CRYSTALLIZATION AND THERMAL EXPANSION CHARACTERISTICS OF LITHIUM BARIUM BOROSILICATE GLASSES

HUSSEIN DARWISH

Glass Research Dept., National Research Centre, El-Behoos St., Dokki, P.O. 12622, Cairo, Egypt

E-mail: hussein25@yahoo.com

Submitted December 13, 2004; accepted May 9, 2005

Keywords: BaO - containing glasses, Crystallization characteristics, Thermal expansion

The contribution of BaO to the crystallization characteristics and crystalline phase assemblages developed from thermally treated glasses based on $Li_2O-B_2O_3$ -SiO₂ system were investigated by differential thermal analysis (DTA), X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM). Different barium-containing phases including barium silicates and lithium barium borate together with lithium diborate, lithium meta-, di-silicates and, in some cases, minor of α -quartz were detected. SEM micrographs showed that BaO promoted volume crystallization of the studied glasses. The addition of TiO₂ and MgF₂ as nucleation catalysts to glass with high content of BaO led to the formation of fresnoite, and magnesium fluoride phases. The thermal expansion characteristics of the glasses and their crystalline solids were investigated. The data of the glasses were correlated to the local structure changes induced by BaO, TiO₂ or MgF₂ and their contributions to the thermal expansion property of the glasses. The results of the crystalline solids were explained in relation to the nature, composition and concentration of all phases formed including a residual glass matrix.

INTRODUCTION

Glass-ceramics are polycrystalline solids prepared by the controlled crystallization of suitable glass compositions. A key feature of glass-ceramics is the maintenance of shape of a previously formed glass article. This is most effectively achieved through internal nucleation and growth of crystals [1-3]. Their texture is characterized by uniform fine-grained randomly oriented crystals with some residual glassy matrix [1].

Lithium barium silicate glasses are phase separated over most of the glass-forming region. The study [4] demonstrated that phase separation strongly affected some properties of the glasses, e.g. glass transformation temperature and dilatometric softening temperature.

Borosilicate glasses are used in wide range of technological applications, from chemical containers and piping to fiber composites and radioactive waste storage.

The range of chemical compositions of the glassforming region of the system $BaO-B_2O_3-SiO_2$ and the properties of the glasses in the system are of fundamental importance to glass technologists. Glasses in this system may be considered to be the base glasses for the large family of barium crown optical glasses [5].

The coefficient of thermal expansion (CTE) of different types of glass and glass-ceramic materials is another important property and is often fundamental in determining their field of application [6-8]. Lithium borosilicate glasses containing various proportions of BaO replacing B_2O_3 with addition of nucleating agents like TiO₂ or MgF₂ could be potential candidates to glass-ceramics. It was the objective of this work to provide an examination of the crystallization characteristics of Li₂O-B₂O₃ (BaO)-SiO₂ glass. Emphasis was placed on the study of the crystallization-temperature process, the temporal sequence and nature of the crystal phase formation, the microstructure developed in relation to the glass oxide constituents and heating conditions, as well as the thermal expansion behaviour of the glasses and the corresponding glass-ceramics.

EXPERIMENTAL

Glass composition and preparation

Glasses of compositions expressed by the formula: 33.63 Li₂O - (29.48 - X) B_2O_3 - X BaO - 36.89 SiO₂ mole %, were prepared, where X = 0, 4, 8, 12 and 16 mole %. TiO₂ (6.0 g) and MgF₂ (6.0 g) were added as nucleating agents over 100 g of glass constituents (with 16 mole % BaO). The batches were prepared from acidwashed pulverized quartz sand and reagent grade powders of Li₂CO₃, H₃BO₃, BaCO₃, TiO₂ and MgF₂ were used as starting materials. The weighed batches were thoroughly mixed and melted in Pt-2%Rh crucible in an electric heated furnace, with SiC heating elements, at 1200-1250°C for 3 hours duration with occasional stirring to ensure homogeneity. The homogeneous bubble-free melts were cast into rectangular rods (0.5×0.5 cm cross section and 1.5 cm length), and as buttons, which were then well annealed in a muffle furnace for approximately 1 h at about 50°C below the glass transition temperature, T_g, then cooled at 1°C/min to room temperature to minimize the strain of the glasses.

Differential thermal analysis (DTA)

The thermal behaviour of the finely powdered (45-75 m) glass samples was examined using a NETZSCH Geratebau GmbH Sleb Bestell-Nr. 348, 472°C. The powdered sample was heated in Pt-holder against another Pt-holder containing \propto -Al₂O₃ as a reference material. A uniform heating rate of 10°C/min. was adopted. The results obtained were used as a guide for determining the heat-treatment temperatures applied to induce crystallization.

Thermal-treatment

The progress of crystallization in the glasses was followed using single and double stages heat-treatment regimes depending on the DTA results. Crystallization is generally viewed as a two-step process. The first step (nucleation) involves the formation of a stable nucleus at the endothermic peak temperature for 5 h and the second is the growth of the nucleus to form crystal growth at the exothermic peak temperature for 30 h.

Material investigation

Identification of crystal phases precipitating in the course of crystallization was conducted by the X-ray diffraction (XRD) analysis using a Philips type diffractometer (P.W. 1730) with Ni-filtered Cu-K \propto radiation. The crystal characteristics and internal microstructures of the resultant materials were examined by scanning electron microscopy (SEM), where representative electron micrographs were obtained using Jeol, JXA-840 A Electron Probe Microanalyzer.

Thermal expansion measurements

The coefficients of thermal expansion of the investigated glasses and glass-ceramics were carried out on $(0.5\times0.5 \text{ cm cross-section and } 1.5 \text{ cm length})$ rods using a Linseis L76/1250 automatic recording multiplier dilatometer at a heating rate of 5°C/min. The coefficients of thermal expansion of the investigated glasses were measured from room temperature up to 300°C while the glass-ceramics were measured up to 600°C. The linear thermal expansion coefficient (α) was automatically calculated using the general equation:

$\alpha = (\Delta L / L).(1/\Delta T)$

where: (ΔL) is the increase in length, (ΔT) is the temperature interval over which the sample is heated and (L) is the original length of the specimen.

RESULTS

Differential thermal analysis

The DTA data of the glasses (G_1 - G_5 , G_5T and G_3F , figure 1) showed endothermic effects in the 408 - 506°C temperature range. These endothermic effects are to be attributed to the glass transition, at which the atoms begin to arrange themselves in preliminary structural elements preceding the nucleation. Various exothermic effects in the 532-660°C range, indicating crystallization in the glasses, are also recorded.

Crystallization characteristics

The progress of crystallization in the glasses, the type and proportions of the crystalline phases formed were markedly dependent on the variation of the glass oxide constituents, the extent of BaO/B_2O_3 replacements, the effect of thermal treatment as well as the role of the nucleating agents added.

The DTA data (figure 1) of the glasses (G_1-G_5) revealed that the addition of BaO at the expense of B_2O_3 led to a shift, both of the endothermic dips and the onset of crystallization exotherms to lower temperatures.

However, the TiO_2 addition (as a nucleating agent) to the BaO-containing glass G_5T , led to the shift of both the endothermic dips and the onset of crystallization exotherms to higher temperatures as compared with the TiO_2 -free (G_5), while the presence of MgF₂ in glass G_5F led to the decrease of the endothermic dips and exothermic peaks to lower values.

SEM micrographs of fractured surfaces of crystalline samples G_1 and G_5 showed the effect of adding BaO at the expense of B_2O_3 on the microstructure formed. BaO promoted volume crystallization of interlocked-like growths in the studied glasses. For example SEM micrograph of G_1 (BaO-Free) clearly showed well-developed spherulite-like growths (figure 2). However with addition of BaO (up to 16 %, G_5), volume crystallization interlocked-like growths were developed (figure 3).

Crystallization and thermal expansion characteristics of lithium barium borosilicate glasses

Figure 2. SEM micrograph of fracture surface of C_1 crystallized at 505°C/5h-622°C/30h showing spherulite crystals.

Figure 3. SEM micrograph of fracture surface of C_s crystallized at 435°C/5h-650°C/30h showing volume crystallization of interlocked-like growths.

Crystal phases formed

Effect of BaO/B2O3 replacements

The X-ray diffraction analysis (figure 4, pattern I) revealed that lithium disilicate- $Li_2Si_2O_5$ (lines 5.46, 3.76, 3.67, 3.58, PDF File 17-447) [9], lithium diborate- $Li_2B_4O_7$ (4.09, 3.50, 2.62, PDF File 22-1140) [9], lithium metasilicate- Li_2SiO_3 (lines 4.7, 3.32, 2.70, PDF File. 29-828) and traces of α -quartz (lines 4.26 and 3.36, PDF File 5-0490) were formed in the crystalline base glass G₁ (BaO-free). However, the addition of BaO instead of B₂O₃ (i.e., G₂-G₅) revealed that different barium-containing phases such as barium silicates, e.g. Ba₅(Si₈O₂₁), BaSiO₃ and lithium barium borate- LiBa₂ (B₅O₁₀) were developed, (table 1).

Figure 1. DTA thermograms of the studied glasses.

500

T(°C)

600

700

400

300

Figure 4. XRD patterns of crystallized glasses (G₁-G₄).

Figure 5. XRD patterns of crystallized glasses (G₅, G₅T and G₅F).

Glass No.	Heat-treatment (°C/h)	Phases developed			
G_1	505/5 - 622/30	Li ₂ Si ₂ O ₅ , Li ₂ B ₄ O ₇ , Li ₂ SiO ₃ , α-Quartz (traces)			
G_2	550/10	Li ₂ SiO ₃			
G_2	490/5 - 600/30	Li ₂ SiO ₃ , Li ₂ B ₄ O ₇ , Ba ₅ (Si ₈ O ₂₁), Li ₂ Si ₂ O ₅ (traces)			
G ₃	550/10	Li ₂ SiO ₃			
G ₃	475/5 - 605/30	Li ₂ SiO ₃ , Li ₂ B ₄ O ₇ , Ba ₅ (Si ₈ O ₂₁), Li ₂ Si ₂ O ₅ (traces)			
G_4	500/10	Li ₂ SiO ₃			
G_4	455/5 - 570/30	Li ₂ SiO ₃ , LiBa ₂ (B ₅ O ₁₀), α-Quartz			
G ₅	550/10	Li ₂ SiO ₃			
G ₅	435/5 - 650/30	Li ₂ SiO ₃ , LiBa ₂ (B ₅ O ₁₀), BaSiO ₃			
G ₅ T	620/10	Li ₂ SiO ₃			
G ₅ T	440/5 - 660/30	Li ₂ SiO ₃ , LiBa ₂ (B ₅ O ₁₀), Ba ₂ (TiO)Si ₂ O ₇			
G5F	500/10	Li ₂ SiO ₃			
G ₅ F	410/5 - 530/30	Li_2SiO_3 , $LiBa_2(B_5O_{10})$, MgF_2			

Table 1. The crystalline phases developed in the studied glasses.

Detailed study by X-ray diffraction analysis (figures 4 and 5) of the glasses crystallized through both single and double stage regimes (table 1) revealed that the crystallization process was also dependent on the heating and /or duration effects. The glasses G₂ and G₃ (with 4 and 8 mole % BaO, respectively) crystallized at 550°C for 10 h (figure 4, patterns II-V), yielding the lithium metasilicate phase. At higher temperature for long duration (table 1), the crystallinity of samples increased and lithium diborate, barium silicate-Ba₅(Si₈O₂₁) (lines 4.27, 3.91, 3.81, 3.65, 2.66, PDF File 83-1443) and traces of lithium disilicate were crystallized as well. The crystallization of glass G₄ (with 12 mole % BaO) at 500°C/10 h led to the formation of lithium metasilicate (pattern VI). Prolonged heating at higher temperature led to the formation of lithium barium borate [LiBa₂(B₅O₁₀)] (lines 7.33, 5.94, 3.89, 3.20, 3.11, PDF File 81-521) and α -quartz (pattern VII). Glass G₅ (with 16 mole % BaO) crystallized at 550°C for 10 h gave lithium metasilicate (figure 5, pattern I). However, heating the glass G₅ at higher temperature (table 1), the crystallinity increased and lithium barium borate together with barium silicate-BaSiO₃ (lines 3.40, 3.64, 2.03, PDF File 70-2112) phases were formed (pattern II).

Effect of TiO₂ and MgF₂ as nucleating agents

X-ray diffraction analysis (figure 5) revealed that the crystallization of glass G_5T (with 16 mole % BaO + 6.0 g TiO₂) at 620°C for 10 hours led to the formation of lithium metasilicate (pattern III). At higher temperature for long duration, i.e. 440°C/5 h - 660°C/30 h, the crystallinity of the sample increased and fresnoite-Ba₂ (TiO)Si₂O₇ (lines 5.02, 3.29, 3.07, 2.60, PDF File 70-1920) together with lithium barium borate-LiBa₂ (B_5O_{10}) developed (pattern IV). However, no BaSiO₃ phase could be detected.

Thermal-treatment of glass G_5F (with 16 mole % BaO + 6.0 g MgF₂) at lower temperature, i.e. 500°C for 10 hours led to the formation of lithium metasilicate (pattern V). However thermal treatment through double stage regimes, i.e. at 410°C/5 h - 530°C/30 h, lithium barium borate-LiBa₂(B₅O₁₀) and MgF₂ (lines 3.31, 2.59, 2.25, 2.08, 1.47, PDF File 16-0160) phases crystallized as well (pattern VI).

Thermal expansion

Table 2 lists the thermal expansion coefficients over different ranges of temperatures of the glasses and glass-ceramics, as well as the dilatometric transition (T_g) and softening (T_s) temperatures of the investigated glasses. Figures 6 and 7 show the changes in expansion coefficients of glasses and glass-ceramics as a function of BaO/B₂O₃ replacements as well as the nucleating agents added.

Thermal expansion data of the glasses

Table 2 revealed that the thermal expansion coefficient of the glasses as well as their T_g and T_s values depend on the original composition of the base glass. With the increase of BaO at the expense of B₂O₃, the expansion coefficients increased (figure 6) with corresponding decrease in both glass transition (T_g) and dilatometric softening (T_s) temperatures.

Table 2. Dilatometric properties of the investigated glasses and glass-ceramics.

Glass	$T_{ m g}$	$T_{\rm s}$	Expansion coefficient (α)×10 ⁻⁷ /°C					
No	(°C)	(°C)	25-100°C	25-200°C	25-300°C	25-400°C	25-500°C	25-600°C
G_1	460	480	75	79	84	-	-	-
C_1	-	-	70	73	80	92	101	113
G_2	442	463	89	97	105	-	-	-
C_2	-	-	84	90	97	103	114	119
G ₃	429	443	97	109	116	-	-	-
C ₃	-	-	95	99	100	111	118	122
G_4	414	432	98	113	122	-	-	-
C_4	-	-	96	103	117	124	127	139
G_5	383	406	109	122	131	-	-	-
C ₅	-	-	100	109	120	129	133	148
G5T	392	409	100	117	127	-	-	-
C5T	-	-	95	101	116	124	129	133
G5F	365	384	144	149	183			
C_5F	-	-	136	138	157	164	172	185

Figure 6. Changes in expansion coefficients of glasses as a function of composition.

On the other hand, the dilatometric properties of glass G_5T (nucleated with TiO₂) as well as those of G_5F (nucleated with MgF₂) are given in table 2 and graphically represented in figure 6. It can be seen that the incorporation of such nucleants of either TiO₂ or MgF₂ considerably influences the thermal properties of the glass. The presence of TiO₂ has a slight effect on decreasing the thermal expansion of G_5T as compared with that of G_5 (TiO₂-free). While the presence of MgF₂ in glass G_5F results in higher expansion coefficient values as compared with that for glass G_5 (MgF₂-free), figure 6.

Thermal expansion data of the glass-ceramics

The thermal expansion data of the glass-ceramics (C_1-C_5) and those nucleated by TiO₂ or MgF₂, C₅T or C₅F are given in table 2 and graphically represented in figure 7. The resulting data revealed that considerable increase of the α -values of the base glass-ceramic are detected by addition of BaO instead of B₂O₃, C₂-C₅.

With respect to the effect of nucleating agents, it was seen that the addition of TiO_2 decreased the α -values of sample C₅T, as compared with that of sample C₅ (TiO₂-free) while MgF₂ increased the expansion coefficients of sample C₅F as compared with that of sample C₅ (MgF₂-free), figure 7.

DISCUSSION

Crystallization characteristics

The addition of BaO instead of B_2O_3 in the base glass decreases the temperature at which the nucleation begins. The DTA data give evidence that the crystalliza-

Figure 7. Changes in expansion coefficients of glass-ceramics as a function of composition.

tion characteristics of the glasses were markedly improved by BaO/B_2O_3 replacements. Both the endothermic dips and the onset of the crystallization exotherms were shifted to lower temperatures by adding BaO instead of B_2O_3 , i.e. the crystal growth was improved [10]. Oldfield et al [11] showed that B_2O_3 acts as a diluent in the devitrification process during the DTA run.

The introduction of Ba^{2+} into the B_2O_3 -SiO₂ system reduces the melting temperature and viscosity promoting phase separation, which in the ternary bariumborosilicate system is already present in the melt and which in the alkali-borosilicate system can be produced by tempering [12].

On the other hand, the addition of Ba^{2+} , a bigger cation, instead of B^{3+} a smaller cation, seemed to decrease the SiO₂ chain length of the present glass structure and also increased the number of non-bridging oxygen "NBO"[13]. Thus low viscosity of the glasses is expected [14] which led to enhance crystallization of BaO-containing glasses.

Considering the above-mentioned basis, the crystallization process was easily developed in the heat-treated samples and consequently the crystallization of the glass becomes more apparent with the addition of BaO instead of B_2O_3 .

The addition of TiO_2 as a nucleating agent to the glass G_5T led to shift of the endothermic and exothermic peak temperatures to higher values. This can be ascribed to the role played by TiO_2 in the glass structure, which preferably exhibits a tetrahedral coordination (i.e. TiO_4) in the glass composition [15].

The addition of MgF_2 as a nucleating agent to the glass G_5F , led to shift of the endothermic and exothermic peaks to lower values, this can be attributed to the fact that fluorine replaces bridging oxygen in the glass structure by non-bridging fluorine due to their similar size without causing a great disturbance in the arrange-

ment of the other ions. The lower charge of F^{-} compared with O^{2-} necessitates compensatory mechanism to occur in the glass structure. This may occur by the breakdown of the strong Si-O-Si linkage in the structure and the terminals of the chains are bound to two fluorine ions, i.e. 2 (\equiv Si-F), with the result that the glass network structure will be weakened [16]. Therefore, fluorine ions may act as network breaker and their influence on decreasing the viscosity and facilitating crystallization of the glass may depend on this property. Furthermore, the fluorine content of the glass generally enhances amorphous phase separation, leading to bulk crystallization [17].

Lithium disilicate was crystallized first as predominant phase together with lithium diborate from the base glass G_1 . However, minor constituents of lithium metasilicate and α -quartz were crystallized as well. Crystallization of meta- and disilicate and their ratios depends on the temperature and duration of the process. Lithium disilicate is formed almost exclusively by low temperature treatment of glasses, while at higher temperature lithium metasilicate appears [18].

It is seen that prolonged thermal treatment would produce secondary phases. These phases developed more slowly and their proportions tended to increase with the duration of heat-treatment [19-20]. Lithium metasilicate-Li₂SiO₃ was formed at early stage of crystallization in glasses G₂ and G₃ (with 4 and 8 mole % of BaO). However on prolonged heating, lithium diborate, barium silicate-Ba₅(Si₈O₂₁) and traces of lithium disilicate phases were crystallized as well. This can be explained by considering that a redistribution of the elements of the glass took place through a solid state reaction as shown in the following equation:

$$\begin{array}{rl} 8\text{Li}_2\text{SiO}_3 + 16\text{B}_2\text{O}_3 + 5\text{BaO} \rightarrow \text{Ba}_5(\text{Si}_8\text{O}_{21}) &+ 8\text{Li}_2\text{B}_4\text{O}_7\\ & \text{Barium} & \text{Lithium}\\ & \text{silicate} & \text{diborate} \end{array}$$

The development of traces of lithium disilicate can be explained on the basis that for prolonged heating or long duration the residual silica can combine with lithium metasilicate to form lithium disilicate phase [21].

Thermal treatments of glass G_4 (with 12 mole % of BaO) at low temperature led to the formation of lithium metasilicate. However at higher temperature and long duration a redistribution of the B₂O₃ and BaO in the glass matrix may react with lithium metasilicate to form lithium barium borate and silica (SiO₂) as follows:

$$Li_2SiO_3 + 4BaO + 5B_2O_3 \rightarrow 2LiBa_2(B_5O_{10}) + SiO_2$$

Lithium barium borate

The silica (SiO₂) formed was crystallized as α -quartz.

 $LiBa_2B_5O_{10}$ is a nonlinear optical material. The structure is comprised of Li and Ba cations and $[B_5O_{10}]^{5-}$ anions. $[B_5O_{10}]^{5-}$ is a moiety composed of three BO₃ triangles and two BO₄ tetrahedral [22].

Ceramics - Silikáty 49 (3) 153-161 (2005)

On increasing the BaO/B_2O_3 replacement to 16 %, G_5 , lithium metasilicate was formed at low temperature. At higher temperature for long duration, $LiBa_2(B_5O_{10})$ and $BaSiO_3$ were crystallized as well. This can be attributed by assuming that at high temperature lithium metasilicate may react with BaO and B_2O_3 from glass matrix to form lithium barium borate and barium silicate as follows:

$$\begin{array}{rll} Li_2SiO_3+5BaO+5B_2O_3 \rightarrow 2LiBa_2(B_5O_{10}) &+ & BaSiO_3\\ & Lithium \ barium \\ & borate & Silicate \end{array}$$

The addition of TiO₂ as nucleating agent in glass with 16 % mole of BaO, G_5T , led to the formation of lithium metasilicate phase at low temperature. However, on prolonged heating TiO₂ enhances the crystallization of fresnoite -Ba₂(TiO)Si₂O₇ phase at the expense of barium silicate-BaSiO₃ as follows:

$$\begin{array}{l} 2BaSiO_3 + TiO_2 \rightarrow Ba_2(TiO)Si_2O_7 \\ Fresnoite \end{array}$$

Keding and Russel [10] showed that fresnoite containing glass-ceramics are mechanically stable and can easily be cut, ground and polished. The coordination of Ti⁴⁺ in this crystal structure is five-fold and thus fairly unusual.

The addition of MgF₂ in the glass composition, G_5F modified the crystallization kinetics, as expressed by the variation in the peak temperatures (figure 1). This effect may be related to a change in glass viscosity and consequently, led to more mobilization of the glassforming elements, thus facilitating lithium barium borate-LiBa₂(B₃O₁₀) formation together with lithium metasilicate and MgF₂ phases in glass G₃F at lower temperatures than that obtained from crystallization of MgF₂-free glass, G₃.The retarding effect on BaSiO₃ formation in MgF₂-containing glass-ceramic, i.e. G₃F may be explained on the basis that some of Ba²⁺ intended to form BaSiO₃ may have been accommodated in the LiBa₂(B₅O₁₀), aided by the presence of F⁻ ions.

Thermal expansion

It is generally accepted that the thermal expansion of glass is not only a function of temperature but is also sensitive to the structure of the glass, for example, degree of cross-linking, type of structural units, the nature and contribution of different cations which occupy either forming or modifying positions in the glass network [23]. The presence of more asymmetrical units in the glass will lead to an increase in the thermal expansion coefficient, while a more coherent network will lead to a decrease in this property [8]. The addition of BaO of lower bond strength (139 kJ/mole) instead of B₂O₃ of higher bond strength (374-500 kJ/mole) [24] causes a weakening of the glass network structure and consequently, higher α -values and lower T_g and T_s temperatures could be expected in the present glasses.

On the other hand, the addition of TiO_2 to the glass, G_5T , led to decrease the α -values. This can be ascribed to the role played by TiO_2 in the glass structure, which preferably exhibits a tetrahedral coordination (TiO₄) in the glass structure [16]. This in turn will result into a firmer glass structure and led to decrease of the diffusion of different ions and ionic complexes. Therefore, a lower thermal expansion coefficient of the glass and higher T_{g} and T_{s} values could be expected as compared with the TiO_2 -free glass. However, the presence of MgF₂ in glass G₅F increased the α-values and decreased their $T_{\rm g}$ and $T_{\rm s}$ values. This can be explained on the basis that MgF₂ causes weakening in the glass-network, which led to increase of the diffusion of different ions [16], i.e. higher α -values and lower $T_{\rm g}$ and $T_{\rm s}$ values of MgF₂containing glasses could be expected.

The thermal expansion coefficients of the glassceramics are function of the thermal expansion coefficients and elastic properties of all crystalline phases present including residual glass matrix. The contribution of the residual glassy phase, whose composition is altered from that of the parent glass, must be taken into account [16, 25]. Extremely wide ranges of thermal expansion coefficients are covered by the different crystal types and the development of these phases in appropriate proportions forms the basis of the production of glass-ceramics with controlled thermal expansion coefficient [16].

The expansion coefficient of lithium diborate has a high positive value of 138×10⁻⁷/°C (300-600°C) [26]. Lithium disilicate also has a value of 110×10-7/°C (20-600°C) [25]. Fresnoite (Ba₂TiSi₂O₈) has a value of (46-171×10⁻⁷/ C) (300-700°C) [10]. MgF₂ has a high α -value 137×10⁻⁷/°C [27]. There is no available data on the other Ba-containing phases, e.g. Ba₅(Si₈O₂₁), BaSiO₃ and $LiBa_2(B_5O_{10})$. But the obtained results revealed that Ba-containing phases exhibit high α -values. Also the development of high expansion lithium diborate and/or lithium silicate phases among the crystallization products led to increase of the expansion coefficient of the glass-ceramics (C_1 - C_5). However the α -values of glassceramic C₅T are slightly lower than C₅, which may be attributed to the formation of fresnoite phases instead of barium silicate phase. The thermal expansion coefficient of fresnoite is strongly anisotropic: that attributed to the c-axis is more than three times larger than that related to the a-axis [10]. On the other hand, the α -values of sample C₅F were higher than the MgF₂-free glassceramic, C₅. This can be attributed to the formation of high expansion MgF₂ phase among the crystallization products of sample C₅F.

CONCLUSIONS

Varieties of barium-containing phases, e.g. Ba_5 (Si₈O₂₁), BaSiO₃ and LiBa₂(B₅O₁₀) could be obtained together with lithium meta-, disilicate and α -quartz phases by adding BaO instead of B₂O₃ in the crystallized glasses based on Li₂O–B₂O₃–SiO₂ system. The nucleants influenced the type of resulting crystalline phases. Fresnoite (Ba₂(TiO)Si₂O₇) phase was developed on adding TiO₂ as a nucleating agent to the high BaO-containing glass. While, on adding MgF₂ as a nucleating agent, MgF₂ phase was crystallized among the crystal-lization products of the glasses. The types of the crystallized phases are discussed in relation to the compositional variation of the glasses and thermal treatment used.

The thermal expansion characteristics of the glasses and their crystalline solids have been investigated. The data of the glasses were correlated to the local structure changes induced by BaO/B_2O_3 replacements and the role of TiO_2 or MgF_2 added as nucleating agents and their contributions to the thermal expansion property of the glasses. However, the results of the crystalline solids were explained in relation to the nature, composition and concentration of all crystalline phases formed including the residual glass matrix.

References

- Aitken B., Beall G. H.: *Material science and technology series*, Ed. Cahn et al., Vol.11, p. 269-294, Glass ceramics, 1994.
- Beall G. H., Doman C. R.: Glass ceramics, Encyclopedia of Physical Science and Technology, Vol. 7, p. 441-455, 1992.
- 3. Russel C.: J.Non-Cryst.Solids 219, 212 (1997).
- Birtch E. M., Mesko M. G., Shelby J. E.: Phys.Chem. Glasses 44, 319 (2003).
- Hamilton E. H., Cleek G. W., Grauer O. H.: J.Am. Ceram.Soc. 41, 6 (1958).
- Beall G. H., Chyung K., Pierson J. E. in: Proceedings of the XVIII International Congress on Glass (CD-ROM), San Francisco, CA 1998.
- Boy D. C., Danielson P. S., Thompson D. A.: Glass, Kirk Othmer Encyclopedia of chemical Technology, 4th Edition, Vol. 12, Wiley, New York 1994.
- Salman S. M., Salama S. N.: Thermochim. Acta 90, 261 (1985).
- 9. Joint Committee on powder Diffraction Standards (JCPDS): Files, Swarthmore, PA, USA, 1999.
- 10. Keding R., Russel C.: J.Non-Cryst.Solids 278, 7 (2000).
- 11. Oldfield L. F., Horwood D. J., Lewis B.: J.Mat.Sci. 1, 29 (1966).
- Vogel W.: The structure of the opalescent sodium borosilicate glasses, Structure and crystallization of Glasses, p. 71-73, Pergamon Press, Oxford 1971.

- 13. Zhao P., Kroeker S., Stebbins J. F.: J.Non-Cryst.Solids 276, 122 (2000).
- 14. Salama S. N.: Mat.Chem.Phys. 28, 237 (1991).
- Barbieri L, Corradi A. B., Siligardi C., Manfedini, Pellacani G. C.: Mat.Res.Bull. 32, 6 (1997).
- McMillan P. W.: *Glass-ceramics*, Academic Press, London, New York 1979.
- 17. Stanton K., Hill R.: J.Mat.Sci. 35, 1911 (2000).
- Kalinina A. A., Filipovich V. N., Kolesova V. A., Bonder I. A., in: *The structure of glass*, Vol. 3, p.53-64, Consultant Bureau, New York 1965.
- Sastry B. S. R., Hummel F. A.: J.Am.Ceram.Soc. 41, 1 (1958).
- Goktas A. A., Neilson G. F., Weinberg M. C.: J.Mat. Sci. 27, 24 (1992).
- Hench L. L., Freiman S. W., Kinser D. L.: Phys.Chem. Glasses 12, 2 (1971).
- Qingzhen H., Shaofan L., Guiqin D., Jingkui L.: Acta Cryst. C 48, 1576 (1992).
- Darwish H., Salama S. N., Salman S. M.: Thermochimica Acta 374, 129 (2001).
- Zarzycki J.: Glass and the vitreous state, Cambridge Univ. Press, New York, Port Chester, Melbourne, Sydney 1991.
- 25. Strnad Z.: *Glass-ceramic materials in glass science and technology*, Elsevier, Amsterdam 1986.
- Sastry B. S. R., Hummel F. A.: J.Am.Ceram.Soc. 43, 1 (1960).

27. Rao K. V. K, Naidu S. V. N., Setty P. L. N.: Acta Cryst. 15, 528 (1962).

KRYSTALIZACE A CHARAKTERISTIKY TEPLOTNÍ EXPANZE LITNO-BARNATÝCH BORITOKŘEMIČITÝCH SKEL

HUSSEIN DARWISH

Glass Research Dept., National Research Centre, El-Behoos St., Dokki, P.O. 12622, Cairo, Egypt

Diferenční termickou analýzou, rentgenovou difrakční analýzou a řádkovací elektronovou mikroskopií (SEM) byl zkoumán vliv BaO na průběh a výsledek krystalizace při ohřevu Li2O-B2O3-SiO2 skel. Byly detekovány různé barnaté krystalické fáze zahrnující křemičitany barnaté, boritany litno-barnaté, meta- a dikřemičitany litné a v některých případech malá množství α-křemene. SEM snímky ukázaly, že BaO podporuje objemovou krystalizaci studovaných skel. Přídavek TiO2 a MgF2 jako nukleačních činidel do skel s vysokým obsahem BaO vedl k tvorbě fresnoitu a fází fluoridu hořečnatého. Byly sledovány charakteristiky teplotní expanze skel a jejich krystalických modifikací. Data pro skla byla korelována na lokální strukturní změny vyvolané BaO, TiO2 nebo MgF2 a na jejich příspěvky k teplotní expanzi skel. Výsledky byly diskutovány ve vztahu k povaze, složení a koncentraci všech fází zahrnujících zbytkovou skelnou matrici.