
INTRODUCTION

The crystal settling in vitrification spaces is fre-
quently a life determining factor of vitrification facili-
ties. The first crystalline phase precipitating from the
melt of HLW glasses below liquidus temperature are
solid solutions of spinels containing Fe, Cr and Ni [1,2].
The extremely slow dissolution of spinels in the melt at
temperatures above liquidus [3] brings about the spinel
crystal settling on the melter bottom and oblique sides
and growing of a sludge layer of high viscosity [4]. The
sufficiently thick sludge layer may interfere with the
melter operation mainly by blocking channels, thus the
lifetime of the facility may be drastically shorten. To
avoid this phenomenon, the waste loading is kept on the
low level and consequently, the volume of produced
glass is high. Nevertheless the mathematical and labora-
tory modeling of vitrification space, involving the spinel
settling and sludge layer growth, could reveal the mech-
anisms of spinel formation, interaction with the melt, as
well as settling and thus to find acceptable conditions
for higher waste loading even under these unfavourable
conditions.

The 3D mathematical model developed recently for
this purpose involved the glass flow and heat transfer in
the melter space coupled with temperature dependent
properties of glass [5] and with spinel crystal kinetics
[6,7]. Using this model, the calculations were performed
to reveal the influence of temperature, initial size and
amount of crystals, as well as melt liquidus temperature

on the spinel distribution in the space and the thickness
of the sludge layer. The first results have shown that the
melt in the space is intensively stirred owing to electri-
cal heating of the melt and consequently, the spinel crys-
tals are almost homogeneously distributed in the space.
Under these conditions, the behavior of the melter
approximately simulated the perfect mixer with constant
and homogeneous particle concentration inside. That is
why a model of perfect mixing was derived by the
authors of this work with the aim to examine the spinel
settling and sludge layer grow in the perfect mixer under
different process and material parameters and to com-
pare acquired results with values coming from the com-
plete mathematical model. The considerable shortening
of calculations can be expected when applying this
model for extended parametric studies of vigorously
mixed vitrification spaces, as well as independence of
results on concrete facility. The application of results
from the ideal mixer as initial conditions of the numeri-
cal mathematical model could substantially decrease the
calculation times of the numerical model.

THEORETICAL

When balancing the crystals in the melter, two
monodisperse sources of crystals (a balance including
entering polydisperse crystals may also be considered)
are taken into account: crystals coming from the batch
(cold cap), entering the melter through the top level, and
nucleated crystals. The crystal sources are active simul-
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taneously only when the melt temperature is lower than
glass liquidus temperature, T < TL, and Cin < Co, where
Cin is the concentration of crystals entering from the
batch and Co is the equilibrium concentration of crystals
in the melt. Under mentioned conditions, all crystals
present in the melter will grow. The total change of
crystal concentration in the melter by crystal input is
expressed as

(1)

where Cin is the input concentrations of crystals coming
from the cold cap and CNo is the input concentration of
nucleated crystals, V is the melter volume and V its melt
throughput.

For CNo we have

(2)

where NNo is number density of nucleated crystals, acrit

is the critical size of nucleated crystals, and ρs is the
spinel crystal density.

The mass flow of crystals entering the melt through
the cold cap is 

(3)

Similarly, the mass flow of nucleated crystals,
which are formed instantly after the glass has entered
the melter, is

(4)

The number of crystals entering the melter from the
cold cap per time unit is

(5)

Similarly, the flow of nucleated crystals is

(6)

As the all crystals in the melter grow (no crystals
are lost by dissolution because T<TL) and the amount of
settled crystals is small, the initial ratio between num-
bers of crystals from the cold cap and nucleated crystals
is constant:

(7)

where NCC and NN are the number densities of crystals
from the cold cap an nucleated crystals, respectively.

The concentration of crystals in the melter, coming
from the cold cap, can be approximately expressed as:

(8)

where aCC is the average size of crystals from the cold
cap. Similarly,

(9)

where aN is the average size of nucleated crystals.

The constant ratio between both concentrations is
obtained by combining equations (8), (9), and (7):

(10)

where a = ao + aτAge, a is the average value of crystal
growth rate and τAge is the average age of crystals in the
melter. The τAge is the half of the average residence time
of glass in the melter, if crystal grows.

As all the crystals present in the melter are coming
from the cold cap or are nucleated in the melter:

(11)

where C is the total crystal concentration in the melter.
Both crystal concentrations may be expressed sep-

arately by using equations (10) and (11):

(12a)

(13a)

If the expression coming from equations (12a) and
(13a) is designated as A, we have

(12b)

(13b)

The concentration change of crystals coming from
the cold cap is then

(14)

and

(15)

The actual number of crystals from both sources is
given by equations (8) and (9). When applying equa-
tions (12b) and (13b), equations (14) and (15) can be
written as

(16)

and

(17)

The amount of settled crystals can be expressed as
follows

(18)
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(19)

where νCC and νN are the settling velocities of crys-
tals coming from the cold cap and nucleated crystals,
respectively.

After applying the Stokes´ law for settling velocity
and equations (12b) and (13b), we obtain:

(20)
and

(21)

where ∆ρ is the density difference of crystals and glass,
η is the glass viscosity and S is the surface of the melter
where crystals settle. Finally, the concentration change
brought about by glass output is

(22)

Adding equations (1), (16), (17), (20), (21), and
(22), and solving the resulting equation for τ → ∞ (sta-
tionary state), we obtain the total crystal concentration
in the melter:

(23)

If the crystal nucleation is negligible, NNo → 0, then
A → 0 and only the crystals from the cold cap play the
role:

(24)

If, on the contrary, Cin → 0 and T < TL, and we get
from Equation (23)

(25)

For the thickness of the layer of settled crystals on
the melter bottom, we have:

(26)

where msCC is the amount of crystals settled on the bot-
tom surface unit.

Similarly,

(27)

The total layer thickness is

(28)

where Clayer is the mass concentration of crystals in the
sludge layer.

Substituting νCC and vN from equation (20) and
(21), we obtain 

(29)
where C∞ comes from equation (23).

Similarly, as for C∞, hCr expresses the thickness of
a layer consisting of crystals coming from the cold cap
if A → 0 and nucleated crystals if A → 1.

If the crystals inputting the melter from the cold
cap are polydisperse, the procedure is similar to that
applied for monodisperse crystals. The ratio between
number densities of inputting crystals is assumed con-
stant also in the melter.

If the melter temperature is higher than TL, or the
crystal input concentration from the cold cap is suffi-
ciently high, Cin > Co, crystals dissolve and no crystals
can be nucleated in the melter (NNo = 0; A = 0; see equa-
tion (24)). In this case, the average residence time of
crystals in the melter, τCr, may be lower than the ave-
rage residence time of glass, as some crystals complete-
ly dissolve. The value of τCr can be calculated from the
equation:

(30)

Here, f(τ) is the probability density function for the dis-
tribution of glass residence times in the melter. 

Thus, the first term on the right side of equation
(30) expresses the portion of the average residence time
of undissolved crystals (crystals in glass with low resi-
dence time), the second term expresses the portion of
the average residence time of dissolved crystals (glass
melt residence times are > τdiss).

The half of the value of τCr expresses the age of
present crystals and should be therefore put into the
mass balance in equation (24). In this case, the average
crystal size, a = a0 + aτCr/2.

To get the values of τCr for the perfect mixer, the
mass balance of crystals can be also used but no crystal
nucleation, growing or dissolution, and settling can be
considered. In this case, C∞ = Cin and the filling of the
mixer volume by new glass is expressed as

(31)

As the probability density function of glass resi-
dence times in the mixer is given by           , the f(τ) func-
tion of the perfect mixer has the form

(32)

By applying equations (30) (τmax → ∞) and (32), we get
for τCr:

(33)
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Because τmax → ∞ for the perfect mixer, the
inequality τDiss < τmax is always valid when using equa-
tions (31) to (33). The polynomial expressions for the
melter space filled by glass can be used as an alternati-
ve to rigorous mathematical modeling of the glass flow.

To compare the behaviour of an actual vitrification
furnace with theory, the equations expressing the initial
space filling by particles (crystals) for the perfect mixer
and the piston flow should be presented.

The neglection of crystal nucleation in the case of
the ideal mixer (equations (17) and (21)) and applica-
tion of constant values of a and τAge during space filling
leads to the simplified differential equation for the
instant particle concentration in the melter, C:

(34)

where:

(35)

and:

(36)

For small crystals, the settling (second term) can be
neglected.

If a → 0 and ∆ρ = 0, the solution of equation (34)
is given by (31).

For the piston flow, similar equations may be
derived when neglecting crystal settling and starting
from the mass balance of crystals in the melter.

The mass element of crystals in the piston flow
melter is given by:

(37)

And therefore:

(38)

Applying NCC = Cin/a0ρs (see equation (5)), we get:

(39)

The Hixon-Crowell equation is applied to calculate
a for both perfect mixer and piston flow [8]:

(40)

Where kH is the mass transfer coefficient, C0 is the
equilibrium volume fraction of crystals and C´ is the
concentration of present crystals in the given part of the
melter filled already by crystals. Inserting the instant
crystal concentration in the melter, C´, into equation
(40), then gives:

(41)

If a = 0, we get from (39):

(42)

which means that the average concentration of crystals
of constant size grows linearly with time. This behav-
iour simulates the melter filling by a new glass melt.

To get the melter filling by dissolving or growing
crystals, equations (39) and (41) are simultaneously
solved.

CONCLUSION

Presented equations provide a chance to evaluate
qualitatively the character of glass flow and expected
particle distribution in glass melting and vitrification
spaces. If the apparent similarity between a melting
space and one of the presented models is found, the
derived relations make it possible to calculate the con-
centrations and particle distribution (piston flow), as
well as particle settling in the space. Thus, the numeri-
cal mathematical model requiring longterm calculations
can be substituted for one of simplified models or by
their combination. This is especially needed when
extensive parametric studies of a melter are intended to
find optimum conditions for melter operation or infor-
mation about the overall character of glass flow when it
is needed. The results of the simplified model can also
serve as initial conditions for calculations made by the
numerical mathematical model to shorten substantially
the calculations. The second part of this work will pro-
vide the comparison of a HLW vitrification space with
the proposed models and results of a parametric study
examining the influence of temperature, melt liquidus
temperature, initial spinel crystal size and concentra-
tion, as well as the impact of the value of mass transfer
coefficient and melter pull rate on the crystal concentra-
tion in the melter and crystal settling on the melter bot-
tom.
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ČÁST 1. TEORETICKÉ VZTAHY
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Matematické a laboratorní modelování procesu vitrifikace
vysoce radioaktivních odpadů pomáhá nalézt mechanismy
tvorby spinelových krystalů a popisuje interakce krystalů s
taveninou i jejich usazování v tavicím prostoru. Pomocí výsled-
ků modelů lze nalézt podmínky vhodné pro vy��í vitrifikační
výkon příslu�ných zařízení. Vycházejíce ze zku�eností s nume-
rickým matematickým modelem, autoři připravili zjednodu-
�ený model procesu zalo�ený na hmotové bilanci vcházejících,
odcházejících, nukleovaných, rostoucích nebo rozpou�tějících
se a usazujících se krystalů v ideálně míchaném tavicím pros-
toru. Uvedené vztahy pro výslednou koncentraci krystalů a
rychlost tvorby vrstvy usazených krystalů na dně tavicího pros-
toru byly doplněny odpovídajícími vztahy pro případ, �e v
tavicím prostoru existuje pístový tok.


