# SOL - GEL $\alpha$ -Al<sub>2</sub>O<sub>3</sub>/Fe<sub>2</sub>O<sub>3</sub> ABRASIVE GRAINS

ĽUBOŠ BAČA, LADISLAV PACH, ZDENEK HRABĚ

Department of Ceramics, Glass and Cement, Faculty of Chemical Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovak Republic

Submitted July 16, 1998; accepted October 20, 1998.

Boehmite derived alumina gels (grains and sticks) containing  $Fe_2O_3$  in the range of 1 to 6 wt. % were sintered at 1350 °C for 3 hours. Relative density, strength and unexpectedly also the size of  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> crystals increase with  $Fe_2O_3$  content. A bimodal microstructure of anisotropic  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> crystals is observed at and above 3 wt.% content of  $Fe_2O_3$ . Anisotropic growth of  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> crystals is attributed to the presence of  $Fe^{2+}$  and to the specific nucleation effect of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>. Due to high strength and the relatively small size of  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> crystals a  $Fe_2O_3$  content of 3 wt.% seems most appropriate when applications of the material as abrasive grains are intended.

## INTRODUCTION

Initiation of phase transformation by means of heterogeneous or epitaxial nucleation is widely used in the synthesis of materials for electronics [1]. In the field of large scale bulk material, the method is rather named seeding [2-9]. The method has been applied for about 20 years in the production of  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> abrasive grains by the sol-gel process. In this case, there was only short time between the discovery of the method and its technological application. The first patent [6] and the journal publication [2] were issued practically simultaneously.

The method has been extended due to the existence of suitable raw material source of the aluminium compound: peptisable boehmite of Condea company (Germany). This boehmite is a by product of the synthesis of higher alcohols being characterised by high chemical purity, weak crystallinity and about 10 nm size of primary particles, which are aggregated. These aggregates are not strong and are peptisable in dilute acid solutions ( $pH \equiv 3$ ;  $20 \le wt.\%$  of AlOOH) at temperatures of 50 - 70 °C. Addition of  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> (1 - 3 wt.%) seed particles (<  $0.5 \,\mu$ m) to boehmite sols results gradually in diphasic sols, gels and finally in highly uniform dense sintered microstructure even at lower temperature. Seed particles significantly enhance the rate of  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> crystallisation as well as densification of materials to full density (e. g. abrasive grains) at about 1300 °C. This temperature is about 1000 °C lower than the temperature of the classical melting route (electric arc oven) of  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> abrasive grains.

Nucleation and growth of  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> in bochmite gel can be controlled not only by the  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> phase itself, but also by phases that are isostructural with  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> [3, 4], as are  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> and Cr<sub>2</sub>O<sub>3</sub>. The most frequently used seeds are  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>, which are added into the system as fine  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> powder or Fe(NO<sub>3</sub>)<sub>3</sub>. 9H<sub>2</sub>O. Unlike  $\alpha$ -Al<sub>2</sub>O<sub>3</sub>,  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> seeds have a more complex influence on the mentioned system. The nucleation effect of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> is followed by dissolution of Fe<sub>2</sub>O<sub>3</sub> into the  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> structure and partial reduction of Fe<sup>3+</sup> to Fe<sup>2+</sup> according to the redox equilibrium Fe<sup>3+</sup>/Fe<sup>2+</sup>. These processes result in anisotropic growth of  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> crystals and, consequently, as is known [10], the bimodal microstructure can then increase the toughness of the material. Anisotropic grain growth of  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> was recently attributed by Tartaj and Messing [11] to the presence and grain boundary segregation of Fe<sup>2+</sup> ions.

The most important properties of  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> abrasive grains are strength, toughness and the size of  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> crystals. The aim of this work is to compare some mechanical properties and the microstructure of  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> abrasive grains in dependence of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> seed contents in the Al<sub>2</sub>O<sub>3</sub> - Fe<sub>2</sub>O<sub>3</sub> system.

### EXPERIMENTAL PART

The boehmite gel used in this work was prepared from a commercial boehmite (Condea, 350 m<sup>2</sup> g<sup>-1</sup>, ~ 10 nm particle size) by the commonly used procedure [2-4, 12]. Water-boehmite (18 wt.%) and Fe(NO<sub>3</sub>)<sub>3</sub>.9H<sub>2</sub>O (1; 2; 3 and 6 wt.% on  $\alpha$ -Al<sub>2</sub>O<sub>3</sub>) suspension was peptised by mixing it with HNO<sub>3</sub> ( $pH \approx 2.5$ ) at 55 °C. The sols were mixed thoroughly until it gelled. The gels obtained were further slowly mixed on a hot plate, thickened (~ 26 wt.%) and extruded to sticks ( $d \approx 0.4$  cm). Gel sticks were dried on air in vertical position and in a dryer at 90 °C. Dried sticks were cut to small cylinders ( $d \approx 3.5$  mm and length ~ 5 mm) and used for diametrical compression tests (DCT) and crushed grains of the size 1.2 - 1.8 mm for measuring the strength of individual abrasive grains. Gel samples were calcined at 550 °C for 1 hour to transform boehmite to  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>. The samples were then sintered at 1350 °C for 3 hours in static air atmosphere. The heating rate was 10 °C min<sup>-1</sup>.

Bulk density was measured according to Archimedes' law. Samples before weighing in water were hydrophobized by melted paraffin.

The strength of sintered abrasive grains was measured by force needed to crash an individual grain when linearly increasing the acting force. The diametrical compression test was performed similarly using cylindrical ( $d \equiv 3$  mm, length  $\equiv 5$  mm) samples and calculated according [13] to:

$$DCT = \frac{2F}{\pi dl} ,$$

where F is the acting force (N), d (mm) is the diameter and l (mm) the length of the sample.

These mechanical measurements enable fast mutual comparison of various samples. At least 10 tests were carried out from each sample. Dispersion of measured values are shown in the next part (table 1, figures 5 and 6).

Crystalline phases were identified by X-ray diffraction using  $CuK_{\alpha}$  radiation (Dron 2.0). The microstructure of sintered samples was observed by SEM (Tesla BS 300).

Table 1. Mean size of crystals, l, anisotropic characteristics of crystals (% - portion, aspect ratio) on the surface and fracture vs. Fe<sub>2</sub>O<sub>3</sub> content

| Fe <sub>2</sub> O <sub>3</sub><br>(wt.%) | <i>l</i> (μm) |          | anisotropic growth |       |                |       |
|------------------------------------------|---------------|----------|--------------------|-------|----------------|-------|
|                                          | surface       | fracture | fracture           |       | surface        |       |
|                                          |               |          | portion<br>(%)     | ratio | portion<br>(%) | ratio |
| I                                        | 0.95          | 0.86     | -                  | -     | -              | -     |
| 2                                        | 1.22          | 1.02     | -                  | -     | -              | -     |
| 3                                        | 1.53          | 1.37     | 4.7                | 1.83  | 6.4            | 2.12  |
| 6                                        | 2.73          | 2.12     | 8.8                | 2.12  | 9.8            | 2.44  |

## RESULTS

The bulk density of sintered (1350 °C for 3 hours) samples increases with the Fe<sub>2</sub>O<sub>3</sub> content (figure 1) in the system. Samples containing 3 wt.% of Fe<sub>2</sub>O<sub>3</sub> reached the largest relative density (~ 99.5 %, figure 2). A little lower is the relative density for double content of Fe<sub>2</sub>O<sub>3</sub>. Deviation of experimental values (figure 2) from theoretical relative densities (calculation based on

densities of  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> = 3.9869 and Fe<sub>2</sub>O<sub>3</sub> = 5.2749 g cm<sup>-3</sup> [14]) of samples is primarily caused by residual porosity, partly by non ideality of  $\alpha$ -Al<sub>2</sub>O<sub>3</sub>/Fe<sub>2</sub>O<sub>3</sub> solid solution and redox equilibrium of Fe<sup>3+</sup>/Fe<sup>2+</sup> ions.

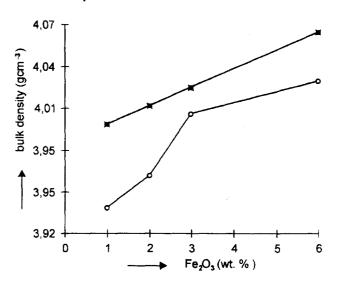



Figure 1. Bulk (experimental) and theoretical density of  $\alpha$ -Al<sub>2</sub>O<sub>3</sub>/Fe<sub>2</sub>O<sub>3</sub> sintered at 1350 °C for 3 hours vs. Fe<sub>2</sub>O<sub>3</sub> content.  $\blacksquare$  - Theoretical values, O - experimental values.

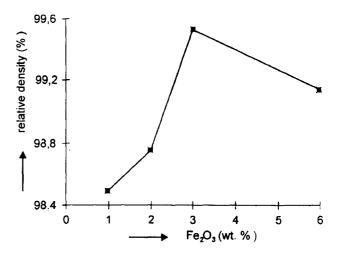



Figure 2. Relative density of  $\alpha$ -Al<sub>2</sub>O<sub>3</sub>/Fe<sub>2</sub>O<sub>3</sub> sintered at 1350 °C for 3 hours vs. Fe<sub>2</sub>O<sub>3</sub> content.

The mean size of crystals (figure 3) is changed from about 0.5 to 2.5  $\mu$ m and nearly linearly increases with Fe<sub>2</sub>O<sub>3</sub> content. The size of crystals is little lower on the specimen surfaces than on fracture surfaces in all cases. The number of crystals per 100  $\mu$ m<sup>2</sup> derived from their size unexpectedly decreases with Fe<sub>2</sub>O<sub>3</sub> content (figure 4).

Measured mechanical parameters, strength of individual grains (figure 5) and DCT (figure 6) increased in the range of 1 - 3 wt.% of  $Fe_2O_3$ , but more significantly between 2 and 3 wt.%. These parameters

practically remained unchanged with larger content (6 wt.%) of  $Fe_2O_3$ . As can be seen from figures 5 and 6, bulk mechanical properties have similar course.

8*c*-*d*). The crystal size generally increases with  $Fe_2O_3$  content (table 1). The microstructure of samples with  $Fe_2O_3 \ge 3$  wt. % is bimodal, the number of elongated

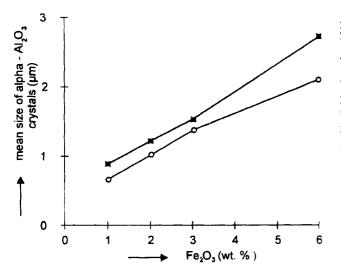



Figure 3. Mean size of  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> crystals in sintered body (1350 °C for 3 hours) vs. Fe<sub>2</sub>O<sub>3</sub> content.  $\blacksquare$  - fracture, O - surface

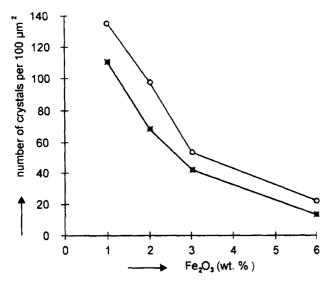



Figure 4. Number of  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> crystals for sintered body (1350 °C for 3 hours) vs. Fe<sub>2</sub>O<sub>3</sub> content.  $\blacksquare$  - fracture,  $\bigcirc$  - surface

The microstructure of sintered samples (figures 7 and 8) significantly depends on Fe<sub>2</sub>O<sub>3</sub> content. Unseeded samples (figures 7*a*, *b*) show the known porous vermicular microstructure [4, 5, 11, 12]. The shape of  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> crystals is isometric in samples containing 1 and 2 wt. % of Fe<sub>2</sub>O<sub>3</sub> (figures 7*c*-*f*). Elongated crystals are appeared at 3 wt.% (figure 8*a*, *b*) and this anisotropic growth is further extended with larger content of Fe<sub>2</sub>O<sub>3</sub> (figures

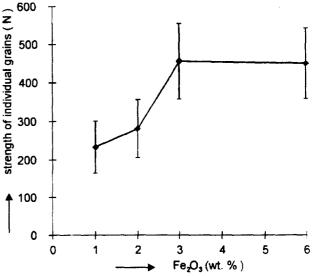



Figure 5. Strength of individual  $\alpha$ -Al<sub>2</sub>O<sub>3</sub>/Fe<sub>2</sub>O<sub>3</sub> abrasive grains (size ~ 1 mm) sintered at 1350 °C for 3 hours vs. Fe<sub>2</sub>O<sub>3</sub> content.

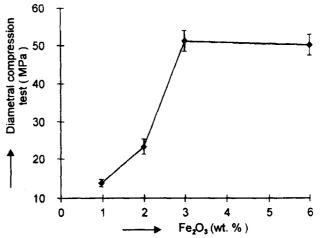



Figure 6. Diametrical compression test of sintered body (1350 °C for 3 hours) vs.  $Fe_2O_3$  content.

crystal (% - portion) and their aspect ratio increased with  $Fe_2O_3$  content (table 1).

X-ray analysis of sintered samples revealed only one set of  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> reflections with shift of  $d_{hkl}$  values in dependence of Fe<sub>2</sub>O<sub>3</sub> content (e. g. for 6 wt.% of Fe<sub>2</sub>O<sub>3</sub>, the shift is in the range of 0.22-0.89 % of  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> d-values).

The intensity of green colour of sintered samples increased with  $Fe_2O_3$  content.

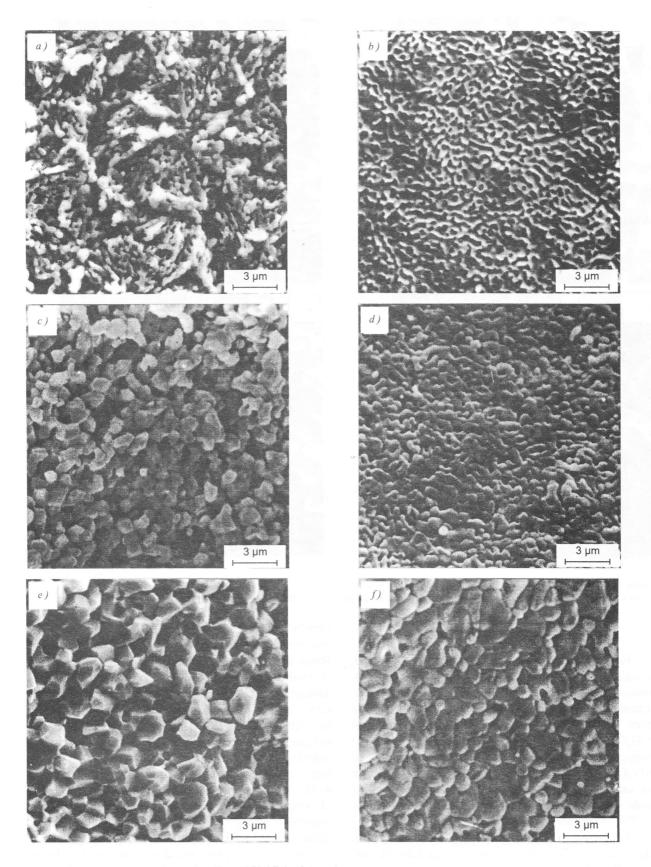
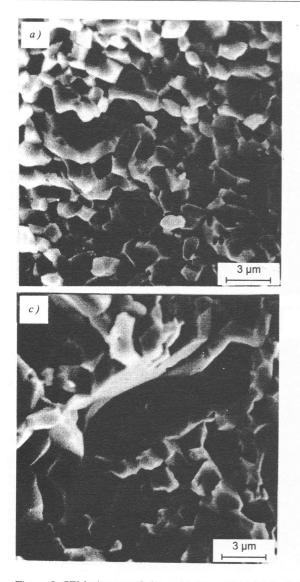




Figure 7. SEM pictures of sintered bodies (1350 °C for 3 hours). a), b) – unseeded; c), d) – seeded, 1 wt. % Fe<sub>2</sub>O<sub>3</sub>; e), f) - seeded, 2 wt.% Fe<sub>2</sub>O<sub>3</sub>; a), c), e) - fracture; b), d), f) - surface



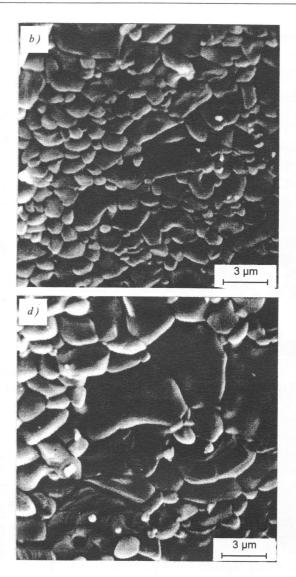



Figure 8. SEM pictures of sintered bodies (1350 °C for 3 hours). a), b) – seeded, 3 wt. %  $Fe_2O_3$ ; c), d) - seeded, 6 wt. % of  $Fe_2O_3$ ; a), c) – fracture; b), d) - surface

# DISCUSSION

Figures 1 and 4 show, that the number of  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> crystals per unit area is indirectly proportional to Fe<sub>2</sub>O<sub>3</sub> content. The number of  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> nucleation sites has to increase with Fe<sub>2</sub>O<sub>3</sub> content, i. e. with concentration of seeds. This fact immediately indicates that the number of  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> crystals observed on SEM pictures is not identical, but significantly smaller than the number of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> seeds (nuclei). This apparent paradox is a result not only of nucleation of  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> on the surface of seeds, but also an effect of simultaneous diffusion of Fe<sup>3+</sup>/Fe<sup>2+</sup> ions and the growth of  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> crystals.

According to  $Al_2O_3$  -  $Fe_2O_3$  phase diagram [15],  $Al_2O_3$  can dissolve ~ 9 wt.% of  $Fe_2O_3$  at 1200 °C and about 20 wt.% (maximum value) at 1420 °C. However, metastable solubility is according to Polli, Lange and

Levi [16] extended up at least to 30 wt.% of Fe<sub>2</sub>O<sub>3</sub>. Fe<sup>3+</sup> ions are partially reduced also in air furnace atmosphere. Ikuma and Gordon [17] reported that only about 2 wt.% of total Fe<sup>3+</sup> is reduced to Fe<sup>2+</sup> at 1450 °C in air atmosphere. Solubility of Fe<sup>2+</sup> in  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> entering the interval 0.7 - 1.9 wt.% is much lower at 1450 °C, as reported by Muan [18]. All these literature information indicate that the presence of Fe<sup>2+</sup> ions is possible at used sintering temperature. This idea is supported by an increase of green colour caused by Fe<sup>2+</sup> in sintered Al<sub>2</sub>O<sub>3</sub>/Fe<sub>2</sub>O<sub>3</sub> samples. According to work of Tartaj and Messing, Fe<sup>2+</sup> ions are responsible particularly for anisotropic growth of  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> due to generally enhanced diffusivity and selective grain boundary segregation.

In agreement with literature sources [11, 14-18] there was also observed an anisotropic growth of  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> at Fe<sub>2</sub>O<sub>3</sub> content  $\geq$  3 wt.% in this work. However,

we suppose, that besides the effect of anisotropic growth, there is a nucleation one. The latter effect is based on the number of nuclei, diffusion path and on the size of primarily formed  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> crystals. At high content of seeds (6 wt.% of Fe<sub>2</sub>O<sub>3</sub>), the diffusion path for dissolution of Fe<sub>2</sub>O<sub>3</sub> into formed  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> crystals is short, unlike that for low content of seeds (1 wt. % Fe<sub>2</sub>O<sub>3</sub>).

For a high number of nuclei (seeds), the number of small  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> crystals is also high, and consequently the interphase energy is large. This situation leads to fast growth of crystals at sintering temperature (1350 °C). On the other hand, for a low number of seeds, the diffusion path is longer and more primarily formed small  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> crystals conserve their identity during sintering. Unexpectedly one can conclude that many seeds (nuclei) brings few crystals (large size) and oppositely few seeds (nuclei) brings many crystals (smaller size) in the studied system.

From the viewpoint of mechanical properties, which are important for application of the material as abrasive grains, the content of  $Fe_2O_3$  should be about 3 wt.%. Higher contents show no effect on strength of abrasive grains and cause growth of grains being inconvenient for abrasive grains.

## CONCLUSION

Iron oxide introduced into boehmite sol as  $Fe(NO_3)_3$ . 9H<sub>2</sub>O is an efficient nucleation (seed) agent in the thermal transformations of defect alumina phases ( $\gamma$ ,  $\delta$ ,  $\theta$ ) to  $\alpha$ -Al<sub>2</sub>O<sub>3</sub>.

The mean size of  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> crystals (0.5 - 2.5  $\mu$ m) increases with Fe<sub>2</sub>O<sub>3</sub> content (1 - 6 wt.%), i. e. unexpectedly with number of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> seeds. The intensity of green colour (presence of Fe<sup>2+</sup>) of sintered (1350 °C) bodies increases in a similar way.

Both bulk density and mechanical strength (strength of individual grains and diametrical compression test) increase significantly between 2 and 3 wt. % of Fe<sub>2</sub>O<sub>3</sub> content. The strength increase is attributed to anisotropic growth of  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> crystals.

Anisotropic growth is related to the presence of  $Fe^{2+}$ ions and to the specific nucleation effect of  $\alpha$ -  $Fe_2O_3$ joined with dissolution of  $Fe_2O_3$  into  $\alpha$ -Al<sub>2</sub>O<sub>3</sub>.

## Acknowledgement

This research was supported by the Slovak Grant Agency Vega, Project No. 95/5195/204.

### References

- Levy R. A., Ed.: Microelectronic Materials and Processes, Kluwer Academic Publishers, Dordrecht/Boston/London, 1989.
- Kumagai M and Messing G. L.: J. Am. Ceram. Soc. 67, C 230 (1984).
- 3. Roy R., Suwa Y. and Komarneni, S.: in *Science of Cera*mic Chemical Processing, Chap. 27, pp. 247 - 258. edited

by L. L. Hench and D. R. Ulrich, John Wiley, New York 1985.

- 4. Suwa Y., Komarneni S. and Roy R.: J. Mater. Sci. Lett. 5, 21 (1986)
- 5. Shelleman R. A., Messing G. L. and Kumagai M.: J. Non-Cryst. Solids 82, 277 (1986).
- U. S. Pat. No. 4,518,397, May 21, 1985, Leitheiser, M. A., Sowman, H. G., Articles containing non-fused aluminum oxide-based abrasive mineral.
- 7. U. S. Pat. No. 4,623,364, Nov. 18, 1986, Cottringer, T. E., van de Merve, R. H., Bauer, R., Abrasive material and method for preparing the same.
- European Pat. No. 0 228 856, 15. 12. 1986, Monroe, L. D., Wood, W. P., Abrasive grits formed of ceramic containing oxides of aluminum and yttrium, method of making and using the same and products made therewith.
- 9. U. S. Pat. No. 4,744,802, May 17, 1988, Schwabel, M. G., Process for durable sol-gel produced alumina-based ceramics, abrasive grain and abrasive products.
- 10. Evans A. G.: J. Am. Ceram. Soc. 73, 187 (1990).
- 11. Tartaj J., Messing G. L.: J. of the European Ceramic Society 17, 719 (1997).
- 12. Pach L., Roy R., and Komarneni S.: J. Mater. Res. 5, 278 (1990).
- 13. Staroň J., Tomšů F.: Žiaruvzdorné materiály, p. 22. Alfa, Bratislava 1992. (in Slovak)
- Lide D. R.(Editor-in-Chief): CRC Handbook of Chemistry and Physics, pp. 146 – 147, 75<sup>th</sup> Ed., CRC Press 1994.
- 15. Muan A. and Gee C. L.: J. Am. Ceram. Soc. 39, 207 (1956).
- Polli A. D., Lange F. F., and Levi C. G.: J. Am. Ceram. Soc. 79, 1745 (1996).
- Ikuma Y. and Gordon R. S.: J. Am. Ceram. Soc. 66, 139 (1983).
- 18. Muan A.: Am. J. Sci. 256, 413 (1958).

Submitted in English by the authors.

## SÓL - GÉL $\alpha$ -Al<sub>2</sub>O<sub>3</sub>/Fe<sub>2</sub>O<sub>3</sub> BRÚSNE ZRNÁ

ĽUBOŠ BAČA, LADISLAV PACH, ZDENEK HRABĚ

Chemicko-technologická fakulta STU, Katedra keramiky, skla a cementu, Radlinského 9, 812 37 Bratislava, Slovenská republika

Al<sub>2</sub>O<sub>3</sub> gél (zrná a tyčinky), pripravený z böhmitového sólu, obsahujúceho 1 až 6 % hmot. Fe2O3 sa spekal 3h pri teplote 1350 °C. Oxid železitý, vnášaný do systému ako Fe(NO<sub>3</sub>)<sub>3</sub>. 9H<sub>2</sub>O je účinným nukleačným činidlom kryštalizácie  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> z defektných  $\gamma$ ,  $\delta$ ,  $\theta$  - Al<sub>2</sub>O<sub>3</sub> fáz. Stredná veľkosť kryštálov (0,5 - 2,5 μm) neočakávane rastie s obsahom Fe<sub>2</sub>O<sub>3</sub> (1 až 6 hmot. %) tzn. s počtom nukleačných miest  $\alpha$ -Al<sub>2</sub>O<sub>3</sub>. V rovnakom zmysle sa zvyšuje aj intenzita tmavozeleného sfarbenia súvisiaca s prítomnosťou Fe2+ iónov. Objemová hmotnosť a mechanická pevnosť (pevnosť jednotlivých zŕn a pevnosť v priečnom ťahu) sa zvyšuje s obsahom Fe<sub>2</sub>O<sub>3</sub>, najmä v rozmedzí 2 až 3 hmot. %. Zvýšenie pevnosti sa vysvetľuje výskytom predĺžených kryštálov  $\alpha$ -Al<sub>2</sub>O<sub>3</sub>. Anizotropný rast kryštálov  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> súvisí s prítomnosťou Fe<sup>2+</sup> iónov a špecifickým nukleačným efektom  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> spojeným s rozpúšťaním Fe<sub>2</sub>O<sub>3</sub> v  $\alpha$ -Al<sub>2</sub>O<sub>3</sub>. Pre aplikáciu materiálu ako brúsnych zŕn je výhodný obsah Fe<sub>2</sub>O<sub>3</sub> okolo 3 % hmot., kedy sa pozoruje vysoká mechanická pevnosť pri malých kryštáloch α-Al<sub>2</sub>O<sub>3</sub>.