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TO THE CHEMICAL COMPOSITION OF CONTAINER GLASS

MARTIN MÍKA, qREGoRY F. PIEPEL

Battelle, P acific N orthwe st Laboratorie s

P.O. Box 999, Richl.and, Washington 99352, U'5.4.

Received April 15, 1997.

A new approach is developed for modeling the temperature and composition dependence of glass viscosity in the system NarO'

CaO-M,O-AI.O3-SiO2. The temperature dependence is described using the equation log(log \) = A + B log T. The dependence

of the cofficients A and B on chemical composition of the glass is expressed using reduced full-cubic mixture polynomials- The

new approach is much simpler to deve',op and use than the previous approach, and it has the Potential to yield better property'

composition models. The new approach yields an improved model for the dependence of viscosity on composition in the NarO-

CaO -M gO-Al2O 3-SiO2 glass system studied.

INTRODUCTION

Measured viscosity data for a test matrix of
16 container glass compositions in the system

NarO-CaO-MgO-AltO3-SiO2 were reported in a previous

paper [1]. The contents of NarO, CaO, and MgO were

varied, while the content of SiOt was kept constant.

Al2O3 was an impurity present in silica sand used as a

SiO, source, and hence also was constant. The test ranges

of the components were:

0<MgO<6wt.Vo
4 š Cao < |4 wt'vo (1)

12 š Na'o Š 16 wÍ.vo

SiOt (+AlrOr) = J4 wt.!o

Thus, MgO + CaO + NarO - 26 wt.%o fpr the 16 test

glasses. Table 1 lists the test glass compositions in wt'Vo.

The rest of the entries in table I are discussed later in the

paper.
In the previous paper [1], the dependence of

viscosity on glass composition was modeled by splitting
the composition region into two subregions, transforming
each triangular subregion to a regular simplex region, and

fitting separate models for each subregion. Although this

"split region" approach worked quite well for the glass

system studied, it was also quite complicated. This led to

applying a less complicated and more flexible "single

region" approach. The new approach keeps the

composition region undivided, and develops a single

model using least squares regression and statistical

methods for model reduction.
The old (split region) approach is described in the

next section, and the new (single region) approach is

described in the section following that. Then, the results

of the two approaches are compared. The paper ends with

some conclusions and recommendations.

SPLIT-REGION APPROACH

In the previous paper [1], the temperature de-

pendence of the viscosity data for each glass was fitted
via the equation:

log(log1)=Á +B|ogT Q)

where 11 is viscosity in dPa s, T is temperature in K, and

A and B are composition-dependent coefficients
determined from the data. The parallelogram
compositional region represented by the 16 test glasses

was divided into two triangular subregions (see figure 1).

The dependence of equation (2) coefficients Á and B on

composition was modeled separately in each subregion

by a special-cubic mixture polynomial [2]

! = b&r + b2z2 + br4 + bryz62 + bszg3 + brrzrz, +

+ brr3zrz2zl (3)

where y denotes either A or B; b1, b2, and b, are linear

blending coefficients; brr, brr, and b, are quadratic

blending coefficients; b,r, is a special-cubic blending
coefficient; and zt, 22, and z3 are mass fractions of
pseudocomponents (2, * Zz + \ = l). The pseudo-

components are defined separately for each of the two

subregions, conesponding to the three vertices of each of
the subregions. For subregion I, Zt = (IOX' + 3X, +

+ 3\)178, Zz = (2Xr - 24X, + l5&y156, and z, = (8X' +

+ 8X2 - 5\)152. For subregion II, z1 = (6X, - 6X, +

+ 7L)152, zz = (2X, + 24X2 - 15X3)/156, and zt = Xrl6.

For both subregions, X1, Xr, and X, denote the wt.Vo

values of MgO, CaO, and NarO, respectively. The 21, 22,

and z3 values for the 16 glasses are given in table I next

to their X1, X2, and Xt values. Note that the b coefficients
in equation (3) represent blending properties of
the pseudocomponents 3,, 22, dfidZ3, Dot the blending pro-
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Table l. Compon enÍ wt.?o (X') and pseudocomponent mass fractions (4) in test glasses and the measured and calculated values of Á
and B coefficients.

X, (wt.Vo) z, (mass fractions) measured' calculated"

Mgo Mgo NarO

I

z
3

4
)
6
7

8

9
l0
ll
l2
r3
t4
l5
l6

0.0
6.0
6.0
3.0
6.0
3.0
4.0
4.8
?.4
0.0
0.0
3.0
2.0
3.0
t.2
4.8

10.00 16.00

4.00 16.00

8.00 12.00

7.00 16.00

6.00 14.00

9.00 14.00

7.33 14.6',7
'1.60 13.60

8.40 15.20

14.00 t2.00
12.00 14.00

l1.00 12.00
t0.67 13.33

10.20 12.80

12.40 12.40

5;t2 15.48

1.0 0.0
0.0 t.0
0.0 0.0
0.5 0.5

0.0 0.5

0.5 0.0
0.3333 0.3333
0.2 0.2
0.6 0.2
0.0 1.0

0.5 0.5

0.0 0.5
0.3333 0.3333
0.2 0.3

0.1 0.'l
0.2 0.6r,67

7.53825 -2.22705
7.38098 -2.16776
7.8325r -2.30365
7.4467t -2.t9449
7.5t956 -2.2t077
7.5909r -2.23620
7.48493 -2.20357
7.530U -2.2t601
7.55896 -2.22873
7.89267 -2.33386
7.78905 -2.30443
7.74407 -2.28352
7.76105 -2.2896t
7.65t92 -2.25481

7.827t5 -2.31026
7.40078 -2.17832

7.53430 -2.22625
7.38223 -2.16868
7 .82972 -2.30318
't.4507r -2.t954',7

7.52625 -2.2t202
7.59833 -2.23941
7.4793t -2.20233
7.52538 -2.21485
7.56784 -Z.Z3LrT
7.89084 -2.33363
7.79685 -2.30584
7.74t4t -2.28t36
'l.72582 -2.2'7909
7.67626 -2.26251
7.83235 -2.3t23t
7.39253 -2.t7498

0.0
0.0
1.0

0.0
0.5

0.5

0.3333
0.6
0.2
0.0
0.0
0.5

0.3333
0.5
0.2
0.1333

Coefficients from equation (2) estimated by least squares from measured viscosity data for individual glasses,
Coefficients from equation (2) calculated using coefficients from table 2 substituted in equation (5).

34
NarO

Figure l. Glass composition region, subregions, and experimental
glasses.

perties of the components Xr, Xr, and X3. The b
coefficients are determined separately for Á and .B, and
for subregions I and II.

The special-cubic models in equation (3) were
exactly fitted to the Á and B data from glasses l-7 for
subregion I, and glasses l, 3, 6, 10, ll, 12, t3 for
subregion II tll. Because glasses 1,3, and 6 were used
to fit the Á and B models for both subregions, only l l
out of the 16 glasses were used. The two models
(corresponding to the two subregions) for each of A or B
have a total of 14 coefficients. However, the linear and
quadratic blending coefficients for MgO and NarO are

the same for the models corresponding to subregions I
and [I [1]. Hence, the two models (corresponding to the
two subregions) together effectively have 1l coefficients.

Data for the remaining 5 out of 16 glasses (# 8, 9,
14, 15, and 1ó) were used in the original paper [1] to
validate the two models. The two models predicted the
temperature dependence of viscosity for these five glasses
with a maximum deviation of 1loC within the viscosity
range studied. Specifically, for each glass: (I)

temperatures coÍTesponding to viscosities of 102, l03, and
l01dPa s were interpolated from the measured data using
equation (2), and (ii) temperatures corresponding to
viscosities of l07'ó, l0l3' and l014.5 dPa s were
extrapolated using equation (2). Temperatures
coÍTesponding to these viscosities were calculated for
each of the five glasses by substituting the Á and B
models (from subregion I or II, depending on the glass)
from equation (3) into equation (2). These temperatures
were then compared to the temperatures interpolated or
extrapolated from measured data. As noted above, the
maximum measured - calculated temperature deviation
was 11 oC. The average measured - calculated
temperature deviations for glasses # 8,9, 14, 15, and 16

were -6.5, 5.7, -8.8, 7.0, and -6.7 oC, respectively. While
this perforÍnance is quite good, the approach of splitting
the composition region into subregions, performing
separate composition transformations for each subregion,
and developing and applying separate models for each
subregion is quite complicated. Fitting saturated models

CaO
2

Mgo
1

ora9'16
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Relating the temperature dependence of viscosity to the chemical composition of container glass

(using the same number of data points as coefficients to

be estimated from the data) for each subregion is also a

negative aspect of the approach, since it does not provide
for detecting bad data points or inadequate models as part

of the fitting process.

SINGLE-REGION APPROACH

As in the previous paper [l], equation (2) was used

to fit the temperature dependence of viscosity for each

glass. The resulting Á and B values (denoted ..measured''

in i.able 1) for each glass were then modeled using the

full-cubic mixture model

! = C t * cřz + C3x3 + cnx|xz + cnx 3 + cnx;\ +

+ cn3x 2x, + d,p,x,(x, - x,) + d,,x,x,(x, - Ít) + (4)

+ drrxrxr(xz - x)

where y denotes either A or B; c1, c2, and c, are linear

blending coefficients; C12, c,,, and cB aÍe quadratic blen-

ding coefficients; cnt is a special-cubic blending

coefficient; drr, drr, and d, are cubic blending

coefficients; and xt, x2, and x3 are mass fractions
(wt.Votl\O) of MgO, CaO, and NarO, respectively. The

blending coefficients quantify the blending properties of
the components expressed as mass fractions.

The full-cubic mixture model (4) was fitted sepa-

rately to the A and B data, but in each case the special-

Table 2. Reduced full-cubic model coefficients and standard errors for Á and B.

-cubic term (MgOxCaOxNqO) was found to be

statistically insignificant. This term was deleted, and a
reduced full-cubic model

! = C t t cřz + C3x3 + C0x 2 + czx ca + cnx;\ +

+ d';,,x,(xl - xz) + d,,x,x'(xr - Ís) + d,'x;''(xz - xl) (5)

was then separately fitted to the Á and B data using the

least squares regression capabilities in Minitab [3]. The
resulting coefficients and coefficient standard eÍTors are

listed in table 2. Also listed in table 2 are s, R2, and

R2p,"di"t"d statistics that summarize how well the model (5)

fits the A and B data.Interpretations of these statistics are

given in the footnotes to table 2.

For both A and B, the coefficients for the

CaOxNarO and CaOxNarOx(CaO-NqO) terms are only
about 1.7 to 2.0 times larger than their standard eÍTors

(see table 2). The statistical significance levels for these

coefficients range from 0.08 to 0.13 (which are the

probabilities of incorrectly declaring the coefficients to be

different from zero). This suggests that the

CaOxNarOx(CaO-NarO) cubic blending term may not be

needed in the models, so the Á and B data were refitted
to model (5) without that term. The refitted models
experienced only slight decreases in R2, but moderate

decreases in R2.r*,.,,on. Hence, it was decided to use the

models for Á and B containing the CaoxNqox(Cao.
NarO) cubic blending term, as given in equation (5).

coef. standard
eÍTor

coef. standard
eÍTor

component

Mgo
CaO
NarO
MgOxCaO
MgOxNarO
CaOxNarO
MgOxCaOx(MgO-CaO)
MgOxNarOx(MgO-NatO)
CaOxNarOx(CaO-NarO)

495.61

47.40
-3.61

- 1891.25
-3042.59

128.00
-2313.58
-8654.45
- 1378. l9

60.1

15.9

8.0
1))',l
36f.."1

74.7
518.2

r 130.0

680.0

-145.45

-t3.zl
0.82

548.94
897.53
-42.19
651.60

2552.27
316.06

18.6

4.9
2.5

99.2
112.7

23.0
t59.2
341.r
208.9

J

R2 '*

Rtrrt,r,,nn 
**'

0.01804
0.994
0.952

0.005544
0.995
0.974

s is the root mean square of differences between measured and calculated values of the response variable (Á or B). If s is

significantly larger than the measurement uncertainty in the response variable, then the model may have a significant lack-of-fit.

R2 is the proportion of variation in the response variable (Á or B) accounted for by the fitted model, and hence must be between

0 and 1. The closer R2 is to l, the better the fit of the model to the data.

R2P."di".inn is the proportion of variation in the response variable (Á or B) accounted for by the model, where each data point is

in turn left out of the model when assessing the predictive performance of the model for that point. Rt",*,"unn is sometimes

referred to as R2a.rsvalidarion or R2o*rrr.
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The Á and B models listed in table 2 are valid in the
composition region denoted by equation (l). Calculated
values of Á and B were obtained by applying the model
coefficients in table 2 to the glass mass fractions (zi) in
table l, and are listed in the final columns of table l.
Plots of calculated versus measured values of Á and B
are shown in figure 2. These plots demonstrate that the
models in table 2 capture the effect of composition on
viscosity with no bias and excellent precision. The 45o
lines i.r figure 2 represent peďection, which occurs when
calculated values exactly equal measured values.

7.5 7.6 7.7

-) measured Á

-2.15

-2.20

-2.25

-2.30

-2.35

_2.35

b)

-2.25 -2.20

-+ measured I

blending behavior. Second, models (4) and (5) Íue
expressed in terms of mass fractions of the three
components of interest (MgO, CaO, and NarO), whereas
model (3) is expressed in terms of pseudocomponents
that are linear combinations of these three components.
working directly in the mass fractions of the components
of interest rather than in two different sets of
pseudocomponents (one for each of the two subregions
of the split composition region) makes the single-region
approach much easier to develop and apply than the splir
region approach.

Table 3 lists temperatures calculated using equation
(2). The "measured" (meas.) temperature values are
actually calculations using the Á and B values from table
I (which were obtained from measured viscosity and
temperature data for each glass using the least squares
method) in equation (2). The calculated (calc.)
temperature values were obtained using the reduced full-
cubic model representations of Á and B (from table 2) in
equation (2). Temperatures were compared at constant
viscosities I = 102, 103, 104, 1076, 1013 and l0la5 dpa s.
The maximum measured - calculated temperature
deviation was 8 oc. The average measured - calculated
temperature deviations for glasses # 8, 9, 14, 15, and l6
(which were not exactly fitted by the split-region
approach) were 2.0, -1.7, -0.8, 1.5, and -Z.j oC,

respectively.
The 8 oC maximum deviation for the single-region

approach is somewhat better than the maximum deviation
of 1l oC for the split-region approach. Also, the average
temperature deviations for glasses # 8, 9, 14, !5, and l6
obtained using the single-region approach are from 4 to
8 oC smaller than those obtained using the split-region
approach. These comparisons íue somewhat misleading
for two reasons. First, 11 of the 16 data points were
fitted exactly by the split-region approach, and thus any
eÍTors in the data are undetectable. The single-region
approach would be less affected by enors in one or more
data points, and the resulting measured - calculated
deviations could help detect problems undetectable with
the split-region approach. Second, glasses # g, 9, 14, 15,
and 16 were not used to develop models with the splir
region approach, but they were used to develop models
with the single-region approach. Hence, the measured -

calculated deviations for these points might be smaller
for the single-region approach.

To assess how much using glasses # g, 9, 14, 15,
and 16 to develop the single-region models contributed
to reducing the average measured - calculated
temperature deviations, these five glasses (along with the
other eleven) were used in a modified version of the
split-region approach. Specifically, separate special-cubic
mixture models were fit to all of the subregion I data
(glasses # l-9, 16) and all of rhe subregion II data
(glasses # 1,3,6, 10-15). The maximum measured - cal-

7.9

7.8

!t
É 7.7
fo
8 r.6

t
I| 7.5

7.4

7.8 7.9

a)

o
og
(E

5
IJ(!o

t

-2.15

Figure 2. calculated (from table 2 models) versus measured plots
of: a) A and b) B.

COMPARING THE SINGLE-REGION
AND SPLIT-REGION APPROACHES

Models (4) and (5) used in the single-region
approach have two advantages over model (3) used in the
splirregion approach. Firsr, models (4) and (5) can
capture full-cubic blending behavior of components,
whereas model (3) can capture only special-cubic
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Table 3. Temperatures (oC) obtained from measured data (meas') using equation (2) and calculated data (cďc.) using the reduced full-
-cubic model of equation (5). Viscosity t1 is in dPa s.

glass

temperature at log \ = 2

meas. calc. diff.

temperature at log I = 3

meas.

temperature at log I = 4

meas. calc. diff.diff.calc.

I

2
J
A
+

5

6
7

8

9

l0
il
tz
t3
l4
l5
l6

1504
r572
I 586
153 I

l 568
1546
1547
t557
r532
t517
I 503
t544
I 539
t547
r537
t544

l50l
l 569
I 584
t532
t573
t54l
t544
t554
1534
r5 l5
l 508
t55,2

1537
r546
r534
1549

t208
r257
t286
t226
1260
1245
t241
l25l
1232
t23l
t216
1249
1245
1247

1246
1235

t206
t254
t284
r2z8
t2&
r240
1238
1248
t234
1230
t22L
r255
1242
r247
1244
t239

1029
t067
l 103

t042
r0'73
l06l
1056
r065
1050
t057
l04l
1068

1066
1065

1068

1048

3

3

2

-l
-5

5

3

J

-2
2

-5

-8

2

I

3

-5

z
J

2
a

-4
)
3

3

-z
I

-5

-6
3

0
2

-4

t027 z
1065 2
il01 2
1043 -l
t0l'7 -4

1058 3

10s3 3

1063 2
l05l -l
1055 2

1046 -5

t0'74 -6
1063 3

1066 -t
1066 2

l05l -3

Table 3. Continued.

glass

temperature at log \ = 7.6

meas. calc,

temperature at log 1 = 13

meas.

temperature at log I = 14.5

meas. calc. diff.diff.diff.

451 456 I

467 466 r

514 513 I

458 459 -l
418 481 -3

417 476 I

468 466 2
475 474 l
469 47 | -?
493 492 I

479 481 -2
490 493 -3

490 486 4
483 485 -2
495 494 I

459 460 -r

2

I

I

0
1

2

I

I
.|

0
-3
1

4
-2

I

-l

494
505
552
496
517

515
505
513
506
529
515
528
527
520
532
496

701 2

122 2

767 I

710 -l
737 -3

726 Z

718 2
'72',t 2

720 -l
736 I

725 -3

744 -4
735 3

735 -1

742 0
713 -2

492
504
551

496
519
513
504
5t2
s08
529
518
530
523
522
531
497

703
't24

768
709
734
728
720
't29

119
737
722
740
738
134
742
7tl

I

7

J
4
5

6

at

9

10

ll
t2
l3
t4
l5
t6

culated temperature deviation over all glasses and
viscosities was 8 oC, and the average temperature
deviations for glasses # 8, 9, 14, 15, and 16 were -4.8,

5.8, -6.5, 6.5, and -5.0 oC, respectively. Thus, in spite of
using glasses 8, 9, 14, 15, and 16 to fit the models in the

revised split-region approach, the resulting average
differences are still larger than those obtained with the

single-region approach. Hence, it appears that the

advantage of the single-region approach is due mainly to
the presence of full-cubic terms in the model.

The total number of coefficients in the single-region,
reduced full-cubic model (5) is 9, compared to 14

coefficients (effectively 1 1, as noted earlier) in the split-
region, special-cubic models []. Hence, the single-region
approach also has the advantage of yielding a smaller,
and (as seen above) a better-fitting model for
characterizing the effect of composition on viscosity.

CONCLUSIONS AND RECOMMENDATIONS

The reduced full-cubic model fits the experimental
viscosity-composition data very well for the NarO-CaO-
MgO-AlrO3-SiO2 container glass system studied. The
reduced full-cubic mixture model has two fewer
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coefficients and fits the data slightly better than the two
special-cubic mixture models developed previously [l].
The greatest advantage of the new (single region)
approach, however, is that it is much simpler to develop
and apply than the previous (split region) approach.

In general, the choice ofan approach for developing
a property-composition relationship will depend on the
nature of the problem. If the relationship can be
adequately represented over the whole composition space
of interest by a single model, then that is the best
approach to take. In other cases where the property-
composition relationship changes in a fashion not easily
captured by a single model, splitting the composition
region into two or more subregions and developing
separate models for each subregion may be a better
approach. When separate models for each subregion are
to be obtained empirically or semi-empirically, we
recommend that the number of data points taken for each
subregion should exceed the number of model
coefficients to be determined. In that way, the adequacy
of the separate models can be assessed, and any outlying
data points can be detected as part of the fitting process.
In such splirregion cases, it is also recommended that the
separate models for each subregion be fit in a single
fitting step, so that consistent model predictions are
obtained along subregion boundaries. Regression software
capable of fitting piecewise models (e.g., SAS [a]) is
required to do this.
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VZTAH MEZI TEPLoTNÍ zÁvtst-osTÍ vIsKoZ|TY
A CHEMICKÝM sLoŽENÍM oBALovÉHo SKLA

MARTIN tuÍre. GREcoRY F. PIEPEL

Bauelle, Pacific Northwe st Laboratorie s
P.O. Box 999, Richland, Washington 99352, U.S.A.

By| vypracován nový přístup k modelování závislosti
viskozity skla na teplotě a chemickém s|ožení v soustavě Na'o-
Cao-Mgo.Al2o3-sio2. Tep|otní závislost je popsána rovnicí
log(log l) = Á + B log T. Závislost koeficientů Á a B na

chemickém složení skla je vyjádřena redukovanými úplnými
kubickými polynomy. Nový přístup je mnohem jednodušší co do
výpďtu i použití a umoŽňuje získat přesnější modely závislosti
v|astností na chemickém složení.
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