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Accrrate representation of heat and mass transfer in thermoconvective flows is of great importance in several industrial
processes. In particular, this study is motivated by the need to better understand molten glass circulation in glass melting
furnaces.

The geometry of furnaces is rather simple : the free surface of the molten glass is horizontal and the refractory walls are
parallelepipedic. However, the flow patterns in this geometry are actually 3D as the width of the tank can be restricted at the
neck while the height is modified by a step. For these reasons, the solution in the plane of symmetry can no longer be regarded
as representative.

For this class of problems, the convective currents are moderate amplitude, with a tvpical value of Reynolds number of O(1),
while the Péclet number can be of order of 300 (given the low conductivity of molten glass). The numerical difficulty is therefore
associated with solving of energy equation rather then that of momentum.

While a detailed, steady-state solution is important, the time evolution of the flow structure is also of great interest. Given the
intensity of the thermoconvection - the Grasshof number is = 5000 - no unstationary solution should be expected. However, a
sensitivity study is a variation of the solution under varying operating conditions, e.g. pull rate, thermal boundary conditions...,
sheds light on the stability and the relative importance of both thermal and viscous effects.

The numerical tool developed to simulate this physical situation is an unstationnary spectral element Boussinesq solver. Spatial
discretization is realized through the division of the computational domain in a limited (<50) number of spectral elements. On
each element, the unknowns are interpolated by a high-order Legendre polynomial. Depending on the value of the Prandil
number of the fluid, a greater number of degrees of freedom can be associated 1o the thermal problem.

The goal of this presentation is to claim the efficiency of high order methods for the numerical simulation of thermoconvection
in the glass melting tank.. Comparisons with finite-difference and finite-element solutions demonstrates a lower number of
degrees of freedom necessary to obtain specified level of accuracy. A global increase in computing efficiency allows 3D
simulations like time evolution of melting tank during change of glass.

NUMERICAL SIMULATION MODELS
OF GLASS MELT THERMOCONVECTION

interesting way of using the powerful (but still
approximate) numerical tool is in combination with
control/identi-fication procedures. In this combined study,

As pointed out in [4], the main problems with 3-D  exchanges between unsteady numerical simulations and

numerical furnace models are not only their need of
computational resources - CPU and memory - but also
the relative unreliability of input data (conductivity) and
the limited possibilities of verification associated with
difficult representation of complex solutions.

Efficient high-order methods produce accurate
numerical representations within  the computational
environment of modern computer work station. In this
environment, various graphic capacities can handle the
results and allow easier interpretation of flow patterns.
The problem of unreliable data can be solved by
expensive "parameter studies” where successive
simulations can be compared, identified with reduced sca-
le models or even with industrial measurements. Another

control/iden-tification models can be useful to gain a
global understanding of the melt convection and to
estimate  quality-related parameters such as the
temperature profile or the residence time distribution [1].

SPECTRAL METHODS

The fundamental principle of spectral methods {2] is
the decomposition of the unknown fields in a linear
combination of a set of basic function
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where uy is the approximation of the Nth order, the set
{a,} i1s the so-called "spectrum" of this solution with
respect to spectral basis y,.

While, for low order methods, the basic functions
are usually defined such that the {a,} set is actually the
set of the values of the function uy at given points
(nodes); for spectral methods this simple relationship
does not hold. To evaluate, from the spectrum, the values
of the function at given spatial coordinates, an explicit
evaluation of the fundamental decomposition is to be
used. The computational cost of such an evaluation has
been drastically reduced in the case of the Fourier
spectral method. For this well-known particular choice of
basic functions

W, (x) = cos T n(x-a)/L 2)

where L = b - a is the length of the interval [a,b] on
which uy is defined; the relationship between the
spectrum and the value of the i approximation at the N
cqually spaced collocation points

x, = a+ n(b-a)/(N+1) 3)

has been optimized and requires only O(Nlog N)
operations rather then O(N?) operations needed by the
direct calculation. This evaluation algorithm has been
called for this reason the Fast Fourier Transformation
(FFT) and historically justifies the interest of spectral
methods for scientific computational methods.

There is a strong dependence of the set of basic
functions W, on the set of collocation points where the
function can be directly evaluated. While Fourier basis
functions are assoctated with equally spaced points,
Chebyshev function produce a set of points with notable
refinements near the boundaries. This particularity can be
advantageous when greater gradient variations (like
boundary layers) are expected at the extremities of the
computational domain. A third choice, the Legendre fun-
ctions, present other interesting propertics explained later.

Within this general framework, spectral methods are
resolved with the following algorithm : () the set of
partial differential equations is rewritten for the spectrum
of the unknown fields; if) the resulting "spectrum system"
is solved; and finally i) the value of the uy
approximation is evaluated at the collocation points. The
industrial applicability of spectral methods is severely
restricted by three limitations:

- the computational domain must be "simple", i.e.
topologically equivalent to a parallelepipedic box.
Several domain decomposition methods have been
proposed for the for the extension of spectral

methods to multidomain calculations, but they suffer
from difficulties arising from continuity boundary
conditions at the interfaces between subdomains.

—  the coefficient of the original spatial equations must
be constant to allow direct transformation of the
equations from the spatial to the spectral space. The
conductivity and viscosity must therefore be
constant on the whole computational domain.

—  great numerical difficulties appear when solving the
spectral set of equations. For this reason different
preconditioning strategies have been investigated,
leading to linear systems with better numerical
conditioning.

Despite this restrictions, spectral methods has shown
impressive resolution capacities for different situations
such as atmospheric turbulence, crystal growth
thermoconvection, and molten tin current for float glass
production.

The most important feature associated with spectral
methods is their convergence rate, defined as the error
decrease associated with an increase in the number of
degrees of freedom (d.o.f.). Low order methods typically
present linear or quadratic convergence rates Ii.e.
multiplying the number of d.o.f. by a factor of 2 divides
the resulting error by 2 or 4. On the other hand, spectral
methods achieve exponential convergence rates, 1.e. the
error decreases like e, where N is the order of the
approximation. Consequently, the computational effort
required to attain a given level of accuracy is usually
much smaller for the spectral methods, subject to the
restriction that the physical situation admits the
limitations of a constant-coefficient mono-domain
problem.

Another useful property of spectral methods is the
a priori error indication provided by the spectral
decomposition. The last terms in the spectrum {a,} must
be small and decreasing to ensure that the spectral
approximation embodies all the meaningfull physical
information.

To conclude this extremely rapid overview of
spectral methods, it must be mentioned that the
usefulness of this class of numerical tools has been
increased by the pseudospectral algorithm. This algorithm
avoids evaluations of the spectrum and manipulates only
values of the function at the collocation points. Pseudo-
spectral methods allow Legendre and Chebyschev functi-
ons to be used even through they do not have a imme-
diate fast transform (such as the FFT in the Fourier case).

SPECTRAL ELEMENT METHOD
The spectral element method combines the

exponential convergence of spectral methods with the
geometrical flexibility of finite elements [5]. To achieve
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this result, the variational form of the problem is solved
rather then its spectral transform. If the differential
system i1s

Ly =f 4)

then. classically, the variational (or weak form) is obtai-
ned by integration of the system with multiplication by
a given weight function. The selected weight function is
here the basis function y,, leading to the Galerkin
formulation

N
f (L(Il\) - f) WI] = [(L(”Z:(, anl‘Vn (X) -ﬂ Wll = O . (5)
The consequences of this numerical artifacts is

- o allow the decomposition of the domain in
subdomains  where a spectral discretization is
performed. Natural continuity of the solution
through interfaces 1s obtained by the decomposition
of the integral on cach separated spectral clement
(through the so called "direct stiffness summation™),

— to express flux boundary condition resulting from
the classical integration by parts.

Variational form 1s also one of the principles of the
finitec clement methods (FEM), but while FEM generally
consider a great number of small subdomains (elements)
where low order interpolants approximate the unknown
ficlds: spectral element methods (SEM) use high order
spectral basis  function on a moderate numbers of
subdomains [6].

The function y, used for this spectral elements dis-
cretization is the set of Legendre functions. Their useful
characteristic is their orthogonality
+/

JVav, =0, (6)

where 8 1s the Kronecker symbol. leading to a diagonal
mass matrix and allowing geometrical deformation of the
mesh  through the classical Jacobian  transformation.
Combined with this choice of basic function, spectral
clement methods select the pscudospectral algorithm.

Differences between SEM and h-type FEM lies in
the interpolation order (for a furnace simulation, orders
like 15 arc usual) and the wuse of tensorisation.
Tensorisation s the key for practical efficiency of
spectral methods. Suppose we want to know the value of
3-D basis function at given location (x, v, z). Instead of
naive calculation

W, D) (7
we use the tensor form o obtain

wl. .k ('\A' .\‘“ :) = wl(\) # W\ (\) * wL(Z) (8)

and reduce the cost of such estimation from O(N®) to
O(N*) operations. This reduction is the main reason for
the use of iterative solvers combined with spectral
element methods. Those solvers, requiring limited
memory, do not suffer from the "full” matrix structure of
the spectral operators which couple a great number of
unknowns. Logically, the resolution strategy of non-linear
problems will therefore be a time dependent
discretization even if the desired solution is a steady
state.

GLASS THERMOCONVECTION

According to the particularities of the numerical
simulation of glass thermoconvection, specific numerical
techniques have been used in conjunction with spectral
clement methods. These techniques consider the
differences both in time and space, between the
temperature, velocity, and pressure fields.

From the spatial point of view, it is well known that
while steep temperature gradients arc encountered near
the boundarics, the velocity distribution usually does not
produce a boundary layer. The ratio between thermal and
velocity boundary layers i1s measured by the Prandtl
number for which a typical glass melt value is in the
range of 200 to 300. For this reason, different
interpolation degrees have been selected for temperature
and velocity fields. For finite clements (8], quadratic
temperature and lincar velocity interpolations produce
accurate results at fow CPU cost. In this spectral element
method, we select a more adaptative distribution of the
number of d.o.f. In general, the temperature field requires
mode d.o.f. and a typical distribution is 15 temperature
for 10 velocity unknowns. However. in the width
direction of the furnaces [7] where moderate values (= 5)
arc chosen, cquivalent distribution is selected for
temperature and velocity.

The pressure field acts, in this incompressible flow
problem, as a Lagrangian multiplier to ensure vanishing
velocity divergence. The value of the pressure itself is
not really pertinent and morcover it does not diftfer much
from the hydrosiatic solution

p~p-pgh, e}

where /1 is the depth and p, the atmospheric pressure.
Therefore, several methods can be used [3] to ensure
incompressibility without explicitly calculating  the
superfluous pressure fields.

Similar differences between velocity, temperature,
and pressure arc rcalized for the time discretization. As
quantified in 8], the Prandtl number also is a measure of
the ratio between velocity and temperature time constants
T, and 1. Sclecting the following approximations,
which can be verified by numerical experiments,
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T, ~ L*vand 1, ~ LYx , (10

temp

where v 1s the kinematic viscosity, ¥ the thermal
diffusivity and L typical length, the ratio t,,,/1,,, reduces
simply to the Prandtl number v/x . The velocity time step
is therefore smaller than that for the temperature, a good
compromise being about 10 velocity time steps for each
temperature. The pressure problem is only resolved when
the velocity divergence becomes greater than a given
tolerance value.

With all these numerical techniques, a required
accuracy level can be reached within acceptable CPU
costs. Consequently, different unsteady simulations can
be realized, including changes of the operating conditions
and mixing. On the other hand, a highly accurate solution
- obtained with voluntary "excess” of d.of. - is a
powerful tool for numerical quality dependent studies like
tracking or residence time evaluations [1]. The global
approach of the spectral element method, rapidly ensuring
grid independence, appears therefore as a good candidate
for glass thermoconvection simulations.
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POUZIT{ METODY SPEKTRALNICH PRVKU
PRI RESENI KONVEKCE TEPLA VE SKLOVINE

NICOLAS VANANDRUEL

Unité de Mécanique Appliqueé (CESAME),
Université Catholique de Louvain,
Batiment Euler, Av. G. Lemaitre, 4-6,
B-1348 Louvain-la-Neuve, Belgium

Presné vystiZzeni pfenosu tepla a hmoty pfi termo-
konvekénim proudéni je velmi Zzddouci u mnoha druhi
primyslovych procest. Tento pfispévek je zaméfen zejména na
lepsi pochopenf proudén{ skloviny ve sklafskych pecich.

Geometrie téchto peci je dosti jednoducha : volnd hladina
skloviny je horizontalni, a stény ze Zaruvzdornych materidlG majf
v podstaté tvar hranolu. Skutecné profily proudéni jsou vsak ve
skuteCnosti trojrozmérné, nebot’ §itka vany byvd zizend v misté
krku, a hloubka skloviny zdroven sniZend stupném. Z téchto
divodi nelze povazovat za vyhovujici feSeni zaloZené na plosné
soumérnostt.

U tohoto okruhu probléml vykazuje konvekeni prodéni
mensi amplitudy. s typickou hodnotou Reynoldsova ¢isla O (1),
zatimco Pécletovo ¢islo miize mit fadové hodnotu 300 (vzhledem
k nizké tepelné vodivosti skloviny). ObtiZze s modelovanim proto
spiSe souviseji s rovnici pfenosu energie nez s rovnici pfenosu
hybnosti.

I kdyZ je feSeni v ustdleném stavu dileZité, Casovy rozvoj
prab&hu proudéni je rovnéZ vyznamny. Pfi dané intenzité pienosu
tepla konvekei (Grasshofovo &islo md hodnotu cca. 5000) nelze
ocekdvat nestaciondrni feSeni. Studie citlivosti, se kterou kolisaji
vysledky za riznych provoznich podminek, naptiklad pfi rizném
pritoku, nebo pfi riznych teplotnich okrajovych podminkach.
viak poskytuje informace o stabilit¢ vypoctu a relativnf
diilezZitosti jak tepelnych, tak viskozitnich faktord.

Vypocetnim ndstrojem vyvinutym pro modelovani této
fyzikdln{ situace je metoda Boussinesq solver, poskytujici piimé
feSeni a vyuZivajici nestaciondrni spektrdlni prvky. Prostorovd
diskretizace se realizuje rozdélenim vypoltové domény do
omezeného poctu (<50) spektrdlnich prvki. Pro kazdy prvek se
nczndmé interpolujf Legendrovym polynomem vysokého fadu. V
zdvislosti na hodnot¢ Prandtlova ¢isla pfislusné tekutiny lze
pfenosu tepla pfifazovat vyssi pocet stupfiti volnosti.

Cilem tohoto piispévku je prokdzat efektivnost metod
vys§iho fddu pro matematické modelovéni teplotni konvekce ve
skldfské vanové peci. Porovndni s vysledky feSeni pomoci
koneénych rozdild a konecnych prvkd ukazuje, Ze pro dosazeni
pozadované prfesnosti 1ze pouZit men$i poCet stupiiGi volnosti.
Celkové zvySovdni vykonl pocitatd umoZiiuje trojrozmérné
modelovani v neustdleném stavu, jako napfiklad modelovéani
Casového pribéhu zmény druhu skloviny ve vanové peci.
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