
Original papers

A MODEL OF SIMULTANEOUS DISTRIBUTION
OF HUMIDITY AND TEMPERATURE IN POROUS MATERIALS

JosEF onLÍK, JosEF oRnĚČer, sTANIsLAv ŠŤesrNÍrc'

Deport,nent of mathematics and g,eometry,
Faculty of Civil Engineering, Technical University of Brno,

Žižko,o 17, 602 00 Brno
e-mail : mddal @ f'ce.vutbr.cz

' Dep,aylmsnt of buittling materials,
Facultl, rf Civil Engineering, Technical Universih, of Brno,

Veveří 95, 60200 Brno
e-mail: shsta@fce.vutbr.cz

Received November 6, 1996.

A brie.f'cle rivcttiott o.f a so-called Kiessl nrodel for the humidity behaviour of materials with pore structure in dintension n = I ,2,3
i.s presented. In this wav, both the essential processes which this model does describe are pointed-out and the possible meanings
r1f the related numerical modelling are indicated.

INTRODUCTION

It is typical fbr the building materials of common
use thirt a large part of their volume, up tc 60 %o in the
case clí ce|lular concrete, is fl|led in by pores with
extrcmely diverse size and shape. This is the reason why
the building materials are able to absorb water both in
the fbrm of a liquid and of a gas, save it in its pores,
transport it and discharge it. This so-oalled huntidih,
behaviour o1'building rnaterials has been evaluated by a
rnethodology of Glaser, originated in [4], according to the
norms of most european countries. But today we have a
large amount of evidence showing that conclusions,
obtained by this rnethodology' diÍfbr from reality
essentially in many important cases. This concerns Íbr
e xanrple constructions composed of materials with
extensive difl'erences in their humidity behaviour. The
number of such constructions corresponds to the growing
interest in building objects with small consumption of
heat. Onc of the reasons why the Glaser model is not
accurate enough is that it does not take into account
strong connections between the humidity behaviour and
other simultaneous processes in building constructions.
Especially, there is a strong relation between humidity
iind temperature. Humidity has an essential influence on
the diffusion of gases fiom the environment into the
rnaterial. For example the concentration of carbon dioxide
in a building material determines its durability. Presence
ol' a high amount of humidity leads to a change of
volume by discharging certain components of the
material and, consequently, to the distress of stability of
thc whole object.

A theory necessary fbr the numerical modelling ol'
humidity behaviour started to develop much later than fbr
other proceSSeS Iike deformation or distribution oť
temperature. Even the physical basis fbr this theory is not
complete yet. On the other hand, there is a big clemand
fbr any kind of predi<;tion of humidity bchaviour
especially in parts of constructions where humidity in thc
liquid phase appears. For special concrete prob|ems oÍ.

this kind, the use oť empirical mode|s is typica|.
Physics of building materials studies the ability oÍ-

materials to minimize the negative influence of humidity
intensively for a number of decades. But the search afier
essential notions, derivation of governing ťuIes and
formulation of criteria fbr quality evaluation concentrates
mostly on some special features of the system water -

building material only.
As many non-successful comparisons with measured

data illustrate, no simple model can produce any
reasonably accurate estimate of the real humidity
behaviour. The reason is an inherent complexity of this
process, which is influenced by the following fbctors
(a)-(d) essentially.

(a) The shape and size of pores.
(b) The presence of humidity in pores both in the liquid

and in the gas phase at the same time.
(c) An interaction of transport of various kinds: capillar

convection' diff.usion, surÍ-ace diffusion, efl.usion.
(d) The temperature which activates various kinds oť

transport with various intensity.
Conversely, the process of distribution of

temperature depends on humidity to a large extent.
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Every more exact model of humidity behaviour has

to be formulated in terms of quantities of potential type
which encode the relative part of water in each phase
within humidity. Such potential quantities have been

described earlier by Bogoslovskij Il ]' Krischer Í7),
Lykow [9] and de Vries [l0]. Under natural conditions,
the interaction between humidity and temperature cannot
be neglected.

Like the most mathematical models of humidity
behaviour, the Kiessl model (KM in what follows) has

been formulated Íbr the one-dimensional case only. It

takes into account all the factors (a) - (d) and, besides
temperature Ť = Í (x,t) (.C)' it works with a humidity
potential I = I (x,r) (-) deflned in an original way. In
a-greement with the general theory of Onsager it
cxpresses the -elobal diffusive transport as a superposition
oÍ. partial transports proportional to gradients of severa|

quantities.

DERIVATION OF THE KIESSL MODEL

The kernel oť the KM consists of two transient
partial dil'lerential equations. It is apparent fiom the

ťo|lowing derivation oť these equations (in a region
í) c R'', tt = |, 2, 3 and in time-interval (0,7) ), which
processes does the model take into account.

We denote by

M (kg m-') the weight of humidity in I mr of
the porous material,

H (J m-r) the amount of heat in I m3,

W (J rn-] s.|) the intensity oť Sources of heat,

I (kg m-r s-r) the intensity of condensation of
vapour,
the ternperature,
the volume taken by water and ice
in I m3 as iť al| this humidity were
in the liquid phase,

the re|ative humidity oť the air in
pores,

pw (kg m"') the density of water,
D., Vu (kg rn 2 s l) the intensity of capillar Ílow of

humidity,
D* Vg (k-e rn-2 sr) the intensity of flow of vapour at

the gradient of relative humidity,
D,Vt (k-u m.2 s.l) the intensity of Ílow of humidity at

the gradient of temperature,
fu Vt (J m-2 s-r) the intensity of flow of heat,

take arbitrary cube Q c {Ž and interval (/.,, t.,+Ar) c (0'D.
The í.irst identity ( l) expresses the law of preservation of
ntass: The accession of humidity in Q fiom t0 to 4) + A/
(the lelt-hand side) equals to the amount of humidity
which penetrates into Q through the boundary EQ (the

right-hand side). The second identity (2) encodes the law
of preservation of (thermal) energy: The accession oť
heat (the left-hand side) equals to the heat which
penetrates into Q through the boundary ěQ and to the

heat created in the sources inside of Q (the right-hand

side). The third identity (3) says that the accession of
p* a (the left-hand side) can appear either by the oapillar
flow throu gh aQ or by the condensation of vapour (the

right-hand side).
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By an obvious modification of the lefi-hand sides and by

means of the Green theorem (see [2], p.89) on the right-

hand sides, we obtain the following identities (4) - (6)

fi'om (l) - (3).
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We multiply the equations (4) - (6) by llLt, pass to the

|imit for Ár -+ 0 ďn the assumption that the integrands tn

(4) - (6) are continuous (see [8], p.6l) and obtain the

fbllowing differential equations (7) - (9) by means of the

Lebesgue theorem (see [5], p.33).

AM

At
- V(D.Yu + D*Vg + D.Vt) = 0 (7)
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AH
-dt

-V(l,Vt)-W-0

ctup*_: -V(D"V")-/=O (9)
dt

In the KM, the unknown functions are the humidity po-
tential I = I (x, t) (-) and the temperature t = t (x, t)
('C). In order to express the equations (7), (8) in terms
of t, l and of given data, we use the Íbllowing known
oonstants and functions:

pw (kg m t) density of warer,
cw (J kg ' K-r) specific heat of water,
pe (kg m't) . density of ice,
cE 1J kg'r K-r) specific heat of ice,
pv (kg m-t) density of porous material,
or,.r (kg'r 6't; specific heat of porous material,
P (-) volume of pores in I m3 of porous

material,

X (-) part of the mass of a created by
water,

c* (kg m t) partial pressure of saturated vapour
in the air,

L,., (J kg-') specific hear of sublimation of ice,
L., (J kg-') specific heat of evaporation of

water and
L,., (J kg'') specific latenr heat of ice.

The Íunction c" can be approximated by the function:

R(r+273.15)

where R - 461.9 (J kg-r

fbllowing:

t<0
A 28.9205
B l15t.21042
c 273

One can easily see that

o...
uy + u(l - X)::

Pe

and

K-r) and values A, B, C are the

tž0
23.58999r

|5l3'8ó688
236

P - rX- u(t - X)!Y
Pe

is that part of the volume of pores in I

material which is filled in by water or

respectively. Moreover, g c.(t) is the mass of vapour in
I mr of air at the temperature t and relative humidity tp.

Hence, we have

M(t1 = pw ,r * gc,(r) [P-u y-u ( l-D pw /pe]

The diffusion coefficients Du, D* and D, have been
expressed in the following forms on the basis of
experiments in Kiessl [6]:

Du = pw e* (t) r(a),
Dr = Pw ep (t) kur(r,r),

D, = Pw e, (Í) k,,,(,).

The functions K, kue, k.r, 86, Ep, e. and l, depend on
the concrete porous material. Graphs of typical examples
can be seen in figures 1,2 and 3.
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Figure 2. Graphs of the function cK, De, and 8r, (brick body).

A - graph oť e*, B - graph of e'. C. graph oť e.

Suhstituting the above-described expressions of the

functions M, D,, D* and D. into (7), we obtain the

tbllcrwing humidib, eq uatiott

a t r Pw'
" í Pw a + |, -,x - u(|-x)-_- | qc- (T)) =
dr \ L Pel t

= pw V[e*(t)r(u)Va + e"(t)t.r*(u)Vg +

051015202530
(%o\

Figure 3. Graph of the f'unction )" (brick body).

W = (XL.r + (l-X)L,,t)l = L.,rl =

-rdur
=L,tl p* ^ -V(D"Vu)lt' 0t l

according to (9). Now, if we insert the above expressiclns

of H and W into (8) then we obtain the temperature

equation

a

dt

+ pw uXL,.r) - V(l"Vt) =

+ e. (t)k,r.(u)Vtl .

The heat in I m3 can be expressed in the form

(10)

H = pucM r + Pw cw uxl + Pw cs u(l-X)t + Pw uXLr,z

as a sum of the heat in the porous material, in the water

in pores, in the ice in pores and of the specific latent heat

of the water in pores. If we assume that the process of
condensation changes vapour to water and ice in the

relation prescribed by the value of the function f then we

obtain the intensity of sources of heat in the form

= L ,t 
I 

o- * - V(p* e,. (t)r(a)Va) 
]

(l l)

The remaining step of the derivation of the KM consists

in introducing the humidity potential O t-l' K' Kiessl

defined this function by

<D=g for tp<0.9 and l= 1.7+0.1logr for tp>0.9 '
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Here r is a mean value of the diameter of pores in the and the temperature equation
porous material. The dependence of humidity a on the
humidity potential is given by a so-called sorption
isotherm./. In the cases q < 0'9, Ía) is that part of l m]
ol'the porous material which is fllled in by water under
given relative humidity. An example is presented in
tigure 4.

a

a, [p" c" r + pw tflo)(co * cwe x(t)) +

* Pw L',,Í(a)x(t)] =

= V(A(t,<D)Vt) +

+ L.t (t)p*l/'t.l+ v(e,.(t)o(o)./'(o)voI (t3)
L" dt l

The equations ( l2), ( 13) together with the boundary
conditions

(e- (t)o(oy,(o) + e.o (t)K.9(Ó)8,(<D,, 
# 

-

)r
+ e, (t)K.|,(o) :: = 8r (x, Í, o, Í)

0n

- L,,,(r)pw e*(t)@(oy'(o) 
Jt 

* A(t, o) !1 =ěn ěn

= 7z'(x, Í, o, Í)

and the initial conditions

l(x, 0) = lr, (x), t(x, 0) = t,, (x)

( l4)

( l5)
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Figure 4. Graph of the function <D (brick body).

If we introduce the notation

CwE = Cw - CE,8 _ 9oí A = L(t,"/(o))' o = roí
K.,' = k,,,o.f, Ku, = kuoÍ,

then we can reÍbrmulate the equations (|0)' (l l) in the
following f inal forms (12), (13):

The equation of humidity potential

form the so-called Kiessl model.
Under certain natural assumptions on coefTicients

which are satisfied for all known materials, the KM is a

second-order strongly parabolic quasilinear system of
"reaction - diffusion" type. By means of known a priori
estimates for the solutions of linear parabolic systems and
using a certain fixed point theorem (see [3]) we have
proved the existence of smooth exact solution on a finite
time-interval.

We are searching after a numerical method for an
accurate and stable approximation of the solution of KM
in the one- and two- dimensional cases for constructions
with generally composite materials. We hope that we
obtain a reliable computer program which will give us
more exact informations about the humidity behaviour of
constructions. But even accurate numerical solutions oť
the KM will not describe the reality in all cases. For
example, the KM is not able to consider changes of the
properties of building materials in time or the influence
of unpredictable flow of air in the hollows of
constructions. We hope that this program will be useful
in critical cases like the humidity behaviour of flat roofs
or that of mantles of cooling towers.

at r

;(P*./(Ó)-L" xo{x*

= Pw V[e* (t)o(oř'(o)Vo +

+ e, (t)Ku,(<D)Vtl

(r-D# 
tt s(r)c.('))

e, (t)K.1*(o)g'(o)Vo +

(t2)
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MODEL
souČAsNÉuo ŠÍŘpNÍ VLHKosTl A TEPLA

V PoRÉZNÍcH vnrn,RIÁLECH

JosEF DALÍK, JosEF DANĚČEK, STANISLAV ŠŤnsrNÍr-

Ustav matematih,,

Fakulta stavební,
Vysoké učení techni cké,

Žižko'', 17' ó02 00 Brno

,Ú'ro,, 
technoloBie stal,ebních hmot a dílců,

Fakulta stavební'

Vl,sokó učení tachnickó,

Veveří 95' 602 00 Brno

obsahem příspěvku .je exaktní odvození tzv. Kiesslova
modelu v jedno, dvou i tro.jrozměrném případě. Jádrern tohoto

modelu .ie SyStém dvou parciálních dif.erenciálníclr rovnic.
popisu.jící šření vlhkosti a tep|a v materiáleclr s pórovittlu
strukturou. Z odvození .isou patrné předpok|ady' za niclrž

Kiesslův mode| tento proces popisu.;e dostatečně výstiŽně.

Poznatky autorů o struktuře a řešitelnosti to|roto rnodelu i cí|e

ie1ich výzkumu .isou stručně okomentovány' v práci .jsou

zmíněny i některé konkrétní důleŽité případy možnélro vyuŽ,ití

Kiesslova modelu.
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