
INTRODUCTION

In Part 1 of this series of papers, the linear theory
of elasticity has been summarized for anisotropic and
isotropic materials in general [1]. In this theory, which
is embedded in the general framework of rational
mechanics and is known to be appropriate for brittle
materials (e.g. ceramics at room temperature), the mate-
rial is assumed to be a classical continuum, i.e. a single
body (a one-constituent continuum) and not a multiple
body (i.e. a superposition of several one-constituent
continua) in the sense of rational mixture theory [2-5].
In other words, the material is considered from a macro-
scopic point of view, where microstructural hetero-
geneities are smeared out and reveal themselves only
indirectly via the specific material properties.1 In gene-
ral these "properties" (i.e. the coefficients in the linear
constitutive equations) have to be determined by direct
measurement. It is the long-standing aim of research in
rational mixture theory, however, to predict the mixture
properties (and in general all mixture quantities) from
those of the constituents by calculation only, without
direct measurement. There are a few fortunate cases
where this can be done with an accuracy sufficient for
practical purposes. Such is the case for non-reacting

multiphase mixtures or, more generally, materials with
microstructure. These are the subject of the present
paper. With regard to the purpose of this paper we con-
fine ourselves to solid materials (linearly elastic, cf.
[1]), with special emphasis on one-phase polycrystalline
materials and two-phase materials (composites and
porous materials).

Polycrystalline materials are one-phase materials
with microstructure, usually uniform (in the absence of
macroscopic gradients) but always heterogeneous (at
the microscopic scale). They consist of small crystals
(crystallites), isometric or anisometric (elongated / pro-
late or flat / oblate), held together by strong interaction
forces (chemical bonds) and exhibiting random orienta-
tion or (a certain degree of) preferential orientation.
Examples are densely sintered ceramic bodies. Poly-
crystalline materials with preferential orientation of ani-
sometric crystallites are anisotropic. In a classical con-
tribution [7,8] Voigt has shown, based on the isostrain
assumption, that in the case of isotropic polycrystalline
materials with a uniform and random microstructure the
scalar elastic moduli can be calculated from the compo-
nents of the elasticity tensor (stiffness matrix). In anoth-
er classical paper [9], Reuss has proposed another result
for this case, based on the isostress assumption and
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using the components of the inverse elasticity tensor
(compliance matrix), cf. [10-13]. In both approaches
averaging is performed over all possible orientations of
crystallites. Hill [14] was apparently the first to recog-
nize that the Voigt and Reuss values were in fact the
upper and lower bounds, respectively, to the property in
question. Moreover, it turned out that for most practical
purposes the Voigt and Reuss bound calculated for
polycrystalline materials from monocrystal data are suf-
ficiently close together to serve as a satisfactory esti-
mate of the property value [13,14]. Comparison with
experimental data has confirmed the validity of the
Voigt-Reuss bounds and their usefulness for property
prediction purposes. For further reference, the general
procedure to calculate the Voigt and Reuss bounds for
properties (elastic moduli) of polycrystalline materials
is recalled in this paper. 

The properties of multiphase materials with
microstructure (= non-reacting multiphase mixtures)
can in principle be predicted exactly when the proper-
ties of the constituent phases and all details of the
microstructure are known. Of course the problem with
this statement is the fact, that the microstructural details
must be known quantitatively in order to properly for-
malize the abstract mathematical statement2

Mixture property = Function
(phase properties, microstructure). (1)

The theoretical framework to attack this task is
called micromechanics. In micromechanics mixture
properties are called effective properties. Effective
properties of heterogeneous materials are the properties
of heterogeneous media viewed from the macroscopic
continuum level. The interested reader may consult one
of the excellent monographs in this field [15-18], but
the present paper is to a large degree self-contained.
Micromechanics provides theoretical concepts for
quantifying microstructural information to an arbitrary
degree of precision and including it into the description
of a material in the form of so-called correlation func-
tions [17,18]. The lowest-order microstructural infor-
mation (one-point correlation function) concerns only
the volume fractions of the phases. Two-, three- and
multi-point correlation functions involve information
on the size, shape, orientation and mutual arrangement
of the phases. Such higher-order correlation functions,
however, are extremely difficult to determine. Evident-
ly, for real materials3 higher-order microstructural infor-
mation is accessible only via tomographic techniques
(direct 3D information) or, approximately, by image
analysis of planar sections (3D information indirectly
inferred from 2D information).

For the major part of the present paper we confine
ourselves to the scalar effective elastic moduli M (where

M stands for the tensile modulus E, the shear modulus
G or the bulk modulus K, respectively) as functions of
the phase moduli Mi and microstructural information of
the lowest order, the volume fractions φi. For this pur-
pose we introduce the following basic assumption:

(2)

where Mi (i = 0, 1, 2... n) are the phase properties of all
n phases and φi the volume fractions of the n phases.
Note that the volume fractions of all n phases sum up to
unity, i.e.

(3)

so that only n - 1 volume fractions are independent.
Equation (2) is a widely accepted starting point of
micromechanical modeling. At first sight it might seem
sufficiently general to be of almost universal validity,
since its only statement is that the effective property is
a function of the phase properties and the phase volume
fractions (existence of the function f). It might seem that
further details of microstructure might only refine but
not completely change this function. Consequently, the
question of the validity or non-validity of equation (2)
seems to be more or less an academic one. A simple
example shows that this is not the case: an alumina sus-
pension with 50 vol.% alumina can easily be prepared,
but a porous alumina ceramic body containing 50 vol.%
of (open, water-saturated) pores can also be prepared. In
both cases the alumina volume fraction (or, alternative-
ly, the water volume fraction or porosity) is 0.5, but the
first system is a viscous suspension (E, G, K all zero,
viscosity non-zero/finite), the second an elastic porous
solid (E, G, K all non-zero/finite, viscosity infinite).
Thus, equation (2) should be considered as a convenient
working hypothesis only. Nevertheless, in the lack of
more detailed microstructural information it is often the
only feasible starting point for micromechnical mode-
ling.

It is the main aim of the present paper to provide,
on the basis of equation (2), the necessary microme-
chanical framework to model porous alumina, porous
zirconia, dense alumina-zirconia composites and, final-
ly, porous alumina-zirconia composites. However,
many relevant relations will be given for the mathemat-
ical description of structure-property relationships in
general.

Effective elastic moduli of polycrystalline materials

As detailed in Part 1 [1], the elastic behavior of
anisotropic materials (monocrystals and anisotropic
composites) is characterized by a fourth-order elasticity
tensor, which can be represented, as a consequence of
symmetry, as a (6 × 6) matrix. This matrix is again
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symmetric with respect to its diagonal (due to energetic
reasons), so that the maximum number of independent
elements is 21 in the least symmetric case (triclinic
monocrystal). For higher symmetries this number of
independent elements is smaller.

When Hooke's law is written in engineering matrix
notation as

(4)

where σi is the 6-dimensional stress vector and εj is the
6-dimensional small strain vector, Cij is called stiffness
matrix. On the other hand, using the so-called compli-
ance matrix Sij = Cij

-1 (the inverse of the stiffness matrix),
Hooke's law can be written in the inverse form

(5)

Note that the stiffness matrix and the compliance
matrix have the same number of independent compo-
nents (called elastic constants and elastic coefficients,
respectively) and zero elements at the same positions,
cf. [10,11]. The compliance matrix can be calculated
from the stiffness matrix by matrix inversion as follows

(6)

where subdet (Cij) is the subdeterminant obtained by
omitting the ith row and the jth column from Cij and det
(Cij) is the determinant of Cij. An analogous relation
holds with the roles of Sij and Cij interchanged. For tri-
clinic and monoclinic crystals the matrix inversion is
lengthy and should preferably be performed by a com-
puter. For materials of higher symmetry the matrix
inversion simplifies considerably. E.g. for orthorhombic
monocrystals and orthotropic polycrystalline materials
or composites the number of independent components is
9 and we have [11]

etc. (7)

etc. (8)

For materials of even higher symmetry the inver-
sion relations are as follows, cf. [11,13]:

Trigonal monocrystals (6 independent components):

(9a,b,c)

(9d,e,f)

Tetragonal monocrystals (6 independent compo-
nents):

(10a,b,c)

(10d,e,f)

Hexagonal monocrystals and transversely isotropic
polycrystalline materials or composites (5 independ-
ent components):

(11a,b,c)

(11d,e)

Cubic monocrystals (3 independent components):

(12a,b,c)

In these relations K , K’ and K’’ have the following
meaning:

(13a)
(13b)
(13c)

Totally analogous relations are valid with the stiff-
nesses Cij interchanged by the compliances Sij. Note,
however, that for trigonal monocrystals, hexagonal
monocrystals (including transversely isotropic poly-
crystalline materials or composites) and isotropic mate-
rials the elastic constant (stiffness) C66 is given by4

(14a)

cf. [1], while the elastic coefficient (compliance) S66 is
given by [10]

(14b)

Of course, for isotropic materials C66 and S66 are
identical to C44 = C55 and S44 = S55, respectively [1],
and therefore equation (12c) is redundant, since
S44 =    (S11 + S12):

Isotropic materials (2 independent components):

(15a,b)
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Voigt [7,8] has shown that, under the assumption
that the strain inside the material is uniform (isostrain
assumption), the effective elastic moduli of a dense (i.e.
pore-free) polycrystalline material composed of crystal-
lites (i.e. small monocrystals) of arbitrary symmetry can
be calculated from the 9 elastic constants (stiffnesses)
C11, C22, C33, C44, C55, C66, C12, C23, C31, when the material
as a whole is statistically isotropic ("quasi-isotropic"),
which requires random orientation of the anisotropic
(and possibly anisometric) crystallites. Alternatively
Reuss [9] has shown that, under the assumption that the
stress inside the material is uniform (isostress assump-
tion), the effective elastic moduli of a polycrystalline
material composed of crystallites of arbitrary symmetry
can be calculated from the 9 elastic coefficients (com-
pliances) S11, S22, S33, S44, S55, S66, S12, S23, S31, when the
material as a whole is isotropic.5

According to Voigt the effective tensile modulus of
a polycrystalline material is [7,8,11,12]

(16)

the effective shear modulus

(17)

and the effective bulk modulus

(18)

In these expressions A, B, C are given by

(19)

(21)

(21)

According to Reuss [9,11,12] the effective tensile
modulus of a polycrystalline material is

(22)

the effective shear modulus

(23)

and the effective bulk modulus

(24)

In these expressions X, Y, Z are given by

(25)

(26)

(27)

Hill [14] has shown that the Voigt and Reuss values
are the upper bound and the lower bound, respectively,
of the effective elastic moduli M of statistically isotrop-
ic polycrystalline materials (Hill's theorem), i.e.

(28)

Experience with the effective elastic properties of
polycrystalline materials has shown that the Voigt
bound and the Reuss bound are for practical purposes
sufficiently close together. Therefore, the arithmetic
average6 of the Voigt and Reuss values,

(29)

is often used as an estimate (approximate prediction) for
the respective effective elastic modulus of dense poly-
crystalline materials ("Voigt-Reuss-Hill average",
abbreviated "VRH-average").

We would like to close this section with a few
words on the Poisson ratio. It is well known in elastici-
ty theory (cf. e.g. [1,17]), that the Poisson ratio has se-
veral exceptional properties (e.g. in contrast to the elas-
tic moduli E, G and K it can adopt negative values in
principle). For the effective Poisson ratio of a polycrys-
talline or multiphase, possibly porous, material the situ-
ation seems to be still rather unclear and would need
further investigation. According to our knowledge, nei-
ther explicit formulae in analogy to equations (16)-(18)
and equations (22)-(24) are available for the effective
Poisson ratio, nor is it known whether the effective
Poisson ratio satisfes the Voigt-Reuss bounds or not.
There is considerable confusion in the literature con-
cerning this point. In the lack of a better alternative, it is
often recommended e.g. to calculate the effective Pois-
son ratio of a composite via a simple mixture rule (arith-
metic average of the end components weighted by vol-
ume fractions). This would correspond to a Voigt value
and might, by analogy, suggest the possibility to calcu-
late the effective Poisson ratio of an isotropic polycrys-
talline material via the standard formulae

(30)

using the Voigt values EV, GV and KV in place of E, G and
K. It is known, however, that in the case of porous mate-
rials (degenerate case of composites where one phase is
the void phase exhibiting zero elastic moduli) the mix-
ture rule for the effective Poisson ratio evidently fails,
since the effective Poisson ratio approaches a value of
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0.2 for porosities approaching 100 % (e.g. in foams) and
not 0 (as should be the case if the mixture rule would
apply here). It would exceed the scope of this paper to
discuss this paradoxical situation further. For further
information the interested reader can consult [17] and
[19,20].

Voigt-Reuss bounds for the effective elastic
moduli of multiphase materials

When in a multiphase material the properties of the
individual phases (constituents) are known, it can be
expected that certain bounds on the effective property of
the multiphase material (mixture) can be given without
further microstructural information. This is indeed the
case.7 It is plausible e.g. that the value of the effective
property of a multiphase material, whose carrier are the
bulk phases and not the phase boundaries, should nei-
ther be lower nor higher than the value of that property
for any of the individual phases.8 Therefore it can be
concluded that such an effective (mixture) property of
the multiphase material, e.g. the effective elastic modu-
lus M must be some kind of average value of all the
phase (constituent) properties, e.g. the elastic moduli
Mi. The most general average value is the general power
mean (weighted by volume fractions):

(31)

In this expression the summation extends over all n
phases, the exponent N determines the type of mean
value and the subscript X denotes this respective type.
Setting e.g. N = -1 results in the harmonic mean MH,
N → 0 yields the geometric mean MG, N = 1 the arith-
metic mean MA, N = 2 the quadratic mean MQ, and
N = 3 the cubic mean MC etc. For these types of aver-
ages the so-called majority relation holds:

(32)

This is a mathematical law, i.e. a proposition that
can be rigorously proved. Interestingly, however, it has
been found that in the case of multiphase materials with
arbitrary microstructure (i.e. periodically ordered or ran-
domly disordered and isotropic or anisotropic) the effec-
tive elastic moduli always lie between the arithmetic and
the harmonic mean. This is a physical law, i.e. a finding
based on model assumptions. Its applicability to reality
is and remains in principle a question of experience.

The arithmetic mean (upper bound) is the Voigt
bound MV

(33)

and the harmonic mean (lower bound) is the Reuss
bound MR

(34)

In the case of two-phase materials one of the two
volume fractions is redundant (φ1 1 - φ and φ2 φ,
because of equation (3) and the Voigt and Reuss bounds
reduce to

(35)

and

(36)

respectively. When, additionally, one of the phases is
the void phase (with zero elastic moduli M2 = 0), and the
elastic moduli of the solid matrix phase are denoted as
M1 M0 as usual, the Voigt bound reduces to

(37)

and the Reuss bound, equation (36), degenerates to zero
identically.

Hashin-Shtrikman bounds for the effective elastic
moduli of isotropic two-phase materials

with random microstructure

When the volume fractions are the only microstruc-
tural information available there are no other rigorous
bounds than the Voigt-Reuss bounds. In contrast to the
case of polycrystalline monophase materials (see
above) the Voigt-Reuss bounds of multiphase materials
are usually too far apart to be of any value for prediction
purposes. For uniform9 microstructures, however, these
bounds can be specified more exactly using minimum
energy principles and the Hashin-Shtrikman variational
principle [21,22]. When, additionally, the microstruc-
ture is known to be (or can be assumed to be) isotropic
and random, the so-called upper Hashin-Shtrikman
bounds (upper HS bounds) for the shear modulus G and
the bulk modulus K of two-phase materials can be writ-
ten in the explicit form

(38)

and

(39)

respectively, when K1 > K2 and G1 > G2. The lower
Hashin-Shtrikman bounds (lower HS bounds) G-

HS and
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K-
HS are obtained by interchanging the subscripts 1 and

2, cf. [17,18]. In the special case where one of the phas-
es is the void phase (with zero elastic moduli G2 = 0,
K2 = 0), where φ2 φ is the porosity and the elastic modu-
li of the solid matrix phase are denoted as G1 G0,
K1 K0 as usual, the upper HS bounds reduce to

(40)

(41)

and the lower HS bounds degenerate to zero identically.
The HS bounds have been theoretically derived for the
shear modulus G and the bulk modulus K. Approximate
values of the corresponding HS bounds for the tensile
modulus E can be obtained via the standard relation

(42)

Dilute approximations for the effective
elastic moduli of porous materials

In the case of porous materials the Voigt bound (for
materials with arbitrary microstructure) of the effective
elastic moduli is given by equation (37) and the upper
HS bound (for isotropic materials) by equations (40)
through (42). The Voigt bound is linearly decreasing
with a slope of 1 and the upper HS bound is nonlinear-
ly decreasing, cf. the porosity dependence of the rela-
tive tensile modulus M/M0 (with M0 being the tensile
modulus of the dense ceramic material) in figure 1. For
very low porosities (φ → 0) it is justified to assume a
linear dependence of the relative elastic moduli on the
volume fraction:

(43)

where [M] is the intrinsic elastic modulus defined as

(44)

with M standing for the tensile modulus E, the shear
modulus G or the bulk modulus K, respectively.

Exact solutions to the problem of non-interacting
(i.e. a dilute system of) spherical inclusions have been
obtained by Dewey [23] and Mackenzie [24], cf. also
[17,25]. These solutions result in explicit formulae for
the coefficients (intrinsic elastic moduli) in equation
(43). Thus, for the relative shear modulus G/G0, the rel-
ative bulk modulus K/K0 and the relative tensile modu-
lus E/E0 we have the following formulae [17,23-27]:

(45)

(46)

(47)

Values of the intrinsic elastic moduli [G], [K] and
[E] are listed in table 1 in dependence of the matrix
Poisson ratio ν0. For ν0 = 0.3 the intrinsic elastic moduli
are -1.909, -2.625 and -2.005, respectively, whereas for
ν0 = 0.2 all three intrinsic elastic moduli are exactly -2.
Note that for the normal matrix Poisson ratios ν0

between 0 and 0.5 the intrinsic tensile modulus [E] is
between -1.917 and -2.005, i.e. a value of [E] = -1.909
is attained only for (slightly auxetic) materials with a
(negative) matrix Poisson ratio ν0 close to zero. The
limit values of [K] and [E] for (strongly auxetic) mate-
rials with a (negative) matrix Poisson ratio ν0 approach-
ing -1 are -1, corresponding to the Voigt bound (values
> -1 do not occur). 
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Figure 1.  Voigt bound (full linear line with slope 1), upper Hashin-
Shtrikman bound (HS upper, dashed nonlinear line) and Dewey-
Mackenzie approximation (DM, dotted linear line with slope 0.5)
for porous materials with a matrix Poisson ratio ν0 of 0.2.

Table 1.  Intrinsic elastic moduli [G], [K], [E] for different
matrix Poisson ratios ν0. 

ν0 [G] [K] [E]

-1.0 -2.5 -1 -1
-0.9 -2.478 -1.018 -1.115
-0.8 -2.455 -1.038 -1.227
-0.7 -2.429 -1.063 -1.336
-0.6 -2.4 -1.091 -1.44
-0.5 -2.368 -1.125 -1.539
-0.4 -2.333 -1.167 -1.633
-0.3 -2.294 -1.219 -1.721
-0.2 -2.25 -1.286 -1.8
-0.1 -2.2 -1.375 -1.87
0 -2.143 -1.5 -1.929
0.1 -2.077 -1.688 -1.973
0.2 -2 -2 -2
0.3 -1.909 -2.625 -2.005
0.4 -1.8 -4.5 -1.98
0.5 -1.667 -1.917-



Interestingly, the limit value of the intrinsic shear
modulus [G] for (strongly auxetic) materials with a
(negative) matrix Poisson ratio of ν0 = -1 is -2.5, obvi-
ously the negative counterpart of the Einstein coeffi-
cient (intrinsic shear viscosity) in suspension rheology,
cf. [28]. Note also that for the moderate matrix Poisson
ratios ν0 between 0.1 and 0.4 the values of [G] and [E]
are all relatively close to -2, while for [K] this is not the
case. For a matrix Poisson ratio of ν0 = 0.5 (correspon-
ding to a totally incompressible matrix) the intrinsic
bulk modulus diverges, i.e. a very small amount of
pores would be extremely efficient (detrimental) in such
a case. Finally, we note that all linear relations of the
type (43) with -1 > [M] > -2.5 predict a critical porosity
1 > φC > 0.4, for which the effective elastic moduli
become zero, i.e. the material looses integrity. Relation
(43), with [M] = -2 for ν0 = 0.2 can also be derived by
the so-called self-consistent scheme approach, cf. [17].
In this micromechanical context, φC is often interpreted
in terms of a (finite) percolation threshold [17].

Semiempiricial extensions of the dilute approximations
for the effective elastic moduli of porous materials

Experience has shown that usually the porosity
dependence of the effective elastic moduli is not linear.
Thus, since it is clear that the linear relation (43) claims
validity and practical significance only in the case of
very small porosities (dilute approximation), there have
been numerous attempts to extend it to higher porosities
by allowing for a nonlinear dependence. One of the sim-
plest ways to do so is the Coble-Kingery approach [29,
30] which is as follows: Take the linear relation (43), for
the matrix Poisson ratio in question, say ν0 = 0.2 or
ν0 = 0.3, and add a quadratric term in φ (second-order
polynomial),

(48)

Then determine the value of the coefficient A via
the condition that M/M0 = 0 at least for φ = 1 (this is
intuitively plausible but also necessary in order not to
violate the Voigt bound). One obtains

(49)

in general, i.e.

(50)

for ν0 = 0.2 materials and

(51)

(52)

(53)

for ν0 = 0.3 materials. Irrespective of the matrix Poisson
ratio, the binomial relation (49) is always a good
approximation for E, but not necessarily for G and K.
Relation (49) is identical to the result obtained by the
differential scheme approach (for for ν0 = 0.2 materials
materials), cf. [17]. Note that, in contrast to the dilute
approximation and the self-consistent scheme approxi-
mation, this relation does not allow for a critical poros-
ity (finite percolation threshold) φC.

The elegant and clear Coble-Kingery approach
[29,30] was followed by several less rational attempts in
the years to come. Spriggs [31] suggested the use of a
simple exponential relation of the form

(54)

where B is a parameter to be determined by fitting
experimentally measured data. Setting B = -[E] ensures
accordance with relation (43) for small porosities
(φ → 0), because of the truncated series expansion

(55)

Of course, the Spriggs relation suffers from the
serious drawback that E is not zero for φ = 1, i.e. the
Spriggs relation necessarily violates the Voigt bound.
For this reason Hasselman [32], based on previous work
by Hashin [33], suggested a relation which can be writ-
ten as

(56)

where C has to be determined by fitting experimentally
measured data. This relation is clearly nonlinear and
monotonically decreasing, and E = 0 is guaranteed for
φ = 1. Unfortunately, however, the inverse of C cannot
be interpreted as a critical porosity since in the limit
φ → 1/C relation (56) diverges (Ε → ), i.e. 1/C must
always lie outside of the interval 0 < φ < 1. Thus the
interpretation 1/C = φC is principally inadmissible and
there is no physical meaning left in relation (56). 

Recently, it has been recognized by the authors [34]
that the modified exponential relation

(57)

also circumvents the aforementioned compatibility
problem at φ = 1. In order to allow for E = 1 already in
the case φ < 1, an additional parameter φC can be intro-
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duced, which results in a Mooney-type exponential rela-
tion [34]

(58)

Again, setting B = -[E] ensures accordance with
relation (43) for small porosities (φ → 0), cf. equation
(55). Deviations of the intrinsic tensile modulus (deter-
mined by fitting) from the value for isolated (i.e. closed
and non-interacting) spherical pores [E] ≈ -2 may then
be interpreted as a deviation of the pore shape from
spherical, when relations (57) or (58) are used.10 In con-
trast to the Hasselman relation (56), the physical inter-
pretation of φC in relation (58) as a critical porosity is in
principle admissible.

Of course, also the Coble-Kingery relation

(59)

and its generalizations, the Archie-type power-law rela-
tion [35]

(60)

do not exhibit any compatibility problem at φ = 1. Set-
ting N = -[E] in relation (60) ensures accordance with
relation (43) for small porosities (φ → 0), because of the
truncated series expansion

(61)

And again, in order to allow for E = 0 already in the
case φ < 1, an additional parameter φC can be intro-
duced, which results here in a Krieger-type power-law
relation, the so-called Phani-Niyogi relation [36,37]:

(62)

with N = -[E] φC. Evidently the physical interpretation
of φC in relation (62) as a critical porosity is admissible
and, as before, deviations of the intrinsic tensile modu-
lus (determined by fitting) from the value for isolated
(i.e. closed and non-interacting) spherical pores [E] ≈ -2
may be interpreted as a deviation of the pore shape from
spherical, when relations (58) or (62) are used. We
would like to emphasize that, although sometimes con-
sidered to be purely empirical, all the exponential and
power law relations mentioned above can be derived via
functional equations, cf. [35]. It seems that, from a fun-
damental point of view, the power-law relations have
certain advantages over exponential relations, cf. [28].

Recently, a new relation has been proposed by the
authors [38]:

(63)

In the case of spherical (or, in practice, isometric)
pores ([E] ≈ -2) this relation adopts the extremely sim-
ple form

(64)

This seems to be the simplest relation allowing for
a critical porosity φC. In the absence of φC (i.e. φC = 1)
this relation reduces to the Coble-Kingery relation,
equation (59), as required. Note that formally the Has-
selman relation, equation (56), can be rewritten as

(65)

Although this relation yields E = 0 in the case
φ = 1, φC cannot be interpreted in terms of a critical vol-
ume fraction here, since for φ = φC relation (65) diverges
(E →    ). This is a clear disadvantage of the Hasselman
relation.

CONCLUSIONS

In this second paper of a series on the effective
elastic properties of alumina-zirconia composite ceram-
ics, principles of micromechnical modeling are
reviewed and the most important relations are recalled.
Rigorous bounds (Voigt-Reuss bounds) are given for the
(scalar) effective elastic moduli (tensile modulus E,
shear modulus G and bulk modulus K) of polycrys-
talline ceramics as calculated from monocrystal data
(i.e. components of the elasticity tensor). Voigt-Reuss
bounds and Hashin-Shtrikman bounds of the elastic
moduli are given for two-phase composites. For porous
materials, which can be considered as a degenerate case
of two-phase composites where one phase is the void
phase (with zero elastic moduli), micromechanical
approximations (so-called dilute approximations,
Dewey-Mackenzie formulae) are given for E, G and K.
In analogy to suspension rheology intrinsic elastic mo-
duli are introduced and the their dependence on the
matrix Poisson ratio is emphasized. Apart from a heuris-
tic extension of the dilute approximations in the form of
so-called Coble-Kingery relations, semi-empirical
extensions of the micromechanical approximations are
recalled for the tensile modulus (Spriggs relation, modi-
fied exponential and Mooney-type relations, generali-
zed/Archie-type power law relation, Phani-Niyogi/Krie-
ger-type power law relation, Hasselman relation),
including the new relation E/E0 = (1 - φ) · (1 - φ/φC),
recently proposed by the authors. Several reasons are
adduced in favor of the latter. This paper should provide
a solid basis for the discussion of the effective elastic
properties of dense alumina and zirconia in Part 3,
porous alumina and zirconia in Part 4 as well as of alu-
mina-zirconia composite ceramics in Part 5 of this
series of papers.
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Notation:

1 In this sense it is true that the difference between "material"
and "structure" can be considered as only a question of scale
[6].

2 We assume a function at this early point to simplify discus-
sion. It might be thinkable to assume a functional at this point,
but we think that this is a point of merely academic interest at
the moment.

3 For model materials, computer simulations may be an addi-
tional tool.

4 This is the only case in which the complete analogy between
stiffnesses and compliances is disturbed.

5 It should be noted that, according to Voigt and Reuss, even
for polycrystals composed of crystallites (monocrystals) with
a symmetry lower than orthorhombic/orthotropic only nine
elastic constants or elastic coefficients completely determine
the elastic response of the polycrystalline aggregate.

6 When the Voigt and Reuss bounds are not too far apart, the
difference between arithmetic average and other types of aver-
ages, e.g. the geometric or the harmonic average, is negligibly
small.

7 It is important, however, to recall that by "properties" we
mean material properties in the strict sense, i.e. proportionali-
ty coefficients in linear constitutive equations describing
material bodies.

8 Of course, this is true only when the bulk phases (and not the
phase boundaries) are carriers of the property. Properties
which depend significantly on the phase boundaries may vio-
late this rule.

9 What we call uniform here for reasons of simplicity can be
formally introduced as the so-called ergodicity assumption,
i.e. the assumption of statistical homogeneity that allows one
to replace ensemble averages by volume averages.

10 Significant deviations, however, would certainly require a
considerable degree of anisometry (elongation or flattening).
Non-spherical pores which are more or less isometric (e.g. of
polyhedral shape) cannot be expected to be responsible for
deviations in the intrinsic elastic moduli.
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MAKROSKOPICKÉ ELASTICKÉ VLASTNOSTI KOM-
POZITNÍ KERAMIKY NA BÁZI AL2O3 A ZRO2

ÈÁST 2. MIKROMECHANICKÉ MODELOVÁNÍ

WILLI PABST, EVA GREGOROVÁ

Ústav skla a keramiky,
Vysoká škola chemicko-technologická v Praze,

Technická 5, 166 28 Praha 6

V tomto druhém èlánku z øady prací zabývajících se
makroskopickými elastickými vlastnostmi kompozitní kerami-
ky na bázi Al2O3 a ZrO2 jsou shrnuty principy mikromechanick-
ého modelování a nejdùležitìjší vztahy používané v této oblasti.
Pro pøedpovìï elastických modulù (tahový resp. Youngùv
modul E, smykový modul G a objemový modul resp. modul
stlaèitelnosti K) polykrystalické keramiky na základì znalosti
dat (tj. složek tenzoru elasticity) monokrystalù jsou využity
Voigtovy a Reussovy meze. Voigt-Reussovy a Hashin-Shtrik-

manovy meze elastických modulù jsou uvedeny pro dvoufá-
zové kompozity. Pro porézní materiály, které jsou speciálním
pøípadem dvoufázových kompozitù, u nichž jedna fáze (póry)
vykazuje nulové elastické moduly, jsou mikromechanické
aproximace (vztahy Deweyho-Mackenzieho) uvedeny pro E, G
a K. V analogii k reologii suspenzí jsou zavedeny tzv. „vnitøní
elastické moduly“ a je zdùraznìna jejich závislost na Pois-
sonovì èísle pevné kontinuální fáze. Vedle elegantního
rozšíøení tìchto lineárních aproximací ve formì polynomù
druhého øádu (vztahy Cobla-Kingeryho) existuje celá øada
semi-empirických rozšíøení pro Youngùv modul (Spriggsùv
vztah, modifikované exponenciální vztahy, zobecnìné mocni-
nové vztahy, Hasselmanùv vztah), vèetnì novì navrženého
vztahu E/E0 = (1 - φ) · (1 - φ/φC), který vykazuje urèité výhody
oproti jiným vztahùm. Tato èást by mìla poskytnout dostateèný
základ pro diskusi makroskopických elastických vlastností hut-
ného polykrystalického Al2O3 a ZrO2 v tøetí èásti, porézní
korundové resp. zirkonièité keramiky ve ètvrté èásti a kompoz-
itù Al2O3-ZrO2 v páté èásti této øady èlánkù.


