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An analytical solution of total deformations and stresses due to piezoelectric deformations and to external force is given for
piezoelectric bending actuators composed generally of n layers. The deflection w(L) of the free end and the blocking force P,
are discussed in detail for actuators composed of two or three layers. Actuators made from piezoelectric ceramics show some
deviations, i.e. hysteresis and non-linearity, from predicted linear dependence of w(L) on the applied voltage. These deviations
are due to the voltage dependence of piezoelectric parameters in this material.

INTRODUCTION

The piezoelectric effect leading to elongation or
contraction under electric field is used in different types
of actuators [1]. If the displacements larger than ca 100
pm and not too high forces are required, bimorph
bending elements are applied [2-4].

The basic function of bimorphs is shown in figure 1.
Two plates of piezoelectric ceramics with the orientation
of the remanent polarization (after poling by high dc
electric field at elevated temperature) represented by
arrows are firmly joined by gluing or soldering. If the
electric field E, acted in the direction of remanent
polarization on one free plate of length L, the plate would
contract by AL = d,, E, L where the piezoelectric constant
d,, = -200 x 10" up to -300 x 10" m V"' for the
usually used PZT type ceramics [5]. For the opposite
orientation of the electric field and remanent polarization,
the plate would elongate. Because of joining of two
plates, the bimorph will bend up (as in figure 1) or down,
depending on the used polarity.

Figure la shows the joining of plates with an
antiparallel orientation of the remanent polarization and
with electrodes on the upper and lower surface of the
bimorph. In the bimorph shown in figure 1b with a
parallel orientation of remanent polarizations in both
plates, the third central electrode is added so that half the
voltage is sufficient for the same bending. In bimorphs in
figure 1a and 15, the voltage on one of the plates has the
opposite polarity than that used originally for poling. The
electric field used for excitation of bimorph is relatively
high, corresponding to the voltage difference of 100 up
to 200 V for plates 0.2 to 0.5 mm thick. A gradual
depolarization of one plate and a decrease of the
piezoelectric activity may take place. Therefore, the

arrangement shown in figure lc is often used: when the
plate 2 is excited by the electric field parallel to the
original poling field while plate / is short- circuited the
bimorph bends up. For opposite-side bending is the plate
I excited and the plate 2 short-circuited. The bending of
the bimorph is then smaller than in figure 1b, however,
no depolarization takes place.

The actuators are realized as laminated compositc
plates. The bimorph in figure la contains, besides the
two piezoelectric plates, also two thin layers of electrodes
and one thin central layer of glue or solder. The
bimorphs in figures 15 or 1¢ contain moreover the central
electrode (realized as a metal foil or a prepreg with
graphite fibres) with thin layers of glue. The additional
layers, especially the central electrode, can considerably
influence the bending of the actuator.

The bending of the bimorph composed of two layers
has been analysed e.g. in [6]. The case of a thick
laminated plate covered by two thin piezoelectric layers
has been studied in [7].

The theory of bending of actuators should give
the values of two practical quantities: the bending w(L)
at the free end of the actuator and the blocking force Py,
i.e. the force at the free end which eliminates the
bending.

In this paper, the elastic solution of bending of a
laminated plate composed generally of # layers (fixed at
one end, i.e. of a laminated cantilever beam) due to
piezoelectric deformations and to a force exerted at the
free end will first be summarized. The cases of the plate
composed of two or three layers will then be treated in
more detail and the choice of the parameters leading to
maximum bending w(L) or to maximum blocking force
Py will be discussed. Finally, theoretical predictions will
be compared with experimental results.
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Figure 1. Three cases of excitation of bending actuators. The
arrows show the directions of remanent polarization.

BENDING OF ACTUATORS COMPOSED
OF n LAYERS

Formulation of the problem

The layers of thickness h, =z, - z,, i =12, ..., n
are parallel to the xy plane (see figure 2a). The electric
field E,, = (U, - U, )/ h; (where U, is the voltage applied
at z;) imposes in the i-layer the inelastic deformation (i.e.
the piezoelectric deformation which should appear in a
free element)

Exi T E:yyi =& = F }Eﬂ d311| ’
su.i:i ,Endﬂil ’ (1)
t.'xyi =By T syzi = O .

The upper and lower signs are valid if the electric
field and the spontaneous polarization are parallel or
antiparallel, respectively.

Because of the elastic interaction with other layers,
elastic deformation e, (inducing stresses G,,,) will be
added to the piezoelectric deformation e, in the i-layer
so that the total deformations e =€ + e, will build
up the bending (complemented possibly by elongation or
contraction) of the composite plate.

The linear theory of elasticity can be applied as
lel << 1, 'sml << 1. The actuators are constructed
as thin beams of thickness

H= ihi << L
i=1

so that the theory for thin beams can be used (see e.g.
[8]). The edge effects at the clamped and free ends will
be neglected.

The layers will be considered elastically isotropic,
characterized by Young‘s modulus £, and Poisson's ratio
v, In fact, the PZT poled ceramics are slightly
anisotropic, however, with the so-called transverse
isotropy [9] so that only the isotropic constants E and v,
in the xy plane will influence the bending.

There is a free dilatation in the z direction
perpendicular to the layers so that the component ¢, of
the piezoelectric deformation does not influence the
bending and the stress component G,, = 0. Because of
the problem symmetry, the non-diagonal components of
the stress and deformation tensors will be zero and there
are only two non-zero stress components, ©,,, and O,
They are connected with the elastic deformations by
Hooke's law,

€oi = o - £, = (I/E) (O, - VO,,) .
€y = eri - &, = (l/E) (Opyi - ViOyai) - (2)
Three modes of the plate deformation can be

distinguished.
1. Plane stress

For the actuator thin in the y direction, i.e. with
width W < h, there is a free dilatation also in the y
direction so that the stress component 6,; = 0. The only
non-zero component of stress is G,,, = ¢, and the
important strain components will be el ; = €', e, = ¢,
and ¢,. The total deformation e] must correspond to ben-
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Figure 2.
a) Actuator composed of n layers, b) bending due to piezoelectric
deformations €, ¢) bending due to external force P.

ding and must be a linear function of z in the whole

laminated plate (see e.g. [8]),
el=¢,+e¢=Az+B, 1Sz5z, , (3)

with so far unknown constants A, B. The stress
component o; then follows from Hooke's law (2) as

o,=EAz+B-¢) , i, <2<z . 4)

2. Plane strain

For the actuator thick in the y direction, W >> h,,
firmly clamped at x = 0, the total deformation egyi =0so
that the elastic deformation e ; = -¢;. If we denote again
el.=el, e, =e,0, =0, the total deformation is

ei=(1+v,)e, +e=Az+B, z,<z<gz, (39

and Hooke's law gives

G =[E/(1-V)][Az+B-(1+V,) ¢l
2.,<2<z . 49
The second stress component, 6,; = V; C, - E; ¢,
is not important for the discussion of bending.
Equations (3), (4°) can be changed to the form of
(3), 4 if
E =E/(1-V}), ei=(1+v,)e (59
are written instead of E, , ¢, in equations (3), (4).
The cases 1 and 2 correspond to the so-called
cylindrical bending.

3. Plate state

For the actuator thick in the y direction, with not too
firm clamping at x = 0 and at larger distances from the
fixed end, the ,spherical bending" can be expected: the
plate can bend not only along the x direction, but also
along the y direction. In this case, the deformations and

stresses are isotropic in the xy plane, e}, = €] = €],
€= €4 = €, O, = O, =0; so that the total
deformations will be

el =¢ +e =Az+B, ;725 z, 39
and the stresses from Hooke‘s law follow as

o, =[E/(1-Vv)][Az+B-¢], z,<z<z . (4%

This state can again be described by equations (3),
(4) if, instead of E,, changed elastic constants E;’ are
written,
E’=E/1-V,) 59
this time with unchanged values ;.

In the following treatment, equations (3), (4) will be
used with Young‘'s modulus denoted as E; and the
piezoelectric deformations as &, For larger width W of

the actuator, the values corresponding to (5°) or (5°)
should be used.
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The constants A, B can be calculated from the
equations of equilibrium of forces and moments,

Zﬂ Zn
| o@dz=0, | zo(z)dz= M, (6)
2y 2y

where o(z) is given by equations (4) and the moment
M., (on the unit length in the y direction) from the
external force P is equal to

M, =P/W)(L-x). ™)

According to figure 2c, force P is taken positive if it acts
downwards, in the -z direction.

Within the linear theory of elasticity, the solution
can be given in three steps:

1. the effect of the piezoelectric deformation €, only,
with M, = 0. In this case, A and B will be
constants.

2. the effect of force P, i.e. of the external moment
M., only, with €, = 0. In this case, A and B will be
proportional to (L - x) and will be denoted as A, B,

3. the combined effect of ¢; and M,,, can be taken as
a sum of cases 1 and 2.

Effect of piezoelectric deformation e,
After inserting stresses (4) into equations of

equilibrium (6) with M, = 0, two algebraic linear
equations for A and B follow,

SA+FB=N, 8
IA+SB=M
where
F= lﬁ} Eh,S= (1/2)&115, @-2),
2 2

n n
I=(/3)Y E(z-2.),N= Y e Eh ,
i=1 i=1

M=(2)3 e E@-2),

h=2-z,. )
Constants A and B are given by expressions

A= (FM-SN)/(FI-§),

B =(IN - SM) / (FI - §*) (10)

where F >0, §> 0, 1> 0 and also (FI - §?) > 0. The
stresses 0;(z) follow from equations (4).

These results are in agreement with the solution of
similar problems where inelastic deformations ¢, are of
different origin, e.g. due to thermal expansion in [10, 11].

The plate will bend in the xz plane with the radius
of curvature R (2)= [1 + e" (z)] / A. However,

le"(z)| << 1 and, for a thin plate, L >> H, radius of
curvature can be taken independent of z and.x,

R=1/A 1n

and can be measured at the upper or lower surface of the
plate. The constant A has the meaning of the plate
curvature. The sign of R was chosen so that for R < 0 the
center of curvature is in the upper half space (as in figure
2b) and for R > 0 it is in the lower half space (as in
figure 2c).

The plate clamped at x = 0 will bend at the free end
x = L by the displacement w(L) which can be calculated
from the relation

R =1+ R + wl) .
For |R| > L >> w(L), it is w(L) = -(1/2) L¥R ,
or

w(l)=-(1/12) PA=(112) L*(SN-FM)/ (FI-§*) . (12)

Effect of external force P

In the case of a laminated cantilever beam under
force P acting in the -z direction at the end x = L, i.e.
under moment M,,, given by equation (7) and without
inelastic deformations, €; = 0, the total deformations e’

are equal to the elastic deformations e,

ei=e=Az+B,, 7, <2<z, (13)
and the stresses follow as
Gi=Ei(ApZ+Bp)’ 4 <<%y . (14)

The equations of equilibrium (6) give two linear
algebraic equations for A, and B,,

SA, + FB,=0 , (15)
1A, + SB, = (PIW) (L - x)

with the solution

A, = [FI(FI - §)] (PIW) (L - x) , (16)

B, = -[SI(FI - $)] (PIW) (L - x) .

The constants F, Sand I are again given by
equations (9). Deformation (13) and stresses (14) are now
functions not only of z but also of x. The quantity A, has
again the meaning of curvature, however, this time of the
local curvature, A, (x) = 1/R(x). It can be written
approximately in the form A (x) = -afzwp (x) / dx* where
w,(x) is the local bending displacement. The solution
of the differential equation d'w, (x)/d® = C(L-x)
where C = -[F/(FI -§%)] (P/W) with the boundary
conditions w, (0) = 0 and dw, (x)/dx = 0 for x = 0 gives
w, ()=C[(Lx*/2) - X'/6]. Therefore, the bending w, (L) at
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the beam end is w, (L) = (1/3) C L ie.

w, (L) = -(13)L* [FI(FI-$*)] (PIW) = -(1/3)L*A, (0) .
am

For P > 0 (i.e. in the direction -z, see figure 2c) it is
R(x) > 0, A(x) > 0 and w, (L) < 0.

Combined effect of €, and P

For a simultaneous action of piezoelectric
deformations €; and external force P, the resulting
stresses are given by a sum of equations (4) and (14), the
resulting total deformations by a sum of (3) and (13) and
the resulting bending at the end w, (L) by a sum of (12)
and (17), 1.e.

w, (L) = w(L) + w, (L) = -L* [(1/2)A + (1/3)4, (0)] =
= [L2/(FI-$*)] [(172) (SN - FM) - (1/3)FLP/W]  (18)

where the constants L, W, F, S, I and (FI - S are
positive.

For a clear discussion it will be assumed that the
actuator is excited so that bending w(L) due to €, is
directed upwards, i.e. w(L) > 0. Then A < 0 and the first
term in the brackets in equation (18), (SN - FM) > 0. The
force P > 0 bends the beam downwards, w (L) < 0 and
the second term in the bracket remains negative.

If the beam end meets an obstacle at a given
distance w, (L), 0 £ w, (L) < w(L), the force P which the
obstacle will exert on the beam end can be calculated
from (18) as

P = BWILF)[(1/2)(SN - FM) - (1/L*) (FI - $*) w,(L)] .
(19)

The blocking force Py corresponds to w, (L) = 0, when
the piezoelectric bending w(L) is eliminated by bending
w, (L), 1.e. when w, (L) = -w(L),

Py = (3/2) (WIL) (SN - FM) | F . (20)

The general expression (19) for force P can be rewritten,
using (20), in the form

P=Py[l-w (L)/wL). Q1)

ACTUATOR COMPOSED OF TWO LAYERS
General case

A general case will first be considered (figure 3):
plate 1 and plate 2 are characterized by constants h,, E,,
v,, £, and by h,, E,, v,, &,, respectively, and common
dimensions L, W. The origin of coordinate z will be
chosen in the interface z, = 0 so that z, = -k, and z, = h,.
The results can be directly written as a special case of
equations (1) — (21) for n = 2.

N

[)

EZJ vz; ez 2 h_,

Ev v, €, 1 h,

DN

Figure 3. Actuator composed of two plates 1, 2.

Only the expressions for bendings w(L) and w, (L)
and for blocking force Py will be given in detail, using
the dimensionless parameters

k=hlh, K=E,IE, (22)

Bending w(L) due to piezoelectric deformations ¢, , &,
follows from equations (12) and (9) as

w(L) = 3(¢g, - £,) (L*/h,) fik, K) (23)
where the dimensionless function flk, K) > 0,

k(1 + kK
ftk, K) = (24)

1+ 2k +3k+ DK+ K K

in accordance with the results obtained by another
method e.g. in [6, 11].
Bending w, (L) due to force P is given by (17) and (9) as

wy(L) = -4(L* IR (1/E,) (PIW) g(k, K) (25)
where g(k, K) > 0,

1 + kK
gk K) = (26)

1+2k(2K +3k+ 2K+ K K>

The blocking force for w, (L) = 0, i.e. for w, (L) = -w(L),
follows from (20) and (9) (or (23) and (25)) as

Py = (3/4) E, (i3 /L) W(e, - ;) p(k, K) (27
where p(k, K) > 0,
plk, K)=flk, K)/ gk, K)=k(1 + K) K/ (1 + kK) . (28)

For another chosen distance w,(L) # 0 , the force P
is given by equation (21).

A possible maximization of the piezoelectric bending
|W(L)| and of the blocking force Py will now be
discussed. For the chosen values of (g, - €,), L, h,, the
bending w(L) from (23) is proportional to (g, - €,)
(L*/hy) and to the dimensionless function f(k, K): the
values k = h, / h, and K = E, / E, should be found for
maximum of f (k, K). However, this function of two
variables has no local maximum for finite values of k, K.
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For the chosen value K, of K, the conditional
maximum of fik, K,) follows from the condition
of (k, Ky)/0k = 0 for k= ky, ie. from the relation
ki (3 +2ky) = UK,

For the chosen value k, of k, the conditional
maximum of f(k,,K) follows from df (k,, K) /0K = 0O for
K = K,,, i.e. from the relation Ky, = 1/k2.

However, these two conditions have no common
solution for finite values of k and K. In both cases the
function flk, K) approaches the maximum fik, K) = 1/4
for K, — 0, kyy— 0 or k, > 0, Ky, — oo.

In practical cases, high values of K and small values
of k should be chosen for higher values of f(k, K). For
example, for plate 2 of piezoelectric PZT with E, = 70
GPa, plate 1 with higher E, should be chosen e.g. of steel
with E; = 210 GPa so that K, = 3. The conditional
maximum is then realized for ky = 0.304 leading to the
value flky, K,) = 0.177. ,

The blocking force Py from (27) is proportional to
E,(h;/L) W (g, - ¢,) and to the dimensionless function
p(k, K). This function again has no local maximum for
finite values of k, K and is an increasing function of both
k and K. For example for K = 3, p(k,3) = 3k (1+k)/(1+3k)
increases with k.

Therefore, for a given value of K, different values of
k should be chosen for maximization of w(L) or of P

Special case E, = E,=Eand h, = h,=h

If both plates are of the same PZT material,

E =E,=E, K=1 (29)
the functions f, g, p simplify to
flk, Y =k/ (1 + k) (24a)

with maximum value for k = 1/2 equal to f{1/2, 1) =
= 4/27 = 0.14185,

gk, =1/ + k) (26a)

with maximum for k — 0, g(0, 1) = 1 and decreasing
with increasing &,

plk, 1) =k (28a)

increasing with k.
For a bimorph composed of two PZT plates of the

same thickness,

hy=h,=h,

k=1, (€10}

itisf(1,1) =1/8=0.125, g(1, 1) = 1/8, p(1, ) = 1 .

The choice k = 1/2 would lead to a slightly larger
bending w(L), however to half blocking force Py than in
the case k = 1.

In summary, for the usually used bimorphs with
E = E, = E and hy = h, = h = H/2, it follows for
piezoelectric bending (independent of E)

w(L) = (3/8) (L*/h) (¢, - ¢,) , (23a)
for bending due to force P
w, (L) = -(1/2) (L’ /K*) (1/E) (PIW) (25a)
and for the blocking force
Py = (3/4) EW (WIL) (¢, - &,) . (27a)

If the absolute value of the piezoelectric deformation
is denoted as € = |E, d,,] and when both plates are
excited, €, = ¢ (elongation ) and €, = -& ( contraction)
for w(L) > 0 and (g, -¢&,) = 2¢. For the short-circuited
layer / , &, =0, e, = -¢ and (g, - £,) = &. Therefore,
the values of w(L) and Py in the first case are twice
larger than in the second case.

ACTUATOR COMPOSED OF THREE LAYERS

The usual arrangement will be assumed (figure 4):
plate / and 3 are of the same piezoelectric material and
of the same thickness while central plate 2 is of a non-
piezoelectric material with generally another thickness.
The actuator will be characterised by the constants

E =Ev,=v,h=h ¢, ,
E, = Ey Vy=Vy hy=2hy, £,=0 ,

E,=E v,=V,hy=h, ¢, . 31)

and by common dimensions L, W; the total thickness is
H = 2(h + hy). The origin of the z - coordinate will
be chosen in the middle of the central plate so that
Zy=-(h+hy, z,=-hy, 2, =hy, 2, = (h + hy).

The results then follow from equations (1)-(21) for
n=23.

) P
7 v
/ E v, ¢, 3 h
/ ..... E, V,E,= 0 - 2-boo 2: JH - x
/ Ev e, 1 h
Z

Figure 4. Actuator composed of two piezoelectric plates 1, 3 and
of the central plate 2.
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The geometrical symmetry with respect to the
central plane z = 0 simplifies expressions (9) to
F=2FEh+ E,h,), S$S=0 ,
I'=Q23) {E[(h + hy)*-hj] + E,h}}
N=(e +¢,)Eh ,

M = -(E2) (g, - &) [(h + hy)-H])] . (9b)

The zero value of S simplifies equations (10) and
(16) to

A=Mi
Ay = (1D (PIW) (L - x)

Only the expressions for w(L), wp(L) and Py will be
given, using the dimensionless parameters

B = NIF |, (10b)

B =0 . (16b)

c=hylh | C=E\/E . (32)
Bending w(L) due to piezoelectric deformations ¢,

and ¢, follows from (12) with (9b), (10b) as

w(L) = (3/8) (L*/h) (g, - €,) m(c, C) (33)
where

1+ 2c
m(c, C) = (34)

1+3c+3c*+c*C

Function m(c, C) decreases with increasing ¢ and C
and has its maximum for ¢ - 0 when m — | and
equation (33) transforms into (23a) corresponding to the
case without the central plate.

Bending wp (L) due to force P equals, according to
(17) with (9b) and (16b), to

wp(L) = - (1/2) (LR (1/E) (PIW) n(c, O) 35)
where

1
n(c, C) = (36)

l+3c+3c2+c3C,~w.

The function n(c¢, C) has maximum value n = 1 for
¢ = 0 when (35) transforms to (25a).

The blocking force P, follows from condition
wp(L) = -w(L) (or from (20) with (9b) and (16b)) as

Py = (3/4) EW (W*/L) (¢, - €,) q(c) (37
where
qicym(c, C)/ n(c, C) =1+ 2c =1+ 2h,/h (38)

Py does not depend on the elastic constant E,, of the
central plate and increases with its thickness 2k, For

2h,— 0, equation (37) transforms to (27a). For w (L) # 0,
the force P is again given by (21).

If both plates 1 and 3 are excited and €, = e,
€,=-, 1t 15 (g, - £,) = 2¢ (W(L) > 0 for ¢ > 0). In
this case, in equations (9b) and (10b) N =0 and B = 0.
If the plate 1 is short-circuited, &, = 0, €, = -¢ and
(e, - €3) = €. Again, the values w(L) and Py in the first
case are twice larger than in the latter case.

Finally, the actuators composed of three layers and
of two layers (with E, = E, = E and h, = h, = h) will be
compared. In both cases, the piezoelectric bendings w(L)
(equations (33) and (23a)) are proportional to L/h, i.e.
they are larger for longer and thinner actuators and do
not depend on width W. The blocking forces Py
(equations (37) and (27a)) are proportional to A*/L and to
W, i.e. on contrary they are larger for shorter and thicker
actuators with larger widths W. ‘

For the actuator composed of three layers, moreover
the bending w(L) from (33) decreases with increasing
thickness 2h, and increasing elastic constant E, of the
central plate, however, the blocking force P, from (37)
increases with increasing thickness 2A, and does not
depend on E,.

COMPARISON WITH EXPERIMENTS

The actuators were prepared from the piezoelectric
ceramics of PZT type, PKM-23 European PiezoCeramics,
characterized by the values of piezoelectric constant
dy, =-230 x 10" mV"' and of Young‘'s modulus
E = 65 GPa. These values were determined from the
usually used measurements of the resonant frequency of
longitudinal vibrations of piezoelectric plates [12].

In the first set of specimens, the piezoelectric plates
(with screen printed and burnt in silver electrodes) of
length / = 45 mm, width W = 6 mm and height 4 = 0.28
mm were joint by a thin layer of silver solder of
thickness = 0.02 mm (i.e. , h, = 0.01 mm) so that it was
possible to contact also the central electrode.

Other two sets of actuators were prepared with the
central electrode of prepreg (with carbon fibres) of
thickness 0.1 mm (4, = 0.05 mm) with two different
Young‘s moduli, E, = 50 GPa and E, = 120 GPa.

After gluing or soldering the piezoelectric plates of
actuators were poled by d.c. voltage 600 V. The
orientation of remanent polarization in poled plates was
according to figure 1b. The deflection w(L) of the
actuators having the effective free length L = 35 mm,
connected according to figures 1b or 1c, was measured
at the free end using optical microscope.

The dependences w(L) on the applied voltage
U predicted from the theory will first be summarized.
The effect of electrodes on bending of the actuators
without prepreg can be neglected and the values w(L)
following from equation (23a) for the above mentioned
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values of h, L, and d,, , with £ = |d3.| U/h are given in
the table 1.

For the actuator with the central prepreg plate,
c=hy/h = 0.179 and C = E,/E = 0.759 or 1.846,
m(c, C = 0.83 (practically independent of C), w(L)
following from equation (33) is also given in the table 1.

Table 1. Theoretical dependences (from equations (23a) and (33))
of deflection w(L) in mm on the applied voltage U in V.

without both plates excited w(L) = 0.270 x U/100
prepreg

plate / short-circuited wi(l) = 0.135 x U/100
with both plates excited w(L) = 0.224 x U/100
prepreg

plate / short-circuited w(l) =0.112 x U/100

The predicted linear dependences of w(L) on U are
shown in figures 5-8 by dashed lines, together with the
measured dependences.
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Figure 5. Dependence of w(L) on U for actuator without prepreg,
with two plates excited, at low voltages U, two-side bending
cycle.

The first cycle of two-side bending in figures 5-7
shows the known non-linearity and hysteresis of the
piezoelectric actuators (discussed e.g. in [13-15]) which
is due to the dependence of the piezoelectric constant dj,
on applied voltage U. In the theoretical treatment, the
value d,,;= -230 x 10? mV"', measured at low voltage U,
was assumed constant.

The non-linearity and hysteresis is due to two
effects:

a) If the remanent polarization and applied electric
field are parallel. the absolute value of d,, increases
with U: remanent polarization increases due to
improving arrangement of ferroelectric domains.

b) If the electric field and remanent polarization are
antiparallel, the absolute value of d,, decreases: the
remanent polarization decreases due to disordering
of ferroelectric domains.

During the repeated two-side bending cycles these
two processes alternate in both plates. The effect of
depolarization can be best seen for repeated one-side
bending at higher applied voltage from figure 8. The
electric field and remanent polarization remains
antiparallel in plate 1 all the time for this case and
gradual depolarization of plate 1 takes place. After a
relatively small number of bending cycles the
ferroelectric domain structure becomes disordered which
leads to a permanent bending w (L) of the actuator. Plate
1 is than no more active and the pre-bent actuator
behaves as the actuator with a short-circuited plate 1,
with only plate 2 active, as shown in figure 8, curve b.
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Figure 6. Dependence w(L) on U for actuator without prepreg
with one plate short-circuited, two-side bending cycle.

If plate 1 is short-circuited, the electric field and
remanent polarization remain parallel in plate 2 all the
time. The deflections of actuator are close to the
predicted values with relatively small hysteresis and non-
linearity as shown in figure 8, curve c.

It is seen from figures 6 and 7 that introduction of
the prepreg decreases the deflection w(L) by = 17%.
However, as it follows from equation (37) and the value
g = 1.375, it increases the blocking force by = 37%.
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Figure 7. Dependence w(L) on U for actuator with prepreg, with
one plate short-circuited, two-side bending cycle.
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Figure 8. Dependence w(L) on U, actuator without prepreg.
a) two plates excited, first one-side bending cycle

b) two plates excited, after 100 one-side bending cycles

¢) plate 1 short-circuited, after 100 one-side bending cycles.

CONCLUSION

The piezoelectric bending actuators can be composed
of a higher number of layers and, therefore, the analytical
solution of stresses and total deformations due to
piezoelectric deformations and external force has been
presented for actuators composed generally of n layers.
The deflection w(L) and the blocking force Py have been
discussed for actuators composed of two or three layers.

For the special case of two piezoelectric plates of
the same thickness /4 and free length L, deflection w(L)
is proportional to L’ /h and to the piezoelectric
deformations ¢ = d,, U/h and does not depend on the
elastic constants nor on the width W. The blocking force
Py is proportional to A*/L, ¢, W and to Young‘s modulus
E of the piezoelectric material.

An introduction of the third, non-active central plate
decreases w(L) and increases Py.

In the theory, the piezoelectric constant d;, has been
assumed constant. Within the used linear elastic theory,
w(L) and Py are linearly proportional to the piezoelectric
deformations and, therefore, also the applied voltage U.

The measureménts of the dependence of w(L) on U
have shown deviations from the predicted theoretical
values. Experimentally found non-linear behaviour and
hysteresis of bending actuators made from piezoelectric
ceramics are due to the dependence of the piezoelectric
constants on the applied voltage in this material. These
effects have to be taken into account especially at higher
driving voltages U between 100 and 200 V currently used
in applications.

The presented theory describes satisfactorily the
behaviour of the bending actuators in the stabilized state,
after a higher number of the bending cycles.
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OHYB PIEZOELEKTRICKYCH MENICU
FRANTISEK KROUPA, KAREL NEJEZCHLEB‘

Ustav fyziky plazmatu AV CR,
Za Slovankou 3, 182 00 Praha

*Piezokeramika, s.r.o.,
Za humny 115, 503 44 Libfice

Piezoelektrické ohybové ménice mohou byt sloZeny z vice
vrstev: kromé dvou piezoelektrickych desticek vyrobenych
obvykle z piezoelektrické keramiky a vrstev elektrod se Casto
uZivé i stfedni nosnd vrstva z jiného materidlu. Je proto podano
analytické feSeni celkovych deformaci a mechanickych napéti,
zplisobenych jednak piezoelektrickymi deformacemi vlivem
piloZzeného elektrického pole a jednak vnéjsi silou, obecné pro
méni¢ slozeny z n vrstev. Podrobné je pak diskutovan prihyb
w(L) volného konce a blokovaci sila Py pro ménice sloZené ze
dvou a ze tff vrstev.

Ve specidlnim piipadé dvou piezoelektrickych desticek
stejné tloustky h a délky L je priihyb w(L) Gmérny L’/h a
piezoelektrickym deformacim ¢ = d, U/h, kde d, je
piezoelektrickd konstanta. Blokovaci sila Py je dméma h’/L, ¢,
§ifce méni¢e W a Youngovu modulu E. UZiti tfet{ stfedni nosné
desticky vede ke sniZeni prihybu w(L), avSak ke zvySen{
blokovaci sily Py.

V teorii se predpokladalo, Ze piezoelektricka konstanta dj,
nezdvisi na aplikovaném eiektrickém napéti U, takZe w(L) i Py
by mély byt linedrné tmérné U. Méfeni viak ukédzala nelinedrn{
zévislost w(L) na U a hysterezi ménici. Tytc efekty jsou
zplisobeny zdvislosti dy, na napéti U, kterd je typickd pro
piezoelektrickou keramiku a uplatiiuje se pfi prakticky uzivanych
budicich napétich mezi 100 az 200 V.

Po vétSim poctu ohybovych cykli se vsak v ustdleném
stavu bliZi zavislost w(L) na U zdvislosti linedrni a vlastnosti
ohybovych ménici jsou pak uspokojivé popsdny pfedloZenou
teorif.
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