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A brief derivation of a so-called Kiessl model for the humidity behaviour of materials with pore structure in dimension n = 1,2,3
15 presented. In this way, both the essential processes which this model does describe are pointed-out and the possible meanings

of the related numerical modelling are indicated.

INTRODUCTION

It is typical for the building materials of common
use that a large part of their volume, up to 60 % in the
case of cellular concrete, is filled in by pores with
extremely diverse size and shape. This is the reason why
the building materials are able to absorb water both in
the form of a liquid and of a gas, save it in its pores,
transport it and discharge it. This so-called humidity
behaviour of building materials has been evaluated by a
methodology of Glaser, originated in [4], according to the
norms of most european countries. But today we have a
large amount of evidence showing that conclusions,
obtained by this methodology, differ from reality
essentially in many important cases. This concerns for
example constructions composed of materials with
extensive differences in their humidity behaviour. The
number of such constructions corresponds to the growing
interest in building objects with small consumption of
heat. One of the reasons why the Glaser model is not
accurate enough is that it does not take into account
strong connections between the humidity behaviour and
other simultaneous processes in building constructions.
Especially, there is a strong relation between humidity
and temperature. Humidity has an essential influence on
the diffusion of gases from the environment into the
material. For example the concentration of carbon dioxide
in a building material determines its durability. Presence
of a high amount of humidity leads to a change of
volume by discharging certain components of the
material and, consequently, to the distress of stability of
the whole object.

A theory necessary for the numerical modelling of
humidity behaviour started to develop much later than for
other processes like deformation or distribution of
temperature. Even the physical basis for this theory is not
complete yet. On the other hand, there is a big demand
for any kind of prediction of humidity bchaviour
especially in parts of constructions where humidity in the
liquid phase appears. For special concrete problems of
this kind, the use of empirical models is typical.

Physics of building materials studies the ability of
materials to minimize the negative influence of humidity
intensively for a number of decades. But the search after
essential notions, derivation of governing rules and
formulation of criteria for quality evaluation concentrates
mostly on some special features of the system water -
building material only.

As many non-successful comparisons with measured
data illustrate, no simple model can produce any
reasonably accurate estimate of the real humidity
behaviour. The reason is an inherent complexity of this
process, which is influenced by the following factors
(a)-(d) essentially.

(a) The shape and size of pores.

(b) The presence of humidity in pores both in the liquid
and in the gas phase at the same time.

(¢) Aninteraction of transport of various kinds: capillar
convection, diffusion, surface diffusion, effusion.

(d) The temperature which activates various kinds of
transport with various intensity.
Conversely, the process of distribution of

temperature depends on humidity to a large extent.
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Every more exact model of humidity behaviour has
to be formulated in terms of quantities of potential type
which encode the relative part of water in each phase
within humidity. Such potential quantities have been
described earlier by Bogoslovskij [1], Krischer [7],
Lykow [9] and de Vries [10]. Under natural conditions,
the interaction between humidity and temperature cannot
be neglected.

Like the most mathematical models of humidity
behaviour, the Kiessl model (KM in what follows) has
been formulated for the one-dimensional case only. It
takes into account all the factors (a) - (d) and, besides
temperature T = T (x,r) (°C), it works with a humidity
potential @ = @ (x,1) (-) defined in an original way. In
agreement with the general theory of Onsager it
expresses the global diffusive transport as a superposition
of partial transports proportional to gradients of several
quantities.

DERIVATION OF THE KIESSL MODEL

The kernel of the KM consists of two transient
partial differential equations. It is apparent from the
following derivation of these equations (in a region
QcR" n=1,2,3 and in time-interval (0,7) ), which
processes does the model take into account.

We denote by

M (kg m?) * the weight of humidity in 1 m* of
the porous material,

the amount of heat in 1 m’,

the intensity of sources of heat,

the intensity of condensation of
vapour,

H (Jm?
w Jm?sh
/

(kg m™ s

T (°C) the temperature,
1T} (-) the volume taken by water and ice
in 1 m?* as if all this humidity were
in the liquid phase,
0} (-) the relative humidity of the air in
~ pores, \ ’
Pw (kg m™) the density of water,
D, Vu (kgm?s') the intensity of capillar flow of

humidity,

D, Vo (kg m?s") the intensity of flow of vapour at
the gradient of relative humidity,

D, Vt (kg m?s") the intensity of flow of humidity at
the gradient of temperature,

AVt (Jm?s') the intensity of flow of heat,

take arbitrary cube Q < Q and interval (¢, t,+At) < (0.7).
The first identity (1) expresses the law of preservation of
mass: The accession of humidity in Q from ¢, to ¢, + At
(the left-hand side) equals to the amount of humidity
which penetrates into Q through the boundary dQ (the

right-hand side). The second identity (2) encodes the law
of preservation of (thermal) energy: The accession of
heat (the left-hand side) equals to the heat which
penetrates into Q through the boundary 0Q and to the
heat created in the sources inside of Q (the right-hand
side). The third identity (3) says that the accession of
pw 4 (the left-hand side) can appear either by the capillar
flow through dQ or by the condensation of vapour (the
right-hand side).

Qf (M1, + AD) - M(1,)] dQ =

1,+At
o J 0 JT

= I (D, 0,2 0, s dr 1)
1y 9Q on on on |

J[H(t, + Aty - H(1,)] dQ =
Q0

t+AL 1, +AL

=] Jxa_T dsdt+ | [ wdQ dr 2)
’u aQ an ,n Q

pw | [u(ty + AD - u(t,)] dQ =
0

1+AL 1AL

= | jDé’_‘_dsdH [ [ 1dQdr (3)
’“ aQ " an {'l Q

By an obvious modification of the left-hand sides and by
means of the Green theorem (see [2], p.89) on the right-
hand sides, we obtain the following identities (4) - (6)
from (1) - (3).

l(,+Af aM
[ 1= -V(D“Vu+Dchp+DrV‘c)Jdez:
th Q at :
=0 (4)
+AL
T j[a_H -V(er)-WJdetzo (5)
L Q at :
1+AL du : .
f [pw_-V(D“Vu)-l}detzo (6)
h Q a[ .

We multiply the equations (4) - (6) by 1/At, pass to the
limit for At — O on the assumption that the integrands in
(4) - (6) are continuous (see [8], p.61) and obtain the
following differential equations (7) - (9) by means of the
Lebesgue theorem (see F5], p.33).

a_M -VD,Vu+D, Vo + D, V1) =0 (7

ot
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a_H -VAVD) -WwW=0 3
ot
du
pw— -V, V)-1=0 )
ot

In the KM, the unknown functions are the humidity po-
tential @ = @ (x, 1) (-) and the temperature T = 1 (x, 1)
(°C). In order to express the equations (7), (8) in terms
of 7, @ and of given data, we use the following known
constants and functions:

Pw (kg m?)  density of water,

Cw (J kg' K specific heat of water,

Pe (kg m?)  density of ice,

g (J kg' K'Y specific heat of ice,

P (kg m?)  density of porous material,

Cy (kg K')  specific heat of porous material,

P (-) volume of pores in I m* of porous
material,

X ) part of the mass of u created by
water,

c, (kg m™) partial pressure of saturated vapour
in the air,

L, J kgh specific heat of sublimation of ice,

Ly, (J kgh specific heat of evaporation of
water and

L, J kg specific latent heat of ice.

The function ¢, can be approximated by the function:

AT+B

e ™C

R(t+273.15)

where R = 461.9 (J kg'' K'') and values A, B, C are the
following:

<0 1720
A 28.9205 23.589991
B 1751.21042 1513.86688
C 273 236

One can easily see that

uy + u(l - X)E‘ﬁ
PE

and

P -y - u(l - X)Eﬁ
Pe

is that part of the volume of pores in I m* of porous
material which is filled in by water or ice and by air

respectively. Moreover, ¢ ¢(1) is the mass of vapour in
I m? of air at the temperature T and relative humidity ¢.
Hence, we have

M(1) = py u + Qc(T) [P-u Y-u (1-%) pw /Pel

The diffusion coefficients D,, D, and D, have been
expressed in the following forms on the basis of
experiments in Kiessl [6]:

Du = pW €y (t) K(ll),
Dm = pW em (1) kd;p(u)a
D, = py £, (1) ky(w).

The functions K, kg, Ky €, €, €, and A depend on
the concrete porous material. Graphs of typical examples
can be seen in figures 1, 2 and 3.

x(mzs"')

u (%)

Figure 1. Graphs of the function , k,,, k, (brick body).
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Figure 2. Graphs of the function ¢,, £, and €, (brick body).
A - graph of £,, B - graph of g, C - graph of ¢,

Substituting the above-described expressions of the
functions M, D,, D, and D, into (7), we obtain the
following humidity equation

d

p
—~( Pyt + [ P-uy - u(l-x)—w} 9c, () =
ot Pe

= py Ve (DK)Vu + €, (D 1)V +

+ &, (Dk (V1] . (10)

The heat in 1 m® can be expressed in the form

H = pyoyT + Py Cw UYT + Py e u(1-X)T + pyw uxL,

as a sum of the heat in the porous material, in the water
in pores, in the ice in pores and of the specific latent heat
of the water in pores. If we assume that the process of
condensation changes vapour to water and ice in the
relation prescribed by the value of the function ¥ then we
obtain the intensity of sources of heat in the form

Awm k")

12 +

08 T

06 +

0.4 A

0.2 +

00 + + }
u (%)

Figure 3. Graph of the function A (brick body).

W= L,y + QL)) =L 1=

Ju
=L, P V(D, Vu)

according to (9). Now, if we insert the above expressions
of H and W into (8) then we obtain the temperature
equation

0
3- [PucmT + Pw Cw UXT + Pw g u(1-)T +
t

+ pwuxL,,] - VAAVT) =

a
=L, pw——a% - Vipy &, (D)x(u)Vu) (1

The remaining step of the derivation of the KM consists
in introducing the humidity potential ® [-]. K. Kiessl
defined this function by

®=¢ for <09 and ®=1.7+0.1logr for ¢>09.
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Here r is a mean value of the diameter of pores in the
porous material. The dependence of humidity u on the
humidity potential is given by a so-called sorption
isotherm f. In the cases ¢ < 0.9, A(®) is that part of | m*
of the porous material which is filled in by water under
given relative humidity. An example is presented in
figure 4.

35

u (%)
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Figure 4. Graph of the function @ (brick body).
If we introduce the notation

Cwg = Cy - ¢ s & = 9Of, A = M1, D)), © = XOf,
Kd(p = kdq)o.f’ Kd‘r = k«lrof‘

then we can reformulate the equations (10), (11) in the
following final forms (12), (13):
The equation of humidity potential

0

ot . )

P AD) +[ P -f<d>>( x+(p *

E

} £@)c, ()=
=Py Ve (DO@) (@)VD + ¢, (DK, (P)g (P)VD +

+ £ (DK (D)VT] (12)

and the temperature equation

0
a— [PmemT + pw TAP)(cg + oy X(D) +
t

+ pw L AP)x(D)] =

= V(A(T,®)V1) +

b
+ L5 (Tpw f’(d>)—a—- V(e (1)O(®) ' (D)VD | . (13)
t

The equations (12), (13) together with the boundary
conditions

P
(& (DO(P)(P) + £, (DK, (P)g'(P)) — +

on
+ £ (DK (D) AR g&xt,® 1)
on

od J
- L, (Dpy £, (DO@) (@) = + AT, &) = =

on on
=g, (xt 1) (14)
and the initial conditions
®d(x, 0) = D, (x), 1(x, 0) = T, (x) (15)

form the so-called Kiessl model.

Under certain natural assumptions on coefficients
which are satisfied for all known materials, the KM is a
second-order strongly parabolic quasilinear system of
"reaction - diffusion” type. By means of known a priori
estimates for the solutions of linear parabolic systems and
using a certain fixed point theorem (see [3]) we have
proved the existence of smooth exact solution on a finite
time-interval.

We are searching after a numerical method for an
accurate and stable approximation of the solution of KM
in the one- and two- dimensional cases for constructions
with generally composite materials. We hope that we
obtain a reliable computer program which will give us
more exact informations about the humidity behaviour of
constructions. But even accurate numerical solutions of
the KM will not describe the reality in all cases. For
example, the KM is not able to consider changes of the
properties of building materials in time or the influence
of unpredictable flow of air in the hollows of
constructions. We hope that this program will be useful
in critical cases like the humidity behaviour of flat roofs
or that of mantles of cooling towers.
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MODEL
SOUCASNEHO SIRENI VLHKOST! A TEPLA
V POREZNICH MATERIALECH
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Obsahem pfispévku je exaktni odvozeni tzv. Kiesslova
modelu v jedno, dvou i trojrozmérném piipadé. Jddrem tohoto
modelu je systém dvou parcidlnich diferencidlnich rovnic,
popisujici §ifeni vlhkosti a tepla v materidlech s pdrovitou
strukturou. Z odvozeni jsou patrné pfedpoklady. za nichz
Kiessliv model tento proces popisuje dostatecné vystiZné.
Poznatky autor( o struktufe a FeSitelnosti tohoto modelu i cile

jejich vyzkumu jsou struéné okomentovdny. V prici jsou

zminény i nékteré konkrétni dileZité pfipady mozného vyuZiti
Kiesslova modelu.
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