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An attempt is made to set up the fundamentals for applving mathematical process modelling on the basis of rational
thermomechanics to the forming process of oxide ceramic pastes plasticized by thermoplastic binders. Using a continuum
description throughout we start with the local balance equations known from traditional continuum mechanics and mention the
special status of the entropy inequality. Looking for a material model as simple as possible but as complex as needed,
constitutive theory is used to deduce a simple fluid model (the generalized Newtonian liquid) with the help of constitutive
principles, and for the one-dimensional case the Herschel-Bulkley model is suggested. In order to make the theory liable to
experimental verification, idealizations are made concerning flow geometry. Boundary conditions are shortly discussed. Apart
from delivering a rational framework for the modelling of ceramic injection molding, the methodological approach applied in
this paper should be of value also for other widely used forming processes in ceramic technology, especially cold extrusion,

extrusion at elevated temperature or hot extrusion.

INTRODUCTION

Injection molding is one of the most versatile
techniques for the automized large-scale production of
small-sized complex-shaped ceramic parts. The whole
production process from the raw materials to the final
part consists in mixing and compounding the ceramic
powder with the organic binder mix (binder, plasticizer
and other processing aids), the forming process proper
(injection molding sensu strictu), ejection of the green
part, debinding (burnout of binder, plasticizer and all
other organic compounds) and firing, where the ceramic
body undergoes sintering in the same way as bodies
formed by any other ceramic shaping technique.

The subject of the present paper is the forming
process itself, where in practice a thermoplastic ceramic
paste is injected into a colder metal mold cavity, in
which it solidifies (under a certain hold pressure) to a
rigid ceramic green body. Apart from inhomogeneities
remaining after mixing and compounding, and apart from
defects arising during the subsequent step of debinding,
the flow pattern during injection itself is decisive for the
formation of microstructure. And in contrast to the other
phenomena which can be considered as faults - or the
result of having not yet managed the respective process
step - the formation of orientation textures in the case of
non-spherical particles, gradients of density (particle
packing) or other smooth changes in microstructure are
essential parts of the process step itself and as such
unavoidable. It seems to us that controlling this
microstructure with its unavoidable "inhomogeneities"

should be one of the main objectives on the way to make
process control effective and to enable the production of
injection-molded ceramics with reproducible properties.

While most of the work done in the field of ceramic
injection molding is based on empirical approaches (cf.
e.g. [10, 13, 12, 17, 14]) we feel that it is necessary to
encourage research on a rational basis and to investigate
the possibilities of such approaches for our purpose.
Without doubt the mathematical modelling of a rcal
ceramic injection process (i.e. in the way in which it is
performed in practice) is a highly non-trivial enterprise,
not to say hopelessly difficult.

The difficulties consist first of all in the material
concerned. An injection-molding paste is a mixture of at
least one solid and one liquid component (constituent) or
phase. The solid phase for itself would behave as a
flowing powder system, the organic liquid phase usually
as a visco-elastic liquid. From a philosophical point of
view it would therefore be most satisfactory to model
such a system by multiphase mixture theory [25] and to
account for the possibly visco-elasto-plastic behavior of
such a material. It is clear however that in engineering
practice it can never be the aim of a material model to
describe all possible features of material behavior in any
thinkable situation. Much more elegant is a simple model
that incorporates exactly those features which are of
interest for the intended applications. Thus the choice of
an appropriate material model is always a compromise
between realistic generality, practical usefulness and
mathematical simplicity and has to be guided by a
portion of pragmatism.

Ceramics — Silikdty 47 (2) 47-54 (1997)

47



W. Pabst, J. Havrda, E. Gregorovd

Not less severe is the complexity of the process
itself (it is neither steady nor isothermal) and the possible
flow geometries which could be of interest for ceramic
injection molding [17]. As far as these points are
concerned it is reasonable to make certain useful
idealizations which make the process mode! a little less
general but give way to considerable simplifications of
the governing field cquations and allow analytical
solutions, explicit calculations and the comparison with
cxperimental results.

SINGLE BODY CONTINUUM DESCRIPTION
OF CERAMIC PASTES

A typical ceramic injection-molding mix consists of
a continuous fluid phasc (usually a thermoplastic binder)
and a dispersed solid phase (the ceramic powder)'. Being
interested in the gross behavior of such a material (e.g.
a thermoplastic paste with an oxide ceramic powder as a
filler) during the forming process, especially the velocity
profile which develops during flow, we choose a con-
tinuum description for the material as a whole and do not
differentiate between the individual phases (constituents).
Thus we consider the material as a single body’
characterized by a non-zero density®, which is a smooth*
function of the spatial position x and the time instant f:

p=pix, >0 . (n

In order to describe mechanical phenomena, we intro-
duce a further smooth field called motion by the
deformation function x, which is a function of the
referential position X and the time instant ¢

x = (X, n (2)
and define the deformation gradient
F = Grady(X, 1) (3)
(where “"Grad" denotes the referential gradient), the
velocity

X (X, 1)

=20 (4)
ot

the velocity gradient grad v (where "grad" denotes the
spatial gradient) and its symmetric part called rate of
deformation tensor:

A4

D = (gradv + (gradv)") , (5)

where the superscript 7 denotes the transpose of a tensor.
To account for thermal effects we would have to
introduce also the temperature field

T=Tx,1) (6)

and its gradient.

BALANCE EQUATIONS
AND ENTROPY INEQUALITY

Accepting the single body approach we have to con-
sider the following set of balance equations known from
classical continuum mechanics (here given in local form):

Mass balance:

p+pdivy=0 (7
Linear momentum balance:

pv = divT + pb (8)
Internal energy balance:

pu = tw(TD) + divgq + Q0 , (9

where p is the density, v the velocity, T Cauchy's stress
tensor, b the external body force, u the internal energy,
D the rate of deformation tensor, q the heat flux vector
and Q the heat source. In these equations "tr" denotes the
trace of a tensor, "div" the (spatial) divergence and a
superimposed dot the material time derivative of a scalar
or vectorial quantity ¢ defined by:

__do

0] E» +v.
In the above case of a non-polar material (this was
assumed a priori) the angular momentum balance reduces
to the statement that the stress tensor is symmetric and
need not be considered explicitly. The body force b and
the heat source Q being adjustable from outside and thus
considered to be known a priori, this is a system of 5
equations in 15 unknowns (p, T, 1, threc components of
v and q respectively, six components of T), so that it is
generally necessary to close the system by specifying 10
of these dependent variables (usually the six stress tensor
components, the three heat flux vector components and
internal energy) by constitutive equations. Examples of
very simple constitutive equations would be Newton’s
relation for linearly viscous fluids, Fourier's relation for
heat conduction and the energetic equation of state for an
ideal gas.

grad@ (10)

In contrast to some other authors cven in the field of
rational mechanics we prefer to call systems of this type,
where the solid loading is near to the critical powder
volume concentration (CPVC), "pastes " and use this handy
word as a short hand synonym for the rather clumpsy
expression "highly concentrated suspension”. It should be
clear however that principally rational approaches are apt
to fit mixtures of arbitrary concentrations.

In contrast to mixtures which are treated as "multiple
bodies" in rational thermomechanics, cf. [25].

Viz, the bulk density of the paste as a whole.

l.e. as often continuously differentiable as needed.
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Entropy and the Second Law have a special status
in modern continuum thermodynamics (rational
thermodynamics) which has been extensively dealt with
in works of the Truesdell-Coleman-Noll school and
many other works originating from or influenced by it,
cf. e.g. [5, 15, 21, 25, 26]. In contrast to traditional
thermodynamics one generally adopts the idea of
considering the Second Law as a constitutive principle
(called entropy or dissipation principle) which imposes
restrictions on the constitutive equations and thus limits
not the kind of processes which are allowed to occur but
the kind of response by which a material reacts on the
influences it undergoes during such a process. -

The most universally accepted local form of the
Second Law is the so-called Clausius-Duhem inequality
in the form proposed by Truesdell and Toupin [25, 27]:

pj'+divi»g 20
T T

(11)

where s is the entropy. For reasons of convenience and
practical handiness it is usual to combine it with the
First Law (in its local form, i.e. the internal energy
balance (9)) and to define the Helmholtz free energy

f=u-Ts (12)
to obtain the so-called reduced inequality

A o]
t(TD) - pf - psT 7 q.g20, (13)

where it is evident that the last three lLh.s. terms are
related to heat conduction, temperature changes and
changes in free energy, i.e. thermal effects in a broader
sense, while the first term accounts for dissipation due to
viscous effects (internal friction), i.e. mechanical work.
In a purely mechanical theory or in isothermal situations
one consequence of this equation is that the viscosity
coefficient must always be positive for linearly viscous
fluids. For further consequences of this inequality in
non-isothermal situations the reader should consult [21].

THE 3-D MATERIAL MODEL

The way how a material behaves in a certain process
can be described by constitutive equations, which express
the dependence of quantities characterizing the material
response on the fields of density, motion and
temperature.  The thermomechanical response of a
material at a certain spatial position in a body and at a
certain time would be completely characterized by the
constitutive equations for the internal energy u, the
entropy s, the heat flux vector q and the symmetric stress
tensor T. These quantities depend in general on the set of

independent variables p, ) and T and their histories (i.e.
all their former values) in the whole body. This is in
rough words the meaning of a slightly extended version
of the principle of determinism as known from
constitutive theory. The fact that all quantities (u, s, q
and T) are assumed to depend on the same set of
independent variables and histories and no preferences
are made a priori is consistent with Truesdell‘s principle
of equipresence (equipresence rule) [25].

From a mathematical point of view, one could write
down the abstract form of such a dependence by a
response functional, whose independent variables would
be functions of time (from the infinite past up to the
present instant f) and all material points Y of a body
including the one under actual consideration X. However
a theory of such generality has never been developed.
Almost all materials of engineering interest can be
modelled as local materials, i.e. materials obeying the
principle of local action. In essence it says that the near
neighborhood of a material point has a stronger influence
on the material point under consideration than the more
distant neighborhood. Mathematically this corresponds to
substituting spatial functions as independent arguments of
the response functional by its local values, gradients and
higher gradients at this specific material point. The
corresponding principle of differential memory states
something similar in dimensions of time: The near past
has a stronger influence on the material response of a
material point than the distant past. Mathematically this
means to substitute history functions as independent
arguments in the response functional by their actual
values, time derivatives and higher time derivatives at the
actual time instant.

With accepting these two principles we can replace
the complicated response functional by a response
function F and write the general thermomechanical
material response in the following form:

{u, s, q, T} =
= Fix,,p. % T,

gradp, grad(gradp), ... p, p ... gradp, ...
Grady, Grad(Grady), ... ¥, ¥, -.. Grady, ...

gradT, grad(grad?), ... T, T, ... GradT, ... ] , (14)

where all arguments except for x and ¢ itself are fields,
i.e. functions of x (or X) and ¢.

Although this equation is very general, by adopting
it we have already excluded models for materials
exhibiting non-local effects and for materials with a
long-range memory. The first step can easily be justified,
because non-local effects certainly are not relevant for
the materials and processes that are interesting in ceramic
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technology. Slightly more intricate is the justification for
ignoring long-range memory effects in ceramic injection
molding,
fading memory, integral-type or rate-type materials are
widely used in polymer science to describe certain
phcnomena exhibited by thermoplastic materials. These
materials  serve as typical binders for the ceramic
injection molding process and it is not a priori clear, why
a ncglection of memory etfects should be justifiable here.
In fact typical thermoplastic ceramic pastes do show
elfects characteristic for materials with memory (e.g. the
die-swell or Barus effect at tube exits). It can however
not be the aim of a material modei 1o describe a material
as such in all its aspects, i.e. to predicate its possible
behavior in all thinkable situations or processes.
A material model should be first of all as simple as
possible and thercfore has to focus on those specific and
typical features of behavior which are absolutely
necessary for the processes to which the model is
intended to apply. And from this point of view an
imspection shows that long-range memory etfects are of
minor importance for the materials considered here and
the application in mind. As far as mechanical behavior is
concerned we have to describe mainly two features of
ceramic injection molding pastes:

~  The non-linear flow behavior (shear-rate dependent
apparent viscosity) and
~  the phenomenon of a yield value of stress.

Neither of these is necessarily related to long-range
memory effects and later in this paper it will be evident
that for reasons of experimental practice it is not useful
to choose a more complicated model.

With regard 10 the intentions of this paper we
confine the tollowing deductions to the purely mechanical
material response, i.e. to the stress tensor in the case of
isotherimal here  the
flux vector (in

Thus  we

the heat
numerical simulations of non-isothermal flow or plastic
injection molding Fourier's law is usually applied), for
entropy and for internal energy, and by omitting the
temperature gradient in the set of independent variables
we treat the material as if it were a non-conductor of
hcat. Furthermore we model our ceramic injection
molding paste as a so-called simple material ([ 18], cf.also
[26] and other textbooks), i.e. we omit density gradients
and higher deformation gradients in the set of
independent variables. While of certain importance for
mixture models [15, 21], no necessity has arisen to apply
a theory of non-simple materials within the context of a
single body approach and Nolil's theory of simple
materials [18] comprises all material models that are
known from traditional and lincar irreversible
thermodynamics. A differential memory with respect to

Processes. gnore

constitutive  equation  for

since 1t is well known that e.g. theories of

density has never been observed |15} and experience has
shown that differential memory with respect to tempe-
raturc can be ignored in processes where the temperature
changes are not too abrupt (for isothermal processes it is
not relevant at all), so that we can also omit the time
derivatives of density and temperature in the sct of
independent variables. For the sake of simplicity we
tentatively omit higher gradients and time derivatives.
The constitutive equation for the stress tensor is then:

T = T(x, 1, p. T. ¥. Grady. . Grady) . (15)

It can casily be shown that a dependence of this type is
the simplest possible cquation which allows the
description of viscous effects (internal friction), which is
necessary to model real fluids in processes where they do
not behave as Eulerian (i.e inviscid) ones. A more
familiar form of this equation is [21] :
T = Tix. 1. p. T, . F. v. gradv) . (10)
Even now the dependence is too general from a physical
point of view. Some of the independent variables are
excluded by the principle of matenal objectivity, which
ensures the invariance of material response with respect
to Galiler transformations of the observer. In regard of
this principle the motion (deformation function) y the
velocity v and the skew-symmetric part of the velocity
gradient as well as the explicit dependence on the spatial
position x and the time instant t vanish. Furthermore the
intended application to an isotropic fluid allows us to
exploit the symmetry principle, with the help of which it
can be shown that the dependence of the deformation

gradient F is redundant [15, 21]. The remaining
constitutive equation is then:
T =T(p. 7. D) (17)

This is not all. The principle of material objectivity bears
another important consequence insofar as it states than
any objective tensor function (and T is a priori
introduced as an objective quantity, cf. [21]. must
transform according to then transformation law of a
geometrical tensor, i.e. must have following property:

&

QTQ' = QT(p. 7. D)Q" = T(p. T. QDQ") (18)

Here Q denotes an arbitrary orthogonal tensor (i.c. det
Q= +1 for proper and det Q = -1 for improper
rotations). Tensor functions with this property are called
isotropic [15, 21], and such isotropic tensor-valued
functions with a symmetric second-order tensor argument
(D) can be written in a more explicit form without loss
of generality (by the Cayley-Hamilton theorem and the
representation theorem known from tensor analysis, cf.
(2, 15, 26]):
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T=0,I+¢,D+¢,D? (19

In this equation I denotes the unit tensor and the scalar
coefficients ¢, are generally functions of p, T and the
three principal invariants of D defined as:

I, =uD
I, =%[(uD) - uD*] (20)
11, = detD 2D

For our purposes a further and very significant
simplification of this equation follows from the fact that
for processes of engineering interest a ceramic injection
molding paste can be considered as incompressible as
long as vacuum voids, air inclusions or gas bubbles are
absent®. In this case the continuity equation for mass (7)
reduces to the statement:
divy = 0 (22)
It can be shown easily that this implies a zero value of
the first invariant:
divv=uD=1;=0 (23)
and a corresponding simplification of the second
invariant II,.

Furthermore the pressure p in the well-known stress
tensor decomposition for simple fluids:

T=-pl+1 (24)
(with 1 denoting the viscous or dissipative stress tensor)
does not correspond to the thermodynamic pressure any
more (i.e. ceases to be determined by an equation of
state) but becomes a hydrostatic pressure of arbitrary
magnitude, so that the first r.h.s. term of (19) containing
the unit tensor can be absorbed in it.

Thus the viscous stress tensor can be written in the
following way:

T=¢,(p, T, wD? I, )D + 0, (p, T, trD?, I, )D* (25)

(where the first r.h.s. term accounts for shear stresses and
the second for normal stresses as can easily be shown for
simple shear flow, cf. {1]). As is well known from
experimental rheology normal stress effects like the
Barus effect (die-swell) or the Weissenberg effect usually
appear at free boundaries. Injection molding on the other
hand is essentially a process where - apart from the
moving flow front in the mold cavity - free boundaries
are of no importance. This fact and the regard to the
intended applications of the model in the context of
microstructure formation, which is realized only during
the flow in fixed boundaries, give us the right to ignore
the second r.hs. term of (25). Concerning the third

invariant on the set of arguments it can be shown [22]
that for simple shear flows the determinant of D
vanishes® and the resulting constitutive equation for the
shear stress is the well known model for so-called
generalized Newtonian liquids:
T =2n(p, T, 2uD*)D , (26)
the numerical factors being conventional [1]. The
so-called apparent viscosity 1 is a function of bulk
density p’, temperature T and the argument that can in
simple shear flows be interpreted as a square of a scalar
shear rate or, equivalently, as the shear of one component
of the velocity gradient.

SPECIAL FLOW GEOMETRIES
AND BOUNDARY CONDITIONS

Explicit calculations of velocity profiles in general
3-D flow processes usually require a very careful analysis
of the respective geometry and the choice of an
appropriate numerical algorithm to solve the governing
PDEs. This is a highly non-trivial task for whole branch
of engineering called Computational Fluid Dynamics
(CFD) and goes beyond the objective of the present
paper. It is clear that for explicit calculations and
predictions of velocity profiles a constitutive equation of
the form (26) is still too general. Therefore one is forced
to assume a certain form of the dependence of 1 on the
argument 2trD?, which should be plausible, simple and
permit a physical interpretation of the new coefficients or
parameters introduced. The general procedure to manage
this problem in commercial software packages is to take
one of the well known rheological models developed for
1-D situations (in the simplest case Newton‘s constitutive

The question whether or not a ceramic mix can be
considered as incompressible is not trivial. Pure liquids and
solids are commonly considered as incompressible in
contrast to gases or gas-containing liquids. This is
reasonable. Note however that a liquid-solid mixture can be
compressible even if both phases are incompressible. This
is due to possible changes in the solid volume fraction
during flow. If the solid particles are not by chance
neutrally buoyant, i.e. of equal density as the surrounding
liquid, the mixture as a whole can well undergo changes in
(bulk) density. However for the solid loadings near to the
CPVC as is the case in most injection molding pastes, the
assumption of incompressibility should not be too far from
reality.

Many different types of flow are locally simple shear flows
and belong to this class, but it is out of question that in the
case of mold filling in ceramic injection molding a certain
care must be taken when the mold cavity is of complicated
form, e.g. containing sudden contractions or expansions.
Remembering the incompressibility condition, i.e. the fact
that p is constant in the flow considered, this dependence
just means the trivial statement that 1 depends on the type
of the paste, e.g. its solid volume fraction.

7
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equation for linearly viscous fluids) and to assume its
validity for general 3-D flow.

We with follow a similar scheme here with the only
difference that with respect to the intended experimental
verification of computed results we apply these
rheological models to the special case of unidirectional,
locally simple shear flow, i.e. for the flow situation for
which they were actually designed.

Let us consider unidirectional one-dimensional flow
under a pressure gradient (Poiseuille flow) in a
cylindrical tube with constant circular cross-section (cf.
figure 1). This geometry was chosen to allow easy
comparison with the capillary viscometer geometry in
subsequent work [19], but the treatment of plane
Poiseuille flow (i.e. unidirectional two-dimensional flow)
which.is also of importance in injection molding, would
be entirely analogous.

A
r

v

3
Y

Figure 1. Flow geometry (cylindrical Poiseuilie flow).

In  unidirectional one-dimensional  cylindrical
Poiscuille flow to the radial and angular velocity
components vanish, and for steady flows the axial
velocity at cach point is only a function of the radial
position. For this situation we can define a so-called
shear rate 7y, which is the radial gradient of the axial
velocity component:

dv, (r)
dr

It is easy to show that in this case (and analogically in
other cases of simple shear flow) the third argument in
(26) reduces to the square of the shear rate defined
above:

y=Yr) = (27)

2D =y, (28)
so that the apparent viscosity 1 in these simple shear
flows depends only on density, temperature and shear
ratc. Thus the (one-dimensional) constitutive equation for
the shear stress component T,, can be written in the
form:

=1, =0T Y)Y . (29)

Such a shear-rate dependence of the apparent
viscosity of course is one of the most important features
that can experimentally be observed for various
non-Newtonian fluids and must be taken into account to
describe their behavior. However, nothing has been said
so far about the explicit form of this dependence. At this
stage rational deduction ends. The material model is
exactly determined and for the simplified situation of
simple shear it is clear how experimental measurements
have to proceed in principle: One has to measure the
shear rate at certain point and time and the corresponding
value of the shear stress in the material at this point and
time. Thus from a theoretical viewpoint all further
models are redundant, because it is principally possible
to determine the flow curve® experimentally to any
desired degree of accuracy [4].

For at least three reasons however it is useful to
adopt one of the well-known empirical rheological
models to fit the measured flow curves :

— Adopting a physically reasonable model makes
interpolations  (and to a  certain
extrapolations) possible and thus reduces the number
of experiments needed to determine the complete
flow curve in the range of interest.

-~ 1f a calculation of velocity profiles 1s intended. this
task is substantially tacilitated, when the course of
the flow curve can be expressed by a simple model.
In some cases analytical solutions can be obtained.

—  Using an appropriate empirical model for a class of
similar materials offers the possibility to collect and
compare rheological data ot different systems, e.g.
ceramic injection molding pastes with different
powder contents, with different binder systems or at
different temperatures.

degrec

A very simple and widely used model in different
fields of non-Newtonian fluid dynamics and rheology is
the so called "power law":

1=Ky . (30)

where K is called coefficient of consistency and n flow
index.

For its simplicity this equation is one of the favorite
equations used in commercial software packages for
non-Newtonian fluids without memory and has also been
applied to thermoplastic injection molding mixes [7, 9,
16]. :
As is well known from traditional ceramic techno-
logy a non-zero value of yield stress is characteristic for

We call a flow curve the graphical representation of the
one-dimensional constitutive equation an measured by
standard methods of experimental rheology. e.g. the
capillary viscometer method.

52
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classical ceramic mixes containing clay minerals and
experience shows that yield phenomena occur also in
ceramic injection molding mixes, The simplest way to
include yield stress in the rheological model is given by
Bingham's equation
T=1,+ Ky , (31)
where 1, is the yield stress and K is called plastic
viscosity in this context.

To describe both the non-linear flow curve and the

phenomena of yield stress we prefer the three parameter
Herschel-Bulkley model, which can be looked upon as a
combination of the two preceding ones:
T=1,+ Ky . (32)
Another model which is sometimes recommended [9] for
ceramic injection molding mixes is Casson‘s model,
which has the advantage of containing only two
parameters:
Vo= V1, + py . (33)
For a more complete list of the possible models the
reader should consult standard textbooks on
non-Newtonian rheology (e.g. [1, 22, 23, 28]). It should
be noted that all coefficients (parameters) occurring in
these equations are generally dependent on the density
(viz, the bulk density, determined e.g. by the solid
volume fraction) and on the temperature of the mix.

By inserting the constitutive equation into the linear
momentum balance (or one of the one-dimensional
models into the corresponding one-dimensional balance)
a field equation is obtained that can be solved for certain
boundary conditions in steady processes’. Without going
into details here we think that a few remarks concerning
the latter might be useful.

For cylindrical Poiseuille flow one boundary
condition is trivially satisfied on grounds of the flow
symmetry. It asserts that at the tube axis the velocity
profile has a tangent plane which is perpendicular to the
flow direction. In other words, the stress distribution is
continuous at this position and the velocity profile
continuously differentiable ("smooth").

The second boundary condition which is usually
assumed asserts that the material does not slip at the wall
during flow. In contrast to the first boundary condition
mentioned above this second one is by no means obvious
and would principally require experimental verification.
It is generally believed, that for "normal" (i.e. pure small
molecules) fluids real slip does not exist and that the
occurrence of wall-slip has nothing to do with the degree
of adhesion of a certain material to a specific surface'".
On the other hand it is well known that multiphase fluids
(e.g. suspensions) and polymer solutions can exhibit a

phenomenon reminiscent of wall slip (the so-called
“apparent” or "effective" slip) which is a consequence of
local concentration variations during flow along solid
boundaries [23, 3]. Moreover it seems that in polymer
melts where large macromolecules are present, and the
ratio of molecule size to surface roughness scale is large,
real wall slip does occur [6, 24]. Principally these effects
cannot be excluded in the systems which are of interest
here. Experience with ceramic mixes has shown however
that for specially prepared internal surfaces of capillaries
(increased roughness by material abrasion) the influence
of effective slip flow is so small in the systems
considered that it is not measurable by standard
experiments of paste rheology [11, 19]. It seems therefore
reasonable to assume the no-slip condition as long as no
plausible and verifiable alternative can be suggested a
priori. If the mathematical flow model based on this
assumption works and is in agreement with
experimentally observed facts to the desired degree of
accuracy, this will be a hint a posteriori that the
assumption was realistic.

SUMMARY AND OUTLOOK

In this paper we presented the theoretical
fundamentals for rational modelling of injection molding
of thermoplastic ceramic pastes. It has been shown that
the central problem at this stage is the choice of a
sufficiently general and complex but reasonably simple
and explicit material model (constitutive equation). This
problem has been solved here by applying the principles
of constitutive theory well-known from rational
thermomechanics (principles of determinism, local action,
differential memory, material objectivity, material
symmetry, cf. e.g. [21, 25, 26]) to the case of typical
ceramic injection molding mixtures and discussing their
relevance for these materials with respect to the intended
applications. For the sake of simplicity the treatment in
the present paper has been confined to isothermal
situations. For non-isothermal situations application of the
entropy principle mentioned in section 3 results in certain
restrictions concerning free energy and the coefficient of
heat conduction if Fourier's law is adopted, but the
coupled problem of solving non-isothermal flow of
non-Newtonian fluids is a highly non-trivial one and
remains to be a subject of future theoretical research.
Certainly it is not a field for merely experimental work
to be done by ceramists.

For non-steady problems initial conditions have to be
considered, too.

Coleman, Markovitz & Noll [4] report that even mercury
does not slip along the smooth walls of a glass capillary
during tlow.
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A further point might be worth mentioning:
Throughout the paper ceramic injection molding mixes
are treated by a single body continuum approach. With
regard to the multiphase composition of such mixes it
could be desirable to use a multiple body continuum
description that takes into account the individual behavior
of the respective phases. Rational mixture theories offer
a reasonable way to do this [25, 20]. They are widely
applied in soil science, hydrology and geology, and on
their basis it is possible to get a qualitative understanding
of many phenomena observed in the flow of suspensions.
So far their application to paste flow is not usual and
quantitative predictions based on these theories are
complicated by serious difficulties in the determination of
individual boundary conditions for the different
phases [20].
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KROKY SMERUJICI K RACIONALNIMU MODELOVANI
INJEKCNTHO VSTRIKOVANI KERAMIKY

WILLI PABST, JIRf HAVRDA, EVA GREGOROVA

Ustav skla a keramiky,
Vysokd Skola chemicko-technologickd v Praze,
Technickd 5, 166 28 Praha

V tomto &ldnku, ktery md tvofit teoreticky zaklad dalSich
praci a navazujicich ¢lankd zabyvajicich se experimentdln{
strénkou problému, se pokousime o aplikaci raciondiniho pfistupu
na aktudlni problematiku pomérné velkého praktického vyznamu.
injekéniho vstiikovéani keramickych past. Jako typicky materidl
si Ize predstavit oxidovy prasek s termoplastickym pojivem, i
kdyZ tento €ldnek podévd ponékud Sirdi rozhled a materidlové
modely zde prezentované nevylutuji jejich aplikace na jiné
soustavy.

Zplsob popisu se opird o mechaniku kontinua a o
raciondlni  termomechaniku  (raciondlni termodynamiku).
Vychédzime zde z popisu kinematiky, formulujeme lokalni
bilancn{ rovnice a zminime se kritce o specidlnim postaveni
entropické nerovnosti v této teorii.

Centrdlnim problémem raciondlnfho modelovani injek&niho
vstiikovéni je vybér vhodného materidlového modelu. Zvoleny
materidlovy model je obecnd Newtonska kapalina. Jeho vyhoda
spociva v tom, Ze je velice jednoduchy a zdroven dovoluje popsat
pravé ty jevy, které nds v procesu injekcniho vstiikovani zajimajf
nejvice: mez toku a nelinedrni pribéh tokové kiivky. Odvozeni
tohoto materidlového modelu je provddéno krok za krokem
pomoci principd konstitutivni teorie, aby bylo vidét rozsah a
vyznam uéinénych pfedpokladd pro pfipad injekéniho
vstfikovéni keramickych past a je formulovéno se snahou docilit
maximélni pfesnosti vyjddfeni bez pouZiti pfili§ slozitého
matematického aparatu.

Moznost experimentdlniho ov&feni modelu v nésledujicich
pracich vyZaduje ur€ité idealizace napf. ohledné geometrie toku.
Pro Poiseuilledv valcovy tok i jiné prosté smykové toky
preferujeme z diivodd uvedenych v praci Herschel-Bulkleyuv
model, ktery predstavuje specidlni jednorozmérny pfipad modelu
obecnych Newtonskych kapalin, ackoliv se z ného neda
dedukovat pomoci raciondlnich principd konstitutivn{ teorie.
Kratkd zminka je vénovina sloZitému problému okrajovych
podminek.

Kromé adaptovaného racionalniho ramce pro injekcni
vstfikovani je zde uplatnén metodologicky pristup aplikovatelny
i na jiné tvarovaci procesy keramiky, napf. extruzi.
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