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In this first paper of a series on the effective elastic properties of alumina-zirconia composite ceramics the theoretical frame-
work in which these properties arise, the linear theory of elasticity, is presented in an unconventional way. A rational con-
tinuum approach is chosen, but without the formal details necessary for a mathematically strict formulation. Using a refer-
ential (Lagrangian) formulation as long as useful, the constitutive equation for the stress tensor is derived for isotropic as
well as for anisotropic materials. Particular emphasis is laid on the distinction between the (geometrical) linearization of the
kinematic measures (strain tensors) and the (physical) linearization of the constitutive equation (material model). Recent
results occurring in the literature are mentioned. Some standard textbook formulae are recalled for the purpose of easy ref-

erence in the subsequent papers of this series.

INTRODUCTION

Due to their brittleness, the majority of advanced
ceramics, and most ceramic materials in general, exhib-
it linear elastic behavior up to a certain critical value of
strain or stress. When this critical threshhold value is
exceeded, the material usually reacts to external loading
by brittle fracture, long before non-linear elastic or plas-
tic behavior has a chance to occur. Similarly, when the
temperature is changed from room temperature to high-
er temperatures, ceramic materials usually expand by
not more than a few percent. These and other general
features of material behavior justify a linear treatment
of the mechanics and thermomechanics of ceramic
materials.

The importance of the linear theory of elasticity
and thermoelasticity consists not only in its intrinsic
simplicity, but also in the fact that the coefficients
occuring in the linear constitutive equations (material
models) are traditionally called material properties.
Knowledge of these material properties, which can be
measured by standard test procedures, should be suffi-
cient to characterize material behavior in any geometri-
cal situation.

In this first paper the linear theory of elasticity is
presented in a modern way, using a rational continuum

approach. In order to make this introductory paper as
concise as possible and in order to make it easily acces-
sible to a wide audience of readers, however, the details
necessary for a mathematically strict formulation are
discarded in all cases where no essential additional
physical insight is gained by them. According to the
didactic character of this introductory paper emphasis is
laid on the final formulae and their physical meaning.
For general reference, a mathematically more stringent
formulation, comprehensive references to original work
and further reading the reader should refer to [1-3]. In
this paper, formal details are to a large degree replaced
by intuitive arguments. In order not to complicate nota-
tion, only absolutely indispensible expressions are
given explicitly. Relations (however important they
may be) that are not needed for further reference in this
series of papers are mentioned or explained only in the
text or in footnotes wherever possible. The purpose of
this paper is to give the reader a red line for a thorough
understanding of linear elasticity theory that is indis-
pensible for an advanced treatment of the effective elas-
tic properties of alumina-zirconia composite ceramics.
With respect to this specific purpose, many analogous
or similar relations that are usually treated in modern
textbooks of elasticity theory are omitted. When need
arises, the interested reader may consult e.g. [4-6].
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Deformation and strain tensors

Mechanics in general deals with motion. Continu-
um mechanics deals with motion of material bodies,
consisting of so-called material particles. The most fun-
damental function describing motion of material bodies
in continuum mechanics is the so-called deformation
function (transplacement) . This vector function
uniquely determines the actual position x of a material
particle (in the sense of continuum mechanics) at time ¢,
which has been at a referential position X (in an arbi-
trarily chosen reference frame) at an arbitrarily chosen
reference time:

x=xX,%) (D

For fixed X (i.e. selecting a certain material particle)
% determines a trajectory, for fixed ¢ (i.e. imaging the
whole body at a certain moment) ) determines a confi-
guration (placement). The referential gradient (i.e. the
derivative with respect to the referential position) of the
deformation function is a second-order tensor, the so-
-called deformation gradient (transplacement gradient)

0 (X0 )
oX

While the function ) contains complete informa-
tion about the motion of a material body (translation,
rotation, and change of shape), the deformation gradient
F is a local measure of motion and contains information
only on rotation and change of shape. Materials that can
be modelled by using the deformation gradient (2) only
(i.e. without invoking deformation gradients of higher
order) are called simple materials (materials with local
response, i.e. materials for which the principle of local
action can be adopted). Materials for which (2) is not a
sufficient measure of deformation, are called non-local.
Elasticity theory (linear and non-linear) deals only with
simple materials.

For the purpose of linear elasticity it is useful to
introduce another vector function, the so-called dis-
placement, via the definition

F=Gradx=

u(X,) = (X, - X 3)
Using equation (3), the deformation gradient can be
written as

01Xt O[X+uX,t
F e Grag g XD O[X+u(X.1)]

oX X

=1+Gradu
4)

where Grad u is the displacement gradient and 1 the se-
cond-order unit tensor. According to Cauchy's polar

decomposition theorem (cf. e.g. [1-5])', the deformation
gradient can be uniquely decomposed into a (pro-per)
orthogonal tensor R (corresponding to rigid body rota-
tions) and a symmetric, positively definite tensor U

F=RU (5)

where R and U have the properties

RR' =1 (6)
det R=+1 (7
U=U (®)
(Ua)a>0 9)

where equation (9) holds for arbitrary vectors a # 0 and
the superscript 7' denotes transposition. The second-
order tensor U is called right stretch tensor’. Note that
the deformation gradient F is not symmetric, in contrast
to U. Based on U, other (non-linear) deformation meas-
ures can be defined. In particular, in order to avoid the
irrational operation of taking the square root of a certain
product of two tensors (which would require definition)

U=\F'F (10)

one usually prefers the so-called right Cauchy-Green
deformation tensor, defined as

C=U'=FF (11)

For rigid body motions (and for the reference con-
figuration as a special case) the deformation tensors
reduce to the unit tensor 1. That means that in the
absence of deformations (i.e. in the absence of changes
of shape of a body) the unit tensor results. For many
practical purposes it is more useful, however, to
describe the absence of deformations by the null tensor
(zero tensor) 0. This is the impetus for defining so-
called strain measures, in addition to deformation meas-
ures. The most popular (non-linear) strain measure is
the Green-Lagrange strain tensor

G=%(C—-1)="%(Grad u + Grad u” + Grad u” Grad u)
(12)

Note that both C and G are symmetric tensors of
second order. They are deformation and strain measures
valid for finite (i.e. arbitrarily large) deformations and
strains.

' Cauchy's polar decomposition theorem is valid for regular (i.e. non-singular) tensors, i.e. tensors with a non-zero jacobian. Regularity is a conse-
quence of the fact that the deformation function is invertible, which means in physical terms that neither crossing, nor creation, nor destruction of

trajectories is allowed.

? A completely analogous formulation is possible by using the left stretch tensor V and the corresponding counterpart form of Cauchy's polar decom-
position theorem F=VR. Since no essential physical insight is gained by making this counterpart formulation explicit, it is omitted here. When nee-
ded, the reader can easily find the respective relations in standard textbooks and monographs of rational continuum mechanics, cf. [1-5].
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Stress tensors

The most important law of continuum mechanics is
the momentum balance. In words, it states that the mate-
rial time derivative of momentum (i.e. in the non-rela-
tivistic case the product of mass and acceleration) is
balanced by the sum of forces. In continuum mechanics
it turned out useful to distinguish between forces of two
different ranges, long-range forces acting on the whole
volume of the body (body forces) and short-range forces
acting on short distances. In classical continuum
mechanics the short-range forces are assumed to be
effectively cancelled everywhere inside the body as a
consequence of the law of action and reaction. Note that
this need not be the case for (rational) mixture theories®.
At the external boundary (i.e. the surface) of the body,
however, the short-range forces will act (on the sur-
roundings), since there is no counterforce to balance
their effect. These surface forces are usually described
by a stress vector (traction vector), which depends on
the position x, the time ¢ and the surface on which it
acts, oriented with a direction described by the normal
vector n of the (hypothetical or actual) surface to which
it is perpendicular:

t=t(x,n) (13)

Thus, the stress vector is not a field in the classical
sense. Fortunately, it turns out (as can be demonstrated
by Cauchy's classcial tetrahedron argumentation, cf. e.g.
[1-7]), that the dependence on n is a linear one:

t=Tn (14)

where T = T(x,?) is the Cauchy stress tensor, a symme-
tric (due to the moment of momentum balance) tensor
of second order.

Considering the simplest mechanical test, uniaxial
extension of a cylindrical body (a rod), the traction vec-
tor (at any time of the test) corresponds to the force act-
ing perpendicularly to the direction of extension divid-
ed by the actual cross-section area of the test rod (cor-
responding to the time instant at which the force is
measured). In practice, however, it is often more con-
venient (and absolutely sufficient) to measure the cross-
section area once and for all at the beginning of the test,
instead of recording it simultaneously with the force
measurement during the whole test. In this case the
cross-section area is a referential one and, correspond-
ingly, also the stress vector. Based on this (referential or
nominal) stress vector, several referential stress tensors
can be defined, cf. e.g. [1-4]. For the purpose of demon-
strating how the linear theory of elasticity emerges from
the non-linear theory the second Piola-Kirchhoff stress

tensor is the most convenient. This symmetric second-
order tensor is connected to the Cauchy stress tensor via
the relation

S=|detF|F' T(F") (15)

The most general material model for elastic solids
states that the second Piola-Kirchhoff stress tensor is a
function of the Green-Lagrange strain tensor. Thus, the
most general constitutive equation of elastic solids is

S=S(G) (16)

This abstract material model is general enough to
describe the behavior of anisotropic non-linearly elastic
solids in finite deformation processes. In order to make
the constitutive equation more explicit, however, addi-
tional specifying assumptions have to be adopted con-
cerning material behavior.

Physical linearization of the constitutive
equation of isotropic solids

For isotropic solids the constitutive equation, equa-
tion (16), can readily be written in a more explicit form
without loss of generality. Invoking the Cayley-Hamil-
ton theorem and the representation theorem for isotro-
pic tensor functions with symmetric tensor arguments
one obtains the formally simple expression, cf. [1-4]

S=7%()1+%()G+y(.) G (17)

where (...) indicates that the scalar coefficients %, %, %
are functions of three scalar invariants of G, e.g. trG,
tr(G*) and tr(G®). Obviously, equation (17) can be li-
nearized by avoiding occurrence of non-linear terms in
G, i.e. omitting the third r.h.s. term, making % a con-
stant and permitting only a linear dependence of % on
trG. The resulting linear constitutive equation for iso-
tropic elastic solids is:

S=y-(trG)-1+% G (18)

Note that at this stage no assumption has been made
concerning the magnitude of the deformations (strains).
These can be arbitrarily large (finite). Note also that
residual stresses (corresponding, say, to a S, term on the
r.h.s.) are usually neglected, based on the argumentation
that the referential state is chosen to be stress-free. For
anisotropic solids, equation (16) could directlly be lin-
earized by assuming the relation

S=KG (19)

where K is a fourth-order tensor. In order to preserve
maximum accordance with textbook tradition, however,

* In rational mixture theories short-range forces between the constituents of the mixture (inside the mixture body) are related to momentum exchange

or interaction forces, cf. e.g. [8-10].
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we will postpone the linearization for anisotropic solids
(and its subsequent specification to selected symme-
tries, including isotropy) to a later stage where the geo-
metrical linearization of the kinematic measures has
already been introduced.

Geometrical linearization of the kinematic measures

Small (infinitesimal) deformations (strains) are
defined by the fact that the displacement gradients are
small. Since displacement gradients Grad u are tensors,
their smallness can only be evaluated when an appro-
priate scalar measure (norm, magnitude) of these ten-
sors is defined which can be compared to unity. With
this scalar measure the condition for small strains can
be formulated as follows:

\Grad u - (Grad u)" <<1

(20)

Some of the consequences of condition (20) are

F~1 (21 a)
|det Fl~1 (21 b)
S~T 21 ¢)

and the referential gradient (Grad) reduces to the usual
spatial gradient (grad.). In other words, in the case of
small strains there is no reason to distinguish between
referential (Lagrangian) and spatial (Eulerian) descrip-
tion. This is assumed in many undergraduate texts on
elasticity theory. In particular, when one confines one-
self a priori to small strains, the second Piola-Kirchhoff
stress tensor reduces to the Cauchy stress tensor and
thus only one stress tensor has to be introduced from the
beginning.

In the case of small strains the (non-linear) Green-
Lagrange strain tensor (12) reduces to the so-called
small strain tensor, defined as

E =5 (grad u + grad u’) (22)

Similar to G, the small strain tensor E is a symme-
tric second-order tensor. Note, however, that, in contrast
to G, E is a linear strain measure, i.e. suitable only for
small deformations.

Anisotropic solids

Specifying equation (19) to the case of small strains
(i.e. invoking physical and geometrical linearization)

yields Hooke's law for anisotropic solids in direct tensor
notation

T=CE (23)

where C is the elasticity tensor, a fully symmetric
fourth-order tensor. Using index tensor notation,
Hooke's law can be written in the form

ij = Cijlcl E, (24)

As a consequence of the symmetry of T and E, the
number of components of this tensor is reduced from a
total of 81 to 36 independent ones [1, 2, 4, 7]. Thus, it
is possible to represent this fourth-order tensor alterna-
tively in the form of a (6x6) matrix (which, of course,
does not have the transformation properties of a tensor),
and to express Hooke's law in the direct matrix notation
(engineering notation) [4, 6, 7]

[0]=[C] [¢] 25)
or, in index matrix notation,
=G5 26)

In this notation [o] and [€] are 6-dimensional col-
umn vectors referring to stress and strain, respectively,
the components of which are defined as follows

0,=T1,,0,=1y,0,=Ty3,0,=T,5,0,=T,,0,=T, (27)

81 = EIU 82 = EZZ’ 83 = E33’ 84 = E23’ 85 = E}l’ 86 = EIZ (28)

and [C] is the so-called stiffness matrix, the elements of
which are given by the substitution of index pairs as fol-
lows:

11-51,22 52,33 53,23 54,31 55,126

Additionally it is usually assumed* that the stiffness
itself is symmetric with respect to its diagonal, i.c. the
total number of independent components is reduced
from 36 to 21 (so-called Green elasticity or hyperelas-
ticity®). Thus in the most general case of well-defined
anisotropy (triclinic monocrystals) the (6x6) stiffness
matrix or, alternatively, the fourth-order elasticity ten-
sor, has 36 elastic constants (elastic moduli), 21 of
which can be assumed to be independent. In matrix
index notation:

6
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&
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* This assumption is based on a more fundamental assumption concerning the elastic energy (stored energy function) [1, 2, 7, 11]. If the elastic ener-
gy, which is a potential function for the stress tensor, vanishes in the unstrained state and can be expressed by a symmetric quadratic form, then the
stiffness matrix is symmetric, i.e. the elasticity tensor is fully symmetric.
* In contrast to the so-called Cauchy elasticity where this is not the case.
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For the off-diagonal elements in this stiffness
matrix and the following ones we automatically assume
validity of the symmetry condition for Green elasticity
(hyperelasticity):

¢,=¢ (30)

For materials of higher symmetry (monocrystals or
polycrystalline bodies) the number of independent elas-
tic constants is further reduced as follows:

e Monoclinic monocrystals (13 independent elastic
constants):

Cll C12 C13 0 0 Cl6
CZl CZZ C23 O O C26
= CSl C32 C33 0 0 C36
[Cmonoclinic] 3 1
0 0 0 C, Cs Cy (€2))
0 0 0 Cu Cs G
_C6l Co, Cy O 0 Css_

e Orthorhomic monocrystals and orthotropic polycrys-
talline bodies (9 independent elastic constants):

¢, ¢, ¢; 0 0 O
¢y G, G, 0 0 0
C, C, C, 0 0 0
[Cort ,0rom ic] = . ? ®
oo 0 0 0 C,0 0 (32)
0 0 0 0 C, 0
(0 0 0 0 0 Cg

e Trigonal monocrystals (6 independent elastic con-
stants):

¢, ¢, C; C, 0 O
¢, C, C, C, 0 O
e c, C, C; 0 0 O (33)
¢, ¢, 0 C, 0 O
0 0 0 0 C C
[0 0 0 0 Gy Cgf
with the additional conditions
C,=C,, C,=C,, C,=C, (34)
and
C,,=—Cy,=Cs, Ce =" (C,, — C,,) (35)

For tetragonal monocrystals (6 independent elastic
constants)® the general form of the orthorhombic (ortho-
tropic) stiffness matrix, equation (32), together with

conditions (30) and (34) applies. The same holds true
for materials with higher than tetragonal symmetry. In
these cases, however, the following additional condi-
tions hold for the non-zero elements:

e Hexagonal monocrystals and transversely isotropic
polycrystalline bodies (5 independent elastic con-
stants):

Cy="(C,—Cp)

(36)
e Cubic monocrystals (3 independent elastic constants):

Cll = C22 = C33, C12 = C23 = C31 ’ C44 = Css = C66 (37)

e [sotropic materials (2 independent elastic constants):
Cy=Cp=0C;;,C,=Cy=0C;,C,,=C;=Cy=%(C,—C)
(38)

In the case of isotropic materials the stiffness

matrix can be written as follows (using the definitions
and C,,=Aand C,, = p):

[A+2u4 4 A 0 0 O]
A A+2u A 0 0 0
A A A+240 0 0
[Ci:otro ic] =
” o 0 0 u 0o of G
0 0 0 0 u 0
0 0 0 0 0 uf

The elastic constants (elastic moduli) A and u are
called Lamé constants (units [GPa]). Switching over
from matrix notation to tensor notation the elasticity
tensor is

Cijkl =1 5;7 oyt 1 (9, é}z + 5, é;k) (40)

where the 0 's are Kronecker deltas. Inserting the elas-
ticity tensor given by equation (40) into Hooke's law,
equation (24), yields the Cauchy-Hooke law for isotro-
pic materials:

T;=[A 6; 04+t 1 (6,6, % 6, 6]

E,=A8,6,Ey+2uE,~A8,Eg+2uE, )

Switching over from index tensor notation to direct
tensor notation this corresponds to

T=A-(E)-1+2uE (42)

This equation can easily be recognized as being lin-
earized with respect to the material model (physical lin-
earization) and the kinematic measures (geometric lin-
earization), cf. equations (18) and (23).

¢ Most textbooks claim that in the case of trigonal and tetragonal monocrystals it is necessary to distinguish two cases of elastic symmetry, depend-
ing on the crystal class (point group): one with 7 independent elastic constants (point groups 3, /3 4, /4, 4/m ) and one with 6 independent elastic
constants (point groups 32, 3m, /3m, 422, 4mm, /42m, 4/m 2/m 2/m). As shown in a recent, highly recognized, paper by Forte and Vianello [12], this

claim is wrong.
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Engineering elastic moduli of isotropic materials

The two Lamé constants occurring in equations
(39)-(42) are one possible choice of elastic constants
(elastic moduli) in the case of isotropic materials.
Depending on the application in question, other elastic
moduli can be more advantageous. E.g. the tensile mod-
ulus (Young modulus) £ (units [GPa]) and the Poisson
ratio v (dimensionless) are preferable from the practical
point of view, since they can be relatively easily deter-
mined by standard test procedures. The shear modulus
G (units [GPa]) and bulk modulus K (units [GPa]), on
the other hand, are preferable from the theoretical point
of view, e.g. for micromechanical calculations.

In terms of E and v (both measurable in principle in
a uniaxial tension test) the Cauchy-Hooke law can be
written as

E v
a+v [E+ 1-2v) '(”E)'l]

From this equation it is evident that for the Poisson
ratio v the values 0.5 and —1 are not allowed. Actually,
as a consequence of the second law of thermodynamics
the following inequality must hold [2, 5, 6]:

-1<v<0.5

T= (43)

(44)

Although it has been known for at least 75 years
that anisotropic materials (e.g. pyrite monocrystals) can
exhibit negative Poisson ratios in certain directions
[11], until recently most textbooks on the mechanics of
materials suggested that according to experience with
real materials the Poisson ratio should be positive for all
isotropic materials (i.e. 0 < v < 0.5), cf. e.g., very
recently, [5]. This misleading suggestion was supported
by the intuitive interpretation of the Poisson ratio: in the
limit of incompressible materials v — 0.5, while the
case v =0 corresponds to a (compressible) material that
does not contract in uniaxial extension perpendicular to
the extension direction. Research in materials science
for more than a decade has clearly shown, however, that
isotropic materials with negative Poisson ratio exist
[13-15]. These materials show the unexpected behavior,
that when extended in one direction, they extend also in
all perpendicular directions. Potential applications are
so-called press-fit fasteners, which are easily inserted
into a hole but their removal is resisted because the fas-

teners expand under tension [15]. Most dense ceramic
materials exhibit Poisson ratios in the range 0.1 — 0.3
[16, 17] and for many purposes the approximate value
of 0.2 can serve as a reasonable estimate in the absence
of more precise information (for alumina and zirconia
approximately 0.25). Nevertheless, new research in
ceramic science does not exclude the occurrence of ne-
gative Poisson ratios [18].

In a similar way as the Young modulus £ and the
Poisson ratio v are connected to the uniaxial extension
test, the shear modulus G and the bulk modulus K are
connected to simple shear and isotropic deformation
(i.e. dilatation or compression), cf. e.g. [2, 4-7]. Note
that, accidentally, it turns out that the shear modulus
equals the second Lamé constant u.

Since, as mentioned above, two independent elastic
constants (moduli) are necessary and sufficient for the
complete description of the elastic response of isotropic
materials, the remaining elastic constants (moduli) are
not independent, i.e. any elastic constant can be
expressed in terms of two other independent ones. Table
I lists some useful relations between popular elastic
constants of isotropic materials (note that G = u), cf.
e.g. [2,4-7].

SUMMARY AND OUTLOOK

In this first, introductory, part of a series of papers
on the effective elastic properties of alumina-zirconia
composite ceramics the linear theory of elasticity has
been presented in a condensed form, as far as possible
exact, but without superfluous mathematical details. In
order to emphasize physical content at the cost of tech-
nical detail, the linear theory for small deformations has
been derived as a special case of the non-linear theory
with finite deformations, in contrast to comparable
treatments. The authors believe that this is the way of
choice mechanics of materials should be taught to mate-
rials scientists, in contrast to civil and mechanical engi-
neers. Starting with the basic concepts of continuum
mechanics (deformation function, deformation gradient,
displacement gradient), non-linear deformation and
strain measures are introduced (Cauchy-Green deforma-
tion tensor, Green-Lagrange strain tensor) as well as
spatial and referential stress tensors (Cauchy stress ten-

Table 1. Some relations between popular elastic constants of isotropic materials.

A U E v G, v K, v G, K E G
UGA+ 2u) 9KG
E /= E 2G(1 +v) 3K(1 +2v) E
A+ U 3K+G
A 3K -2G E-2G
v —_— v v v e ——
2(A+ 1) 203K+ G) 2G
E 3K(1 -2v)
G u — G _— =7 G G
2(1+v) 2(1+v)
30+ 2u E 2G(1 + v) EG
K _ . - 7 K K e —
3 3(1-2v) 3(1-2v) 33G-E)
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sor, second Piola-Kirchhoff stress tensor). Emphasizing
the didactic character of this paper, linearization is
introduced in two clearly distinguished steps: first, as
the physical linearization of the constitutive equation
(via Cayley-Hamilton theorem and representation theo-
rem for isotropic tensor functions) and second as the
geometrical linearization of the kinematic measures
(leading to the definition of the small strain tensor).
Anisotropic materials are treated with physical and geo-
metrical linearization. The elasticity tensors or stiffness
matrices for materials with different symmetry are
given and discussed. It is mentioned that, in contrast to
common belief and textbook tradition, recently pub-
lished work shows that trigonal and tetragonal mono-
crystals with 7 independent elastic constant cannot
exist. Apart from the Lamé constants, engineering elas-
tic constants and their mutual relationsships in the case
of isotropic materials are mentioned and briefly dis-
cussed (Young modulus, Poisson ratio, shear modulus,
bulk modulus). In particular, it is mentioned that, in
contrast to ceramic textbook tradition, published
research since more than a decade in other fields of
materials science has clearly shown that isotropic mate-
rials with negative Poisson ratio exist and are already
going to be applied.

The present paper will serve as a theroetical basis
and handy reference for the exact treatment of the effec-
tive elastic properties of alumina-zirconia composite
ceramics in the subsequent papers of this series. These
papers will concern the micromechnical approach to
porous ceramics and two-phase ceramic composites in
general, the calculation of effective elastic moduli of
dense polycrystalline alumina and zirconia from elastic
moduli of alumina and zirconia monocrystals, the pre-
diction of effective elastic moduli of dense alumina-zir-
conia composites, as well as effective elasticity moduli
of porous ceramics in the alumina-zirconia system.
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EFEKTIVNI ELASTICKE VLASTNOSTI KOMPOZITNI
KERAMIKY NA BAZI ALO, A ZrO, - CAST 1. LINEARNI
ELASTICITA V RAMCI RACIONALN{

TEORIE KONTINUA

WILLI PABST, EVA GREGOROVA

Ustav skla a keramiky
Vysoka skola chemicko-technologickd v Praze
Technicka 5, 166 28 Praha

V tomto prvnim ¢lanku, na ktery by méla navazovat fada
praci zabyvajicich se efektivnimi elastickymi vlastnostmi kom-
pozitni keramiky na bazi AL,O, a ZrO,, je vytyCen teoreticky
ramec, ve kterém jsou tyto vlastnosti definovany. Linearni
teorie elasticity je zde prezentovana v ramci racionalni teorie
kontinua, ale bez formalnich detailti, které by pro tento ucel
zbyte€né zatizily matematicky popis. Oproti konvenénimu piis-
tupu je zde linearni teorie elasticity pro pfipad malych defor-
maci odvozena jako specialni pfipad nelinearni teorie pro velké
deformace. Zvlastni diraz je kladen na rozliseni fyzikalni lin-
earizace konstitutivni rovnice a geometrické linearizace kine-
matickych veli¢in. Elastické vlastnosti anizotropnich materialti
jsou prezentovany az po zavedeni fyzikalni a geometrické lin-
earizace. Jsou zde uvedeny matice tuhosti pro materialy vSech
symetrii (monokrystald a polykrystalickych keramik resp. kom-
pozitll). V ramci jejich diskuse je citovan relativné novy poz-
natek z roku 1996 z prace Forte a Vianella: nemoznost exis-
tence trigonalnich a tetragonalnich monokrystall se 7 nezavis-
lymi elastickymi konstantami. Kromé Laméovych konstant
jsou uvedeny a oddiskutovany tzv. ,,inzenyrské* elastické kon-
stanty (Youngtiv modul, Poissondv pomér, smykovy modul a
modul stladitelnosti) a jejich vzajemné vztahy pro ptipad
izotropnich materialtl. Je zde presentovan fakt, ktery je dosud
Casto opomijen v zakladnich ucebnicich (pfedevs§im v oblasti
keramiky): totiz, ze existuji materialy (dokonce izotropni) s
negativnim Poissonovym pomérem.
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