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COMPUTER CALCULATION OF THE PHASE DIAGRAMS OF SILICATE SYSTEMS
II. REGRESSION TREATMENT FOR SYSTEMS CONTAINING INCOGRUENTLY
MELTING COMPOUNDS.
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An original algorithm and a FORTRAN program developed to calculate phase diagrams and/or thermo-
dynamic characteristics in simple eutectic multicomponent systems yet not ezperimentally measured, was
extended to the systems that may contain incongruently melting compounds. Additionally, enthalpy of fusion
as a function of temperature was taken into account. Complete statistical analysis of results was also pro-
posed. The method was applied to the binary system CaSi0Os-Ca; SiOy containing the compound rankinite
(Cas Siz O7 ) which melts incongruently at the temperature of 1464 °C. The enthalpy of this decomposition
was estimated to be 72 kJ mol™t. Other unknown parameters, i. e., the enthalpy and the heat capacity of
fusion of dicalciumsilicate and hypothetical temperature of fusion of rankinite were calculated by the least
squares method. The obtained values are 81.6+1.2 kJ/mol, 90438 J/mol K and 1497 +£11°C, respectively.

INTRODUCTION

An algorithm and a FORTRAN program for the
calculation of isobaric phase diagrams of simple
polymeric oxide systems were published in {1]. The
method was based on a simple LeChatelier-Schreder
equation provided enthalpy of fusion being constant.
To express the activities of constituents involved in
a liquid, a model of ionic solutions by Haase was
used in which the bridging (O°), non-bridging (O~)
and free (0%?7) oxygen atoms were taken into ac-
count. The amounts of various kinds of oxygen atoms
were calculated from material balance. The fraction
of cations JA built into a polyanionic network as the
groups JAO; and JAQ, is given by parameters o j
and a4 ;. As the input data, the list of oxides JAAIOy
together with the values of ayj and a4 ; and the list
of possible crystalline phases with corresponding val-
ues of temperature and constant heat of fusion were
used.

This method can also be used to solve an inverse
problem, particularly to determine some of the in-
put parameters from the known phase diagram by
the least squares method. Such procedure has been
applied to investigate coordination of aluminum in
container glasses [2].

This paper extends the problem to the systems
containing incongruently melting compounds includ-
ing statistical analysis, particularly determination of
standard deviations of estimated unknown parame-
ters in a model as well as of linear dependencies be-
tween them. In addition, the temperature dependence
of enthalpy of fusion is taken into account. Moreover,
we have inserted all these extensions into an original
FORTRAN program. The new algorithm was applied
to the system CaSi03-CayS104 which contains incon-
gruently melting compound rankinite (CazS1;07).

METHOD

In our method a peritectic point is treated as a spe-
cial case of more general approach in which at compo-
sition of incongruently melting compound, the tem-
perature of primary crystallization of other crystalline
phase is higher than the hypothetical melting tem-
perature of pure, incongruently melting constituent.
This means that one of the crystalline phases melts
incongruently when the temperature of primary crys-
tallisation in the point corresponding to its compo-
sition 1s lower than the liquidus temperature. Such
compound is therefore characterized by the hypothet-
ical values of its temperature and enthalpy of fusion.
From the point of view of input data we therefore
need not to distinguish between congruently and in-
congruently melting constituents. In this sense we
also applied regression analysis to estimate unknown
parameters that characterize incongruently melting
compound(s).

Sum of squares of deviations between experimen-
tal and calculated liquidus temperature is minimized
during the calculation. This sum is somewhat specif-
ically constructed. First, a point k of phase diagram
in which only one crystalline phase i is in equilibrium
with a liquid contributes to this sum by the value of
(TF — T)?, where TP™ and T are the experi-
mental and calculated liquidus temperatures, respec-
tively. Secondly, a point in which several (¢) crys-
talline phases are in equilibrium with a liquid con-
tribute by the value of

q q
DT =T + 3 (T ~ T
i=1 1,7=1
1<J
If only the position of such figurative point is known,
only the second term can be used. On the other hand,
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when the experimental temperature 7¢*P is known,
the use of the second term is optional. In this manner
constructed the residual sum of squares U is then
minimized using the simplex method [3]. As a result
the estimates of unknown parameters are obtained.

The estimates of standard deviations of unknown
parameters p; can be obtained if the function U(p)
in the vicinity of its minimum Up,;, is replaced with
the quadratic form

AU(p) = U(p) — Upin = =1 Az (1)

where A is the Hess information matrix, @ is the col-
umn vector of deviations of p;’s from their optimal
values p; then z! (the row vector to vector x) can
be expressed in the form

zT: {xl,..

(2)
Hereby Upnin is a function of vector p. Diagonal ele-
ments Aj; of matrix A can be numerically estimated
after the choice of elements of the vector @ in the form
z; = % b;;d;, where 4 = 1,...,n and d; > 0 is the
adopted step, which adequate parameter is changed
with. The values of diagonai elements can be then
computed as the average of AU for pesitive and neg-
ative shift of parameters p; according io the relations

Aij = [AU(ﬁl,...,@+aii,...
N

‘)Z‘n} = {Pl _ﬁl;-'~;pn.“1’)\n}

2y
JPi—diy Pa))/2d] 3)

Non diagonal elements of matrix A can be calculated
as arithmetic mean of AU for combination of shifts of
parameters p; in both positive and negative directions
in the form

Aij = Aj = (4)
1 ~ ~ ~ o~
g[AU(pl))p1+d2,1p]+dj7apn)+
+AU(ﬁ,..‘,@—di,,..,@—dj .”,ﬁ;)—
AUy, .. pi+diy.. . P5—ds ... Pn) —
—AU(pAl,...,[)}——d,-,‘..;ij+a"j,...,1’9:)]/(dzdj)

The values of standard deviation and covariance of
parameters can be evaluated from elements of the 1n-
verse matrix (A~1);; in the form

(A1) Umin

s(pi) = 3 (5)
AN U /
cov(pi,pj) = %2_—“ {6)

The correlation coefficients r;; can be determined
from the relation

pe = SOV(Pi, Pj)
L Mt

s(pi)s(p;) |
Presented procedure is acceptabls from the point
of view of applied approsimation of U/, if relations

(7

d; ~ s(p;) are fulfilled. Therefore the calculation is
repeated cyclically, so that in the next iteration the
steps d; are substitued by the values of s(p;) from the
foregoing iteration. By a reasonable choice of starting
estimate of d;’s the first two iterations are usually suf-
ficient. From the values of correlation coefficients be-
tween parameters, linear dependencies between them
were investigated.

Next extension was introduction of temperature de-
pendence of the heat of fusion, which is significant es-
pecially when a constituent crystallizes within a wide
range of temperatures. We have considered the most
simple dependence given by

Acdfi(T) = AcHi(Tt) + 85Cp (T — Thi) (8)

where T;,; and A¢H;(T,i) are the temperature and
enthalpy of fusion of the i-th constituent, respectively
and ArCp ; is the heat capacity of fusion of the con-
stituent ¢ which we assume to be constant. Substitut-
ing iast equation into LeChatelier-Schreder equation

|8in a; _ AfH,(T) (9)
| éT |, =~ " RT?
we  obtain  after integration and rearrangement

& transcendental equation for the unknown liquidus
temperature Ty |

(T =
. Apr’iT“ lnTiyg - Afhr?;(O)
. Rlna; + A;CP,,- In Tf)i - AfH,'(O)/Tf’,'

(10)
—Ti)=0

where a; 1s the activity of the i-th constitutent and
A¢H;(0) is given by the relation

Aff[i(()) = Ain(rl}ri) - Apr,," 1{),’ (11)

It can be easily si..u that Eq. (10) may have no, one
or two roots witiun ihe temperature range from 0 to
Tt ; depending on the A¢Cp ; and a; values. Supposing
ACy i 1s fixed the number of roots depends on the a;
only. When we define a critical value ag by

(12)
A¢H; (0
+ A¢Cpiln [—‘AﬁL]
R

ag = exXp

AfCy,;
{ AHO) |7 + &7

\

then Eq. (10) has ne reot for a; < ag, just one root
for a¢; = ag and two roots for 4; > ag (see Fig. 1).
Physically acceptable is the one confined within the
limits Ty < T;1 < Tr; where Tp is given by

13
ACp i (13)

Ty =15 —
There are several possible methods to solve Eq.
{10} which can be divided into three groups. First
group are fast methods, for example Newton-Raphson
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Fig. 1. Plot of the function f(T) given by Eq. (10) ver-
sus T. The curves are labeled with values of activity
a(Ca2S5104); Dotted line corresponds to the critical value
ao given by Eq. (12).

method of tangent lines, second group are slow but
reliable ones, e. g., method of dividing interval, and
third group are approximate ones. The last group is
represented by a method in which the correct solution
of Eq. (10) is replaced with the solution of Eq. (14)

AeHi (T )Tt 5 (14)
AeHi(T; ) — RTiIna;

which can be solved analytically. The equation
was formally derived from the integral form of
LeChatelier-Schreder equation valid for temperature
independent enthalpy of fusion.

Plot of liquidus temperature divided by the melting
temperature of pure i-th constituent versus activity is
shown in Fig. 2. Curves 1, 2 and 3 are the solutions of
simple LeChatelier-Schreder equation with Cp,; = 0,
the correct solution of Eq. (10) and the solution of
Eq. (14), respectively. This figure was constructed
using thermodynamic data of dicalciumsilicate with
the A¢C, value obtained in this work. [t can be seen
that using temperature independent enthalpy of fu-
sion yields liquidus temperature with the relative er-
ror less than 5% for the activity of rankinite greater
than 0.5. It is obvious that the relative error depen-
des on particular values of A;H(Tt), A¢Cp, Tt and
a. Therefore it is better to use exact solution of Eq.
(10) in computer programs for calculation of phase
diagrams, especially when regression analysis is per-
formed.

The method described above was implemented into
the original FORTRAN program presented in [1] and
used to investigate the phase diagram of the binary
system wollastonite/dicalciumsilicate.

Ty =

" +0 T T T T T T T T T
e :;/ -
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o : —
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Fig. 2. Plot of normalized liquidus temperature versus ac-
tivity of dicalciumsilicate. 1 — constant enthalpy of fusion,
2 - exact solution of Eq. (10), 3 - approzimation by Eq.

(14).

RESULTS AND DISCUSSION

Experimental phase diagram was taken from [4].
From the diagram the compositions corresponding to
the liquidus temperatures ranging from 1500°C to
1900°C with the step of 100°C as well as the composi-
tion and temperature for both eutectic and peritectic
points were determined. These values were used to
calculate residual sum of squares which in this case
consists of six single contributions (77} —T;*")? and
two extended contributions

q q

DT = TPV + 3 (T~ T3%)?
i=1 i,i=1

$<j

with ¢ = 2 corresponding to the eutectic and peri-
tectic points. This implies the number of degrees of
freedom v = 12 — n, where n is the number of un-
known parameters p;. Some parameters needed for
our calculations were obtained from yet published ex-
perimental data. Melting temperatures of pure wol-
lastonite and dicalciumsilicate were taken from [4].
The values of Kosa [5] were used for the enthalpy of
fusion and A¢C,, of wollastonite. Because of too high
melting temperature these values cannot be measured
for dicalciumsilicate and they were therefore included
into regression analysis.

Three hypothetical parameters (7, A¢H and
A¢Cp) characterize incongruently melting rankinite.
Due to narrow temperature range of rankinite lig-
utdus curve the effective constant value of A¢H
may be used instead of A¢H(T) and A¢C,. On the
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Table T

Least squares estimates, their standard deviations (s. d.) and standard deviations of approximation (s.) obtained
using different hypothetical enthalpy of fusion of rankinite

Method Ti(Ca3S8i,07) | s. d. | AH(Cas8i207) s. d. ACL(CaySi, 07) s. d. Sa
K] K] [kJ/mol] {kJ/mol] [J/mol K] [J/mol K] | [K]

ArH(CasSi, 07) = 1770 1 81.6 1.2 90 3 17.9

72 kJ/mol

iterative scheme

ArH(CasSi0;) = 1774 1 81.6 1.1 90 3 18.0

65 kJ/mol :

trial estimate

other hand the limited temperature and composi-
tional range of rankinite phase boundary causes the
strong linear dependence between its hypothetical en-
thalpy and temperature of fusion. Thus it is necessary
to preliminary estimate one of these quantities by an
independent way. We have estimated enthalpy of fu-
sion using the following procedure:

e using only the experimental points of dicalci-
umsilicate liquids curve an initial estimates of
ArH and A¢Cp were calculated by least squares
method;

¢ rankinite enthalpy of fusion was approximated
with the sum

ArH(CasSi,07) = AgH[CaSiOg, Ti(CaSiOs)]+
+A¢C,(CaSiOs)[T}, — T(CaSiOs)] +
+A¢H[Ca,Si04, TH{(CazSi04)] +
+A¢C,(CasSi04)[T, — Tr(CazSiOy)]

(15)

e least squares estimates of hypothetical temper-
ature of fusion of rankinite, heat capacity and
enthalpy of fusion of dicalciumsilicate were cal-
culated using the full experimental data set;

e the last two items were repeated until self con-
sistency was achieved.

Applying this procedure we found enthalpy
of fusion of rankinite to be 72 kJ/mol. An-
other possibility is to choose arbitrary black
box estimate of AyH(CasSi;07) and then per-
form least square estimation of remaining param-
eters, i. e. AfH(CaySi,07), A¢Cp(CasSin07) and
T¢(CazSia07). As such black box estimate we used
the value of Ay H(CazS1207) = 65kJ/mol. The values
of T;(CazSiz07) obtained by the either of the two

possibilities are ambiguous because of their strong
linear dependence with A¢H (Ca3SizO7). The qual-
ity of estimated parameters may be roughly de-
duced comparing the results that provide both pro-
cedures. All the obtained results are presented in
Tab. I. We can see that thermodynamic parame-
ters of dicalciumsilicate are reliable being insensitive
to preliminary estimate of AfH(CazSioO7). On the
other hand, the value of ill-conditioned parameter
T7(CagSiz07) is correlated with the preliminary esti-
mate of A H(CazSisO7). Calculated and experimen-
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T I LI

1700

T/K

0.2 04 06

x(Ca28i04)

0.8 1.0

Fig. 8. Comparison of experimental (¢ - single points,
$ - peritectic point, + - eutectic point) with calculated
(solid line) phase diagram. Temperature dependence of
heat of fusion included for wollastonite and dicalciumsili-
cate, Ay H(Ca3Si; O7) = 65 kJ/mol.
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Fig. 4. Comparison of experimental (o - single points,
{ - peritectic point, + - eutectic point) with calculated
(thick solid line) phase diagram. Temperature dependence
of heat of fusion neglected for all components. Thin solid
line stands for the virtual liquidus curve of rankinite.

tal phase diagrams are compared in Fig. 3 where only
the results for A¢ H(CagSi207) = 65kJ/mol are visu-
alized as far as the difference between both cases con-
sidered are practically negligible. The importance of
introducing heat capacity into calculations is demon-
strated in Fig. 4 where experimental and calculated
phase diagrams are compared obtained when A;C),
was neglected. As it can be seen from this figure, the
liquidus curve of rankinite was completely hidden by
those of wollastonite and dicalciumsilicate. Thus the
simple eutectic two-component system has arisen.

CONCLUSIONS

From the comparison of the calculated and exper-
imental phase diagrams it follows that the proposed
method is suitable for describing phase equilibria in
multicomponent silicate systems including incongru-
ently melting compounds. A satisfactory description
of the entire temperature and composition range re-
quires to involve temperature dependent enthalpy of
fusion of at least the constituent with wide tempera-
ture range of its primary crystallization.

From the statistical point of view the estimates of
unknown parameters are relatively robust. Regarding
them as thermodynamic quantities, their values are
acceptable but estimated standard deviations seem to
be underestimated.

We believe that suggested thermodynamic model
supplemented with nonlinear regression analysis pro-
vides valuable results also in other silicate systems.
Further improvements we see in extension of the

model to more detailed description of different struc-
tural groups occurred in the melt.
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VYPOCET FAZOVYCH DIAGRAMOV
SILIKATOVYCH SUSTAV.
Il. REGRESNA ANALYZA SUSTAV OBSAHUJUCICH
INKONGRUENTNE SA TOPIACE ZLUCENINY.

MAREK LISKA, JOZEF STRECKO

Ustav anorganickej chémie, Slovenskd akadémie vied,
842 36 Bratislava, Slovenskd republika

V préci [1] bol publikovany algoritmus a fortranovsky
program na vypocet izobarickych fdzovych diagramov jed-
noduchych oxidovych siistav. V tejto praci sa problema-
tika rozsiruje o sustavy, ktoré obsahuji inkongruentne sa
topiace zlticeniny. Navyse sme do programu zradili statis-
ticki analyzu $tandardnych odchilok odhadu neznamych
parametrov modelu, ako aj urcenie ich vzajomnej linedr-
nej zavislosti. Daléim rozsirenim vypoétu bolo uvazova-
nie linedrnej zdvislosti entalpie topenia zloziek tvoriacich
vySetrovani sistavu. Algoritmus sa aplikoval na sistavu
CaSi03-Cay 5104, ktord obsahuje inkongruentne sa topia-
cu zld¢eninu rankinit (CasSi>O7).

Rankinit sa inkongruentne rozkladi pri teplote 1464°C
na taveninu zloZzenia 34 mdlovych % dikalciumsilikdtu,
66 molovych % wollastonitu a krystalicky dikalciumsili-
kit. Uvedeny algoritmus sme aplikovali na vypocet troch
nezndmych parametrov: hypoteticki teplotu topenia ran-
kinitu, entalpiu topenia a tepelni kapacitu topenia di-
kalciumsilikatu. Posledné dva parametre neboli doteraz
namerané kvoli velmi vysokej teplote topenia dikalcium-
silikitu. Vypocitané hodnoty nezndmych parametrov si
1497411°C, 81.6%1.2 kJ/mol a 9043 J/mol K. Entalpia
topenia rankinitu pri teplote peritektického rozkladu sme
odhadli z rov. (15) na 72 kJ/mol. Entalpiu topenia wollas-
tonitu a jej teplotni zdvislost sme prevzali z [5] a experi-
mentélny fizovy diagram zo [4].

Z porovnania vypocitaného a experimentalneho fizové-
ho diagramu vyplynulo, ze navrhnutd metéda je vhodnd
na popis fdzovych rovnovah vo viaczlozkovych silikdtovych
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systémoch, ktoré méiu obsahovaf inkongruentne sa to-
piacu zliéeninu. Uspokojivy popis celej krivky likvidus st
vyzaduje zahrnif do vypoctu teplotni zavislostf entalpie
topenia spoin tej zlozky, ktord md siroki teplotni oblast
svojej primarnej krystalizicie. Odhady nezndmych para-
metrov si z termodynamického hladiska akceptovatelhé,
avsak ich standardné odchylky sa zdaji byt podcenené.

Dalsie zlepsenie o¢akdviame v rozsireni modelu o pod-
robnejsi popis struktirnych jednotiek, ktoré si v tavenie
pritomné,

Obr. 1. Priebeh funkcie {(T) danej rovnicou (10) oproti
T. Krivky sid oznacené hodnotami aktivit a(CazSi04).
Bodkovand éiara zodpovedd kritickej hodnote ao, ktord
Je dand rovnicou (12).

Obr. 2. Zdvislost normovanej teploty likvidus od aktivity
dikalciumsilikdtu.

1 - pri konstantnej entalpii topenia, 2 — presné rieje-
nie rov. (10), 8 - aprozimdcia rovnicou (14).

Obr. 3. Porovnanie experimentdlneho (o — jednoduché bo-
dy, & — peritekticky bod, + - eutekticky bod) a vypo-
éitaného (plnd éiara) fdzového diagramu so zahrnutim
teplotnej zdvislosti tepla topenia wollastonitu a dikal-
ciumsilikdtu. A H(CasSizO7) = 65kJ/mol.

Obr. 4. Porovnanie experimentdlneho (o — jednoduché bo-
dy, & - peritekticky bod, + - eutekticky bod) a vy-
pocitaného (hrubd plnd éiara) fdzového diagramu so
zanedbanim teplotnej zdvislosti tepla topenia vietkijch
zloziek. Tenkd pind ciara zodpovedd virtudlnej krivke
likvidus rankinitu.
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