
INTRODUCTION

The recent development of new shaping methods
for ceramic suspensions, using organic or biopolymeric
components [1-24], has led to an increased interest in
the viscoelastic behavior of these systems. Except for
inorganic sol-gel systems, this mode of rheological
behavior has been widely neglected in ceramic science
and technology so far. Therefore knowledge on vis-
coelasticty is mostly quite rudimentary among ceramic
scientists and engineers. However, a certain knowledge
of the viscoelastic behavior is necessary because gela-
tion, i.e. a continuous change in the rheological behav-
ior from viscous to elastic (with a viscoelastic transition
region) is the essential body-forming step in many of
the new shaping processes. 

The theory of viscoelasticity, especially in its non-
linear parts, is rather complex. There are of course many
excellent textbooks and monographs on this topic and
the reader can refer to these for more detailed informa-
tion and further reading [25-29]. For a routine charac-
terization of gelation processes, however, it is usually
not necessary to invoke the general theory. In many
cases it is sufficient to know the rheological behavior in
the range of small stresses, deformations or deformation
rates, i.e. in the range where the linear theory of vis-
coelasticity is approximately valid.

It is the aim of this paper to summarize and explain
the linear theory of viscoelasticity to the degree neces-
sary to correctly interpret small amplitude oscillatory
shear experiments on gelling systems, in particular
aqueous ceramic suspensions containing organic or
biopolymeric ingredients. Thus the paper provides a
concise shortcut through the linear theory of viscoelas-
ticity and should serve as a sufficient theoretical back-
ground for the interpretation of rheological measure-
ments in subsequent papers.

Linear elasticity and linear viscosity

The constitutive equation of perfectly elastic, linear
(i.e. Hookean) isotropic solids, after physical and geo-
metrical linearization, cf. e.g. [30], is

(1)

where T is the Cauchy stress tensor, λ and µ the Lamé
constants (moduli), E the small strain tensor, defined as
the symmetric part of the displacement gradient   u,

(2)

tr denotes the trace and trE is approximately equal to the
relative change of volume, i.e. trE ≈ ∆ V/V0. Instead of
the Lamé constants λ and µ other elastic constants can
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be used, e.g. the shear modulus G and the Poisson ratio
ν. Hooke's law in this case is

(3)

The first term is responsible for volumetric changes
(isotropic deformation, i.e. hydrostatic dilation or com-
pression), the second for shape changes (shear deforma-
tions or shear strains). In almost complete analogy to
equation (1) the constitutive equation of purely viscous,
linear (i.e. Newtonian) isotropic fluids is

(4)

where p is the pressure (for incompressible fluids, i.e.
liquids, an arbitrary hydrostatic pressure), ζ + 2/3η the
bulk viscosity (for incompressible fluids, i.e. liquids,
not defined), η the shear viscosity, D the strain rate ten-
sor (stretching tensor, rate of deformation tensor),
defined as the symmetric part of the velocity gradient

(5)
cf. e.g. [31]. Compressible fluids are gases and bubbly
liquids. They exhibit both viscous and elastic behavior.
Perfect fluids are gases without viscosity. For incom-
pressible fluids, i.e. gas-free liquids, trD = div v = 0, as
a consequence of mass conservation. 

When only shear deformations are considered (one-
dimensional case) and these are additionally assumed to
be small, the constitutive equations of Hookean solids
and Newtonian fluids are

(6)

and

(7)

respectively, where τ is the shear stress, γ the shear
strain, γ the shear strain rate, often simply called shear
rate (with the superimposed dot denoting the time deriv-
ative), G the shear modulus and η the shear viscosity.

Linear viscoelasticity - qualitative features
and simple models

Viscoelastic materials can be characterized by a
dimensionless number, the so-called Deborah number
De, which is the ratio between a characteristic time
intrinsic to the material (relaxation or delay time) tmaterial

and a characteristic time related to the process (defor-
mation time or inverse strain rate) tprocess:

(8)

For fluids De << 1 (purely viscous fluids De → 0),
while for solids De >> 1 (perfectly elastic solids De →   ).
Materials for which De ≈ 1 (in the process under con-
sideration) are called viscoelastic. Viscoelastic materi-
als exhibit a number of typical rheological features,

among them e.g. normal stress effects (rod-climbing or
Weissenberg effect in Couette flow, die-swell or Barus
effect in Poiseuille flow), stress relaxation, delayed
response, recoil and creep, cf. [25-29].

The simplest (one-dimensional) models of vis-
coelastic materials are the Maxwell model (more fluid-
like)

(9)

and the Kelvin model (more solid-like)

(10)

The mechanistic analog of the Hooke model, equa-
tion (6), is a spring and of the Newton model, equation
(7), a dashpot, cf. figure 1 (a and b). In the language of
these mechanistic analogs the Maxwell model corre-
sponds to a spring and a dashpot in series (figure 1c),
and the Kelvin model corresponds to a parallel arrange-
ment of a spring and a dashpot (figure 1d). 

The Maxwell model allows for stress relaxation on
deloading

(11)

with a relaxation time

(12)

The Kelvin model allows for delayed response. On
deloading the deformation relaxes slowly, i.e.

(13)

while on loading the final deformation γfinal is attained
only after a certain time, i.e.

(14)

The time lag (delay time) is in both cases

(15)
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Figure 1.  Mechanistic analogs of the Hooke model, a spring (a),
the Newton model, a dashpot (b), the Maxwell model, a spring and
a dashpot in series (c) and the Kelvin model, a spring and a dash-
pot in parallel arrangement (d).

a) b) c) d)
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Linear viscoelasticity in small
amplitude oscillatory shear

When an isotropic, linearly viscoelastic material is
subjected to a sinusoidally varying shear strain γ (at a
frequency below that required to induce resonance
vibrations,

(16)

where γ0 is the shear strain amplitude, t the time and ω
the angular frequency, the shear stress response is

(17)
where τ0 is the shear stress amplitude and δ the phase
angle (phase shift). Equation (17) demonstrates that the
shear stress consists of two components. One compo-
nent is of magnitude τ0 cos δ and is in phase with the
strain, the other (of magnitude τ0 sin δ) is 90° ahead of
the strain and thus in phase with the shear rate

(18)

cf. figure 2. Therefore the material behaves partly as an
elastic solid and partly as a viscous liquid, and the
stress-strain relation (17) can be written as

(19)

where the storage modulus G’ is

(20)

and the loss modulus G’’ is

(21)

The ratio

(22)

is termed the loss factor (damping factor, loss tangent).
It should be emphasized that G’, G’’ and tan δ depend
on the test frequency and on temperature. An alternative
formulation of linear viscoelasticity is possible via com-
plex numbers. Making use of the Euler relation (with
the complex unity i = √-1)

(23)

the strain and stress cycles (16) and (17) can be repre-
sented by the real parts of 

(24)

and

(25)

Then the complex modulus G* is

(26)

In complete analogy a complex viscosity can be
defined via equations (17) and (18), where the shear rate
is the real part of

(27)

The complex viscosity η* is then

(28)

Between the complex modulus and the complex
viscosity the following relation holds:

(29)

In other words, the real part of the complex modu-
lus (the storage modulus, a measure of the elasticity of
a fluid, for perfectly elastic solids equal to the shear
modulus) is connected to the imaginary part of the vis-
cosity via

(30)

while the imaginary part of the complex modulus (the
loss modulus, a measure of energy dissipation) is con-
nected to the real part of the viscosity via

(31)

Of course both the complex modulus and the com-
plex viscosity are frequency- and temperature depen-
dent.
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Figure 2.  Shear strain γ, shear stress τ and shear strain rate (shear
rate) γ, δ denotes the phase shift (phase angle) between strain and
stress, subscript 0 indicates amplitudes.
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Suspensions, gels and the significance of viscoelastic
behavior in sol-gel systems and gelation processes

Suspensions are multiphase mixtures, i.e. heteroge-
neous on the microscopic level. In classical suspensions
it is understood that the typical particle size is larger
than 0.1 µm, i.e. > 100 nm. On the other hand, solutions
are single-phase, i.e. homogenous on the microscopic
level. Suspensions with nanosized (1–100 nm) particles
of isometric shape, i.e. the colloidal counterparts of sus-
pensions, are called sols. Similar to liquid solutions,
which are purely viscous (often even linear, i.e. New-
tonian), also most suspensions and their colloidal coun-
terparts (sols) are purely viscous up to relatively high
particle concentrations as long as the dispersed particles
are rigid and of isometric shape. Suspensions and sols
with deformable and/or anisometric particles (e.g. fiber
and platelet suspensions), including polymer solutions
and liquid crystals, often exhibit non-Newtonian behav-
ior, from non-linear flow curves to typical viscoelastic
behavior such as normal stress effects and relaxation
phenomena. 

Many organic polymers, in particular those of bio-
logical origin, when dispersed or dissolved in aqueous
media, are capable of forming viscoelastic systems (e.g.
water with swelling starch [1-4,10-16] or elastic gels
with water (hydrogels). The formation of elastic gels
from purely viscous systems (sol-gel transition) can be
chemically induced or thermally induced. In the latter
case we can distinguish gel formation on cooling or on
heating (so-called thermogelling). The former applies
e.g. to gelatine [5,6,10,12,16] and agaroids such as
agarose, agar or carageenan [7,8,16-24], the latter e.g.
to methylcellulose [9]. Gelling is not restricted to organ-
ic systems, of course. Examples of inorganic gels are
silica gel, titania gel, boehmite gel and zirconia gel, the
preparation of which is well known [32]. Often they are
prepared from precursor solutions, which are mixed to
form sols at room temperature (chemically induced) or
at elevated temperature and subsequently transform into
gels. Typically, even suspensions with anisometric par-
ticles nanosized (< 100 nm) in only one direction are
capable of gelling (e.g. suspensions of flaky montmoril-
lonite or other smectic clays, with a platelet thickness of
approx. 1 nm) [33,34].

It is clear that the mechanism of the sol-gel transi-
tion is a polymerization reaction (formation of chemical
bonds) whose kinetics is triggered by the chemical envi-
ronment and the external conditions, in particular tem-
perature. Due to the viscoelastic behavior in the transi-
tion region, relaxation times characterizing the material
tmaterial, cf. equation (8), are large. For this reason the sol-
gel transition is not a well-defined phase transition (of
the first kind) but depends on the rate of temperature
change. Concerning the difficult question whether the
sol-gel transition has an underlying thermodynamic
phase transition (of the second kind) or not, one may

invoke the same reasoning as in the case of the glass
transition, cf. e.g. [35]. In any case the result of a sol-
gel transition is a gel, usually isotropic (amorphous). On
the microscopic level it consists of a gel network, i.e. a
cellular solid formed by the new chemical bonds. As
long as the open-cell pores are filled with water the
(water-saturated) material is a two-phase mixture called
hydrogel. Note that, although such a hydrogel is highly
compliant (non-rigid) with respect to shear deforma-
tions, it can nevertheless be purely elastic, i.e. charac-
terized by a zero phase shift (δ = 0°) and loss factor
(tan δ = 0), cf. equations (17), (20)-(22), (25)-(26), (28).
In this case the small amplitude shear experiment meas-
ures directly the shear modulus G (which corresponds to
the measured storage modulus G’). Of course, viscosity
is not defined for such a system, i.e. the complex vis-
cosity η* defined via equation (29) has only an imagi-
nary part. Since the shear modulus G is connected to the
tensile modulus (Young's modulus) E via the standard
relation

(32)

cf. e.g. [30], and the tensile modulus is - via the Griffith
theory (linear fracture mechanics) - connected to the
theoretical strength σ

(33)

where y is the specific surface energy and d the dimen-
sion of typical inhomogeneities (e.g. pore or cell size),
cf. e.g. [36], it may be expected that the measured shear
modulus of an elastic gel is connected to the gel strength
by a relation of the type

(34)

or a similar one. Therefore oscillatory rheometry, apart
from characterizing the viscosity of purely viscous liq-
uids (e.g. mixtures in the sol state) and both viscoelas-
tic moduli (storage and loss modulus) in the viscoelas-
tic transition region, can potentially be used as a tool to
provide a quantitative measure of gel strength. In
ceramic technology a quantitative knowledge of gel
strength would be very useful, since gel strength is a
critical parameter to be controlled when new shaping
methods have to be optimized: although it is a common
aim to keep the concentration of organic / biopolymeric
additives as low as possible it must be high enough to
guarantee at least a minimum gel strength to ensure
defect-free demolding, handling and transport before
the drying step. It must be noted, however, that the
above arguments are only qualitative, since the Griffith
theory (linear fracture mechanics) assumes brittle mate-
rials. Further, clearly, it can be expected that the theo-
retical strength may be orders of magnitude away from
experimentally measured strength values. It seems that
a rigorous theory of gel strength is not available so far.
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At the moment, of course, other methods are common-
ly used to measure gel strength, e.g. penetrometry [37].
All these methods are more or less empirical and deliv-
er relative values. A stringent derivation of the relation
between shear modulus (storage modulus) and gel
strength, preferentially based on rational mechanics or
micromechanics, would be highly desirable. 

After drying, the remaining solid and water-free1

skeleton is called a xerogel. It is also purely elastic, but
of course its shear modulus cannot be measured by
oscillatory rheometry anymore, since it is almost rigid
and there is no pore liquid available that would ensure
coupling of the measured sample to the solid walls of
the rheometer's measuring cylinders. In other words
when the gel is dry, the so-called "no-slip condition" at
the wall, which is the basic condition of all viscometric
and rheometric measurements, cannot be fulfilled. In
such a case only solid-solid friction is measured. When
the gel is water-saturated the no-slip condition may or
may not be fulfilled, depending on the circumstances. In
rotational viscometry it cannot be fulfilled as long as the
gel structure remains intact. Complete rotation (i.e. a
turn by 360°) either destroys the gel structure (when the
gel-wall interaction, or, more precisely, the interaction
of the pore-filling liquid with the walls, is stronger than
the gel strength) or else leads to slip of the gel sample
as a whole (when the gel-wall interaction is weaker than
the gel strength). In oscillatory rheometry the no-slip
condition is fulfilled, at least for some time, for elastic
hydrogels in a similar way as for ordinary viscous liq-
uids or viscoelastic materials, as long as the oscillations
are chosen to be of a sufficiently small amplitude.

Drying of multiphase solids, especially particulate
solids (i.e. humid solids with separate particles held
together by capillary forces or elastic gels with a flexi-
ble network) is usually connected with shrinkage.
Shrinkage is of course connected with demixing, i.e.
during drying one of the phases (constituents), usually
the pore fluid, disappears from the system (either by
seepage or by evaporation). At the end of the drying
step the remaining mixture has changed its volume and
is usually one phase (when the empty pores are consid-
ered as voids). In this sense the mixture as a whole can
be considered as compressible, although both of its con-
stituents are (practically) incompressible, cf. the discus-
sions on this point in rational multiphase mixture theo-
ry [38]. It has been shown earlier [39] that, according to
the Coussy model [40], the kinetics of drying shrinkage
can be described by the equation

(35)

where ε = trE ≈ ∆V/V0 is the relative volume change
(total shrinkage), cf. the comment to equation (2) above,
εfinal can be interpreted as the final asymptotic shrinkage

(denoting the state where the skeleton, although possi-
bly still porous, has lost the flexibility necessary for fur-
ther volume deformation) and tC as a characteristic
drying time (shrinkage time), i.e. the time after which ε
equals ε = (1 - 1/e) ⋅ εfinal = 0.632 ⋅ εfinal, i.e. after which
63.2 % of the final shrinkage has been attained. Evi-
dently, equation (35) is formally identical to the consti-
tutive equation of a Kelvin model material, equation
(14). Note, however, that in the derivation of equation
(35) no assumption has been made concerning the vis-
coelastic character of the material, cf. [39,40]. In partic-
ular, in Coussy's model the material has not been
assumed to be a viscoelastic gel. Thus it can as well be
applied to describe the drying of a water-saturated par-
ticulate solids, e.g. a  humid clay body. Nevertheless the
governing differential equation 

(36)
and its solution, equation (35), are identical to the dif-
ferential equation of the mechanistic analog of the
Kelvin model, cf. figure 1d. This might indicate a cer-
tain analogy between poroelasticity and viscoelasticity,
similar to the well-known analogy of poroelasticity and
thermoelasticity [41,42].
Finally a few words on other rheological phenomena
would seem useful. Although purely viscous up to rela-
tively high concentrations, suspensions exhibit a block-
ing phenomenon at concentrations close to a critical
concentration (volume fraction) φC, i.e. viscous flow is
impeded in close proximity to φC, cf. [31]. For suspen-
sions this critical volume fraction can be interpreted in
terms of a maximum particle packing fraction. The
maximum particle packing fraction is the volume frac-
tion of (solid, more or less rigid) particles at which
strong repulsive particle-particle interactions (some-
times called "excluded volume effects", in common
rigid-particle suspensions de facto simply "mechanical
contacts") prevent further densification under compres-
sive forces (due to sterical constraints). Moreover, close
to φC shear flow is prevented as well (due to immensely
high interparticle friction). Ideal suspensions of
monodisperse rigid spheres should exhibit a critical vol-
ume fraction φC of approx. 0.64, i.e. at 64 vol.% the
effective viscosity would attain an infinite value [31]. In
practice, this value is often a good approximation also
for polydisperse systems as long as the particles are iso-
metric. For suspensions of anisometric particles, e.g.
fibers or platelets, however, the critical volume fraction
attains much lower values, cf. [43]. Many systems with
nanosized particles (i.e. particles with at least one
dimension < 100 nm), including concentrated colloidal
sols with anisometric particles and clay suspensions and
pastes, exhibit so-called viscoplastic behavior,
described by a flow curve with a yield stress, either lin-
ear (Bingham materials) or non-linear (Herschel-Bulk-
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ley materials). Although the existence of the yield stress
has been questioned from a fundamental point of view
[44], it certainly is a useful engineering tool to describe
the phenomenology of certain deformation and flow
processes quite well. As long as loaded below the yield
stress, these materials behave as elastic solids (with a
linear stress-strain curve up to a certain – small – value
of strain), above the yield stress the material responds
by viscous flow. In small amplitude oscillatory shear
experiments viscoplastic materials would usually
appear purely elastic. Consequently, a material cannot
be classified as viscoplastic by means of oscillatory
rheometry. On the other hand, in order to characterize
viscoelastic behavior oscillatory shear rheometry is the
most common tool. With respect to the new shaping
methods for ceramic suspensions, which are continu-
ously being developed [1-24], it is a desideratum to
apply oscillatory rheometry, widely used in polymer
and biopolymer science and technology, routinely in
ceramic science and technology as well and to include a
more detailed knowledge of viscoelasticity into the edu-
cation schedules not only of glass technologists but also
of ceramic engineers.

CONCLUSION

The linear theory of viscoelasticity has been sum-
marized for ceramic scientists and engineers to the
degree necessary for a basic understanding of the rheo-
logical behavior of sol-gel systems and gelation
processes. Starting with the two extreme modes of
material behavior, i.e. those of linearly elastic
(Hookean) solids and linearly viscous (Newtonian) flu-
ids, the two simplest models of viscoelastic materials
(Maxwell fluid and Kelvin solid) were briefly recalled.
With a view on oscillatory rheometry the basic treat-
ment of the viscoelastic response to small amplitude
shear oscillations has been given in elementary
(trigonometrical) and in complex formulation. Storage
modulus G’, loss modulus G’’ and phase shift δ or its
tangent, the loss factor, have all been defined and it has
been recalled that only two of these three quantities are
independent. The temperature and frequency depend-
ence of these quantities as well as the interrelation
between real and imaginary parts of the complex modu-
lus and the complex viscosity (two complementary
quantities) has been emphasized. The general signifi-
cance of viscoelastic behavior in sol-gel systems and
gelation processes has been discussed in a qualitative
way. Practical aspects of the rheology of suspensions
and their colloidal counterparts (sols) have also been
addressed, including critical volume fractions and the
effect of anisometric particle shape. The sol-gel transi-
tion has been explained and for elastic gels slip phe-

nomena and gel strength have been mentioned, includ-
ing their consequence for materials characterization and
processing, respectively. An interesting analogy has
been shown between the mathematical description of
drying shrinkage kinetics and the Kelvin model for vis-
coelastic materials. With respect to the recent develop-
ments of new shaping methods for ceramic suspensions,
the wider use of oscillatory rheometry in ceramic sci-
ence and technology is advocated. This introductory
paper should provide a handy reference for subsequent
experimental papers dealing with the rheology of
ceramic suspensions containing carrageenan and other
organic or biopolymeric ingredients in an aqueous
medium. Part 2 with concern the viscoelastic behavior
of zirconia suspensions with carrageenan. Part 3 will
concern the rheology of starch-containing suspensions.

Notes:
1 Water-free except for structural, i.e. chemically bonded, water
in the form of OH groups. In contrast to absorbed or physical-
ly adsorbed water, this chemically bonded water cannot be
eliminated by conventional drying, but only during firing.
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V tomto èlánku je shrnuta lineární teorie viskoelasticity v
míøe nezbytné pro moderní keramickou vìdu a technologii.
Umožòuje porozumìní alespoò základùm reologického chování
sol-gelových soustav a gelovacích procesù. Vycházíme ze dvou
takøka extrémních typù materiálového chování, tj. z lineárnì
elastických (Hookových) pevných látek a z lineárnì viskózních
(Newtonských) tekutin a dále ze dvou nejjednodušších (základ-
ních) modelù viskoelastických materiálù (Maxwellovy a Kelvi-
novy hmoty). S ohledem na aplikaci v oscilaèní reometrii je
shrnut (jednak pomocí elementárních trigonometrických
funkcí, jednak v komplexním vyjádøení) základní formalismus
popisující viskoelastickou odezvu na smykové oscilace s malou
amplitudou. Jsou definovány akumulaèní modul G’, ztrátový
modul G’’ a fázový posun (fázový úhel) δ resp. ztrátový faktor
tan δ, avšak pouze dva z nich jsou nezávislé. Je zdùraznìna
teplotní a frekvenèní závislost tìchto velièin a také vztah mezi
reálnou a imaginární èástí komplexního modulu resp. kom-
plexní viskozity. Obecný význam viskoelastického chování v
keramických sol-gelových soustavách a gelovacích procesech
je diskutován spíše kvalitativnì. Jsou diskutovány praktické
aspekty reologie suspenzí a solù, vèetnì kritických objemových
frakcí a vlivu anizometrického tvaru èástic. Je popsán pøechod
sol-gel a u elastických gelù jsou zmínìny skluz a pevnost, vèet-
nì jejich praktických konsekvencí pro mìøení resp. pro tech-
nologii. Zmínìna je také zajímavá analogie mezi matematic-
kým popisem kinetiky smrštìní sušením a Kelvinovým mod-
elem viskoelastických materiálù. S ohledem na nedávný razant-
ní vývoj nových tvarovacích metod pro keramické suspenze je
zdùraznìna nutnost širšího použití oscilaèní reometrie v kera-
mické vìdì a technologii. Tento úvodní èlánek má sloužit jako
struèná reference pro další navazující experimentální èlánky
zabývající se reologií keramických suspenzí s obsahem karage-
nanu a jiných organických resp. biopolymerních složek ve vod-
ném prostøedí. Druhá èást se bude zabývat viskoelastickým
chováním suspenzí oxidu zirkonièitého s obsahem karagenanu.
Tøetí èást bude zamìøena na reologii suspenzí s obsahem
škrobu.


