Carlo
model which was written by Dr. Pavli¢ek from Nu-
clear Fuel Institute Zbraslav near Prague [6-9]. This
model enables to calculate specific intensities of emit-
ted characteristic X-ray photons per one penetrating
electron related to unit spatial angle. In the model an
influence of atomic number correction and absorption
correction is considered. The fluorescence correction
due to characteristic and continuous X-rays radiation
is neglected at the glasses with respect to its negligi-
ble value. The simulation of one electron path begins
with the setting initial conditions of penetration into
the solid of defined chemical composition of individ-
ual areas. The actual electron path is supplied by the
step-like spatial curve which consists of preliminary
chosen number of steps. At the final point of each step
the basic characteristic of electron are calculated: ra-
dius vector r,,, travel direction vector u,, and kinetic
energy E,. Simultaneously new position of electron
Tm+1, New travel direction %41 and number of ion-
izations are determined. By this way, step by step, the
simulated trajectory of electron is constructed until
the energy of electron drops to value Ep;, stated pre-
liminary. Epin i8 for given case the ionization poten-
tial of the edge to that belongs on the measured line
of characteristic X-ray.

MULTIPLE SCATTERING

The calculation of the change of unit travel direc-
tion vector u,, is calculated according to the theory
of multiple scattering proposed by Goudsmith and
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Saunderson (8). This theory outcomes from the de-
scription of individual elastic scattering of electron
characterized by Rutherford scattering cross section.
In this theory the mean energy loss of electron in
given step due to inelastic scattering is calculated by
approximation of continual energy loss of electron.
The probability density fgs(w) and probability dis-
tribution function Fgs(w) of the random scattering
angle w from the original motion of the electron in
the direction given by vector u,, is according to the
theory given by

fas (w) sinwdw = Z (k4 1/2) A Py (cosw) sinwdw
k=0

0o
Fgs =/ fos (w) sinwdw =
0

1
P (z)dz

=S (k+1/2)4
USCLY)

08 W

where A, = exp[— [, Gi(8)ds] and Py(z) is Legren-
dre polynom of the k order. These coefficients are
functions of the trajectory of electron and by means
of functions

G (8) =2« ‘/0’r No (0E(,)) [1 — P (cos ) sin 6d6)

they depend also on the density p, on the number of
atoms N and on the individual elastic scattering cross
section . 0 is the scattering angle for the individual
elastic collision. The simulation of the scattering an-
gle w at multiple scattering is in program carried out
by the distribution function Fgs(w) using the method
of inverse functions. The second angle a so called az-
imuth angle determining the new direction of electron
path given by the vector u,,4; has uniform distribu-
tion within the interval (0, 27).

The change of position vector Ar is expressed as
the vector having the longitudinal component A( in
the original direction of electron path u,, and with
two perpendicular components Af, An on the plan
perpendicular to the vector u,,. The calculation of
the components A€, A7 as functions of scattering an-
gle w and azimuth angle « is based on the theory of
Rosi according to the following relations:

w)?
6

f 2)
Anp = %sm (sinw cosa + k, %

where s,y is the step length, k. and &, are two inde-
pendent random numbers having normal distribution.

Af = %sm (sinw cosa + kg

For the calculation (w)? the relation given by Berger
is used:

(w)* = 2(1 — (cosw))

where cosw is equal to coefficient A in the expres-
sions for probability density fgs(w) or probability
distribution function Fgs(w). The longitudinal com-
ponent is calculated according to Berger’s relation

Al = %3,,, (14 cosw) .

ELECTRON PATH AND ENERGY LOSS

Electron path in the solid and its energy loss are ap-
proximated in MC model by means of Bethe’s formula
continuous energy loss (6). Our model offers two pos-
sibilities of dividing the electron trajectory in steps
according to its energy:

a) linear which is given by:

he = (Eo = Emin) /M

where M is the step number, Ej is initial energy of
electron, Ep,, is the lowest excitation energy for given
series of characteristic lines of analysed elements.

b) logarithmic, where the ratio of energies at the be-
ginning and the end of each step is constant:

9 = Ex41/Ex = const. £=0,1,2,... M

Owing to the use of continuous energy loss approx-
imation the electron path absolved in the solid is re-
lated to the loss of its kinetic energy according to:

Asp 41 = 8(Er) — 8(Er41) £=0,1,2,..,. M

The sum of all steps is equal to the total electron path
length in solid. Values s(E}, Et41) are determined
with the help of so called standard electron path, that
is calculated for given sample from Bethe’s law for
stopping power within the energy interval 0-50 keV
by the parabolic interpolation from three points made
in each step of 2 kV. In case the electron path crosses
the boundary between two layers with different chem-
ical composition or boundary with the primary path
step is divided in further steps linearly according to
energy.

CHARACTERISTIC X-RAYS INTENSITY CALCULATION

Bethe’s expression for stopping power for ionization
cross section were used. First the standard ionization
function, defined as the mean number of ionizations
induced by electron in given sample on the trajec-
tory corresponding to the drop of its energy from 50
keV to zero level is calculated. This values are deter-
mined for each element analysed in individual layers
in points corresponding to energy drop of 2 keV. The
set of these 26 values is used for the determination of
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Fig. 1. Flow diagram for the simulation of N TOT electron trajectories in the sample con-
sisted of more areas of different chemical composition with given geometry.

number of ionizations in given step of simulated elec-
tron path by parabolic interpolation. Absorption of
emitted characteristic X-ray radiation in the sample
before its outcome from the surface is calculated in
routine way using the exponential absorption factors
where distances travelled by emerging X-ray in partic-
ular areas are considered. Simulation process of one
trajectory is then repeated for more electrons. The
contributions of individual trajectories are added to
accumnulators of simulated quantities and after com-
pleting the evaluation takes place. Like output serves
the mean value of intensity of X-ray related to one
electron and unit spatial angle then the estimation of
dispersion variance and of standard deviation of sim-

ulated intensity takes place. Because the basic value
in quantitative EMA is the relative intensity which
is equal to the ratio of intensities measured at the
same conditions on sample and standard no absolute
value of X-ray intensity is not necessary to calculate.
So the author avoid the use of some not quite safely
determined atomic constants.

The described MC model became the basis of the
computing programme TV(F) by means of which we
provided the calculations. The simplified flow dia-
gram of the whole programme is drawn in Fig. 1.
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Table I

The composition of lead glass

c[wt. %) Pb Si (o)
Pb-9 50.697 | 20.996 | 27.897
Pb-6/2 66.111 | 13.431 | 20.458
Table 11

Constants used for simulation of electron microanalysis
of lead glass [10, 11]

Element V4 EX [keV] | Analyzed | A [A]
line
Si 14 1.840 K(ay) | 7125
Pb 82 2.484 M(a:) | 5.286
p [em’g™]
Emiter \ Absorber Si Pb o
Si 327.9 1908.6 | 965.6
Pb 1862.1 983.0 | 415.7

EXPERIMENTAL

The binary glass PbO-SiO; was chosen for appli-
cation the programme TV(F). The composition of
analyzed glasses which were prepared as reference
standards and served for many years in our labora-
tory for measurement of lead glass is introduced in
Table 1. This simple three-element system was cho-
sen tendentiously. The reason is the homogeneity of
glass, exactly defined and justified composition and
mainly expected distinct atomic number correction
and absorption correction due to big atomic num-
ber difference of element contained in this glass. First
approach to the TV(F) programme is characterized
by our effort to find answers on following questions:
1) How many electron trajectories to simulate, thus
how quickly converged the simulated primary gener-
ated intensity and measured intensity of character-
istic X-ray to some limit value? 2) How to divide
the trajectory and in how many steps divide it? 3)
How to procedure of dividing mentioned above affects
the results of simulating? The calculations were pro-
vided by computer ICL-4-72 for accelerating voltage

Table 111
Primary generated intensity XM and detected intensity
YM of SiK, line and PbM, line for various number of
simulated trajectories in glass Pb-6/2, U = 20 keV, sXM,
sYM - standard deviations of primary and detected in-
tensity

a) silicon
NTOT XM sXM YM sYM
100 2.66E-3 | 1.1E-4 | 1.61E-3 | 6.4E-5
200 2.65E-3 | 7.5E-4 | 1.59E-3 | 4.5E-5
300 2.63E-3 | 6.2E-4 | 1.54E-3 | 3.7TE-5
400 2.61E-3 | 5.4E-4 | 1.54E-3 | 3.2E-5
b) lead
NTOT XM sXM YM sYM
100 3.21E-3 | 1.2E-4 | 2.36E-3 | 8.6E-5
200 3.19E-3 | 8.6E-5 | 2.33E-3 | 6.0E-5
300 3.16E-3 | 7.2E-5 | 2.28E-3 | 4.9E-5
400 3.15E-3 | 6.3E-5 | 2.27E-3 | 4.3E-5
&,
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Fig. 2. Convergence rate of primary generated intensity
XM and detected intensity YM of X-ray K. line of Si

and M, line of Pb at the simulation of X-ray emission

from glass Pb-6/2 by MC method.
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Table 1V

Primary generated intensity XM and detected intensity YM of SiK, line and PbM,, line determined
for different steps number M of linear and logarithmic division of individual trajectory during the
simulation of primary electron penetration in glass Pb-9, standard Pb-6/2, U = 20 kV

A) linear division: silicon

NDPT | NTOT | hs | XM/10=® | sXM/10~* | YM/10=® | sYM/10~% | XM/YM

5 100 3.63 4.05 1.1 2.38 8.0 0.59
10 100 1.82 3.7 14 2.42 9.0 0.65
15 100 1.21 3.60 1.5 2.23 8.9 0.62
20 70 0.91 3.78 1.6 2.42 1.0 0.64
25 70 0.73 3.54 1.8 2.21 1.0 0.62
30 50 0.61 3.51 2.2 2.22 1.03 0.63

lead

NDPT | NTOT | he | XM/1072 | sXM/10~* | YM/10~® | sYM/107® | XM/YM

5 100 3.50 2.39 0.6 1.64 4.6 0.69
10 100 1.75 2.19 0.8 1.62 5.6 0.74
15 100 1.17 2.13 0.9 1.52 5.7 0.71
20 70 0.88 2.24 0.9 1.63 6.3 0.73
25 70 0.70 2.10 1.0 1.51 6.8 0.72
30 50 0.58 2.08 1.2 1.51 8.5 0.72

B) logarithmic division: silicon

NDPT | NTOT | g¢& | XM/10=® | sXM/10~* | YM/10~® | sYM/10~% | XM/YM

8 100 0.74 4.08 1.0 2.35 7.7 0.58
10 100 0.79 3.79 1.3 2.26 7.5 0.60
12 100 0.82 3.97 1.2 2.37 7.9 0.60
14 100 0.84 3.77 1.3 2.33 8.1 0.62
16 100 0.86 3.88 1.3 2.30 8.3 0.59
18 50 0.88 3.64 2.1 2.36 13.3 0.65
20 90 0.89 3.87 14 2.35 8.5 0.61

lead

NDPT | NTOT | g¢& | XM/10=® | sXM/10=* | YM/10~° | sYM/10~% | XM/YM

8 100 0.77 2.41 0.55 1.63 0.42 0.68
10 100 0.81 2.24 0.71 1.56 0.45 0.69
12 100 0.84 2.34 0.66 1.62 0.46 0.69
14 100 0.86 2.23 0.74 1.59 0.50 0.71
16 100 0.88 2.29 0.72 1.58 0.50 0.69
18 50 0.89 2.15 1.2 1.58 0.84 0.74
20 90 0.90 2.28 0.79 1.60 0.53 0.70
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Table V

Relatives intensities K, absorption correction factors F, and atomic number
correction factor F; determined for different steps number M of linear and
logarithmic division of individual trajectory during the simulation of primary
electron penetration in glass Pb-9, standard Pb-6/2, U = 20 kV

a) linear division

Si Pb
M | NTOT | K sK F. | K K sk F. F,
5 100 1.552 | 0.005 | 1.00 | 0.99 | 0.722 | 0.002 | 0.95 | 0.99
10 100 1.573 | 0.006 | 1.11 | 0.91 | 0.715 | 0.003 | 1.03 | 0.91
15 100 1.449 | 0.006 | 1.05 | 0.88 | 0.669 | 0.003 | 0.99 | 0.88
20 70 1.574 | 0.008 | 1.09 | 0.93 | 0.720 | 0.003 | 1.01 | 0.93
25 70 1.439 | 0.008 | 1.06 | 0.87 | 0.664 | 0.004 | 1.00 | 0.87
30 50 1.448 | 0.012 | 1.08 | 0.86 | 0.666 | 0.005 | 1.01 | 0.86
b) logarithmic division
Si Pb
M| NTOT | K sK F, R K sk F, F.
8 100 1.532 | 0.005 | 0.98 | 1.00 | 0.72 | 0.002 | 0.94 | 1.00
10 100 1.474 | 0.005 | 1.02 | 0.93 | 0.686 | 0.002 [ 0.96 | 0.93
12 100 1.541 | 0.005 | 1.01 | 0.97 | 0.72 | 0.002 | 0.96 | 0.97
14 100 1.516 | 0.005 | 1.05 | 0.92 | 0.700 | 0.002 | 0.99 | 0.92
16 100 1.500 | 0.006 | 1.01 | 0.95 | 0.70 | 0.002 | 0.96 | 0.95
18 50 1.533 | 0.012 | 1.10 | 0.89 | 0.70 | 0.005 | 1.02 | 0.89
20 90 1.531 | 0.006 | 1.03 | 0.95 | 0.71 | 0.003 | 0.98 | 0.95

in the interval 10-20 keV. Necessary constants used
for simulation of electron microanalysis of lead glass
are summarized in Table II.

To the evaluation of the results of simulation we
used the values current in the method ZAF which we
calculated from the output values according to the
next relations:

Relative intensity is the ratio between detected X-ray
intensities of given line measured by the same exper-
imental conditions on the sample and the standard:

K= YMs/YMsT

Its standard deviation

(sYMst)?
NTOTst YMsT

(sYMs)?
NTOTs YMs

sKk = K

where YMs, YMst, are the mean values of detected
X-ray intensities for sample and standard. sYMst,
sYMgt are its standard deviations.

The absorption correction factor

Fo= XMsT YMs_
. XMs YMst
The atomic number correction factor
F= cst XMs
cs XMst

RESULTS AND DISCUSSION

The rate of convergence of primary and detected X-
ray radiation of SiK, line and PbM, line during the
simulation of 20 keV electron penetration in glass Pb-
6/2 is introduced in Fig. 2. It is evident that summary
number 400 of simulated trajectories is sufficient for
setting the mean value of primary and detected X-ray
characteristic lines of both analysed elements. The
difference between detected intensities for 300 trajec-
tories and 400 trajectories is 0.36% at Si and 0.49%
at Pb at the same time. The significant improvement
of the statistical estimation take place as follows from
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Fig. 8. Ten electron trajectories in glass Pb-9 projected into zz plane, U = 20 kV, a) linear division, 10 and 20 steps,

b) logarithmic division, 10 and 20 steps.

the standard deviations of primary and detected in-
tensity introduced in Table III. The form of curves
in Fig. 2 is approximately identical. The jumps on
the curves are due to electron that escapes from the
sample before its energy drops under certain value
Emin. Such a given trajectory then produces less ion-
izations which causes the drop of mean value of both
intensities for both elements.

For estimation of the influence of trajectory divi-
sion on the simulation results the number of calcula-
tions for glass Pb-9 were carried out. These results are
presented in Table IV and V. In Table IV there are the
output values from the program TV(F) for different
steps number of linear and logarithmic division of in-
dividual trajectory during the simulation of primary
electron penetration in glass Pb-9. We used glass Pb-
6/2 as the standard, in the concrete the values of
primary generated and detected X-ray intensity for
number of simulated trajectories NTOT-400. From

Table V there is apparent some dispersion of relative
intensities between analysed elements and between
methods of the trajectory dividing. The cause is like
the random character of emission of X-ray like the
different number of simulated trajectories of glass Pb-
9. As significant we consider the difference in atomic
number factors that are higher for logarithmic divi-
sion of trajectory. The influence of nonuniform length
of individual steps plays role here. The first step is al-
ways longest and electron after passing is penetrates
rather deep into the sample decreasing the probabil-
ity of backscattering. Various shapes of trajectories
at linear and logarithmic division are documented in
Fig. 3.

Logarithmic division of trajectory according to
electron energy seems to be more suitable for simu-
lation the electron penetration accelerated by higher
voltage. When using it for simulation of the electron
penetration through the thin layer it is necessary to
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Table VI

Mean lengths of first steps simulated electron trajectories

a) linear division, various number of steps,

U =20LkV

M 5
s(pm) | 2.15

10
1.17

15
0.8

20
0.61

25
0.50

30
0.41

b) logarithmic division, various number of steps,

U =20 kV

M 8
s(pm) | 2.57

10
2.24

12
1.99

14
1.79

16
1.61

18
1.47

20
1.35

c) various accelerating voltage, linear

division, M = 20
UKvV) | 10 | 15 | 20 | 25 | 30
s(pm) | 0.16 | 0.36 | 0.61 | 0.92 | 1.29
compare the thickness of such layer with the length scattering angle of electron
of the first step to avoid electrons passing through N number of atoms
this layer. In Table VI all calculated length of first o individual elastic scattering cross section
steps for linear and logarithmic division for various @ scattering angle for individual elastic collision
accelerating voltages and various numbers of steps w scattering angle at multiple scattering
are presented. a azimuth angle
A£An perpendicular components of the radius
CONCLUSION vector of electron
A¢ longitudinal components of the radius
Presented MC model based on the theory of mul- vector of electron
tiple scattering and approximation of continuous en- trajectory length
ergy loss of energy was used to simulation of elec- , m-step length
tron penetration to lead glass. It was shown that it f k, independent random numbers
is sufficient to simulate hundreds of trajectories for j o step at linear and logarithmic distribution
obtaining the stable values of primary and detected s step number at primary distribution
X-ray intensity. For the routine quantitative analysis step number at secondary distribution
(20 kV) it is more convenient to use the linear divi- NTOT total number of simulated trajectories
sion of the trajectory and as high number of steps g relative intensity
as possible. To nonuniformity of the steps lengths at g standard deviation of relative intensity
logarithmic division negatively increases the value of x primary generated X-ray intensity of given
atomic number correction factor. line
XM mean value of primary generated X-ray
Used symbols: intensities of given line
) Y detected X-ray intensity of given line
r radius ve ct01" of electron YM mean value of detected X-ray intensities
u travel direction vector of electron . .
of given line
E 'elt‘ac't ron energy Fa absorption correction factor
Fo m!tl‘al electron energy .. F; atomic number correction factor
Emin mlmm?.l elect}'on energy equals to ionization ; accelerating voltage
potential of given X-ray spectral series 7 atomic number
fes(w) probability density of the random scattering EX excitation potential
angle of electron A wavelength

Fgs(w) probability distribution function of the
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u mass absorption coefficient
S sample
ST standard
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POUZITI METODY MONTE CARLO KE
KVANTITATIVNI RTG. MIKROANALYZE SKEL

JANA NEBESAROVA, VAcLAV HULINSKY

Spoleéné laboratofe biologickgich pracovist CSAV,
Jihoceské biologické centrum, Branidovskd 31,
370 05 Ceské Budéjovice
Vysokd skola chemicko-technologickd, Ustav skla
a keramiky, Technickd 5, 166 28 Praha 6

Souasny rozvoj politatové techniky poskytuje nové
moznosti v pouziti niroénych korekénich teoretickych po-
stupl v béZzné praxi kvantitativni rtg. mikroanalyzy. Uve-
deny model vypoétu korekci pomoci metody Monte Car-
lo, pouzité k modelovani priniku primairnich elektronid
do olovnatych skel, je zaloZen na teorii mnohonasobné-
ho rozptylu a aproximaci spojitych ztrit energie primar-
nich elektroni. V préci bylo prokizino, ze sta¢i modelovat
stovky trajektorii primarnich elektroni k dosazeni stabil-
nich hodnot primarni a detekované intenzity charakteris-
tického rtg. zdteni. Dile bylo odzkoudeno, Ze pro rutinni
kvantitativni analyzu je vhodnéjsi linedrni déleni trajek-
torie na co nejmensi iiseky. Nerovhomérné rozdéleni dél-
ky jednotlivych isekd pti logaritmickém déleni zpisobi,
2e hodnota koeficientu korekce na atomové ¢islo se ptilia
nadhodnocuje.

Obr. 1. Vijvojovy diagram modelovdni souboru N TOT tra-
jektorii elektront ve vzorku sloZeném z vice oblasti od-
lisného chemického sloZeni.

Obr. 2. Rychlost konvergence primdrné generované inten-
zity XM a vystupujici intenzity YM rtg. zdreni Ko édry
Si a M, &dry Pb, pri modelovdni emise rtg. zdreni ze
skla Pb-6/2 metodou MC.

Obr. 3. Deset trajektorii elektroni ve skle Pb-9 zndzorné-
nych v primétu do roviny zz, U = 20 kV, a) linedrni
déleni na 10 a 20 iseki, b) logaritmické déleni na 10
a 20 dseki.
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