
INTRODUCTION

Thermoelastic properties are of primary interest in
materials science and engineering. Examples are the
coefficient of thermal expansion, the heat conductivity
and the specific heats. Although experimental papers
dealing with these properties are ubiquitous, a more
detailed view into the literature reveals that the concept
of thermoelastic properties itself and its underlying the-
oretical framework, linear thermoelasticity, is often not
fully understood by materials scientists and engineers.
The reason is that the exact treatments of the subject are
mostly of a mathematical complexity that makes them
unaccessible for a large part of the audience in the mate-
rials science and engineering community. On the other
hand, many of the apparently general statements on
thermoelasticity in basic materials science and engi-
neering textbooks are incomplete or even wrong. There
seems to be no up-to-date treatment available that
would represent a reasonable compromise between
these two extremes. It is the purpose of this paper to fill
this gap. 

Three objectives were used as guidelines here:
First, this treatment should be as brief and concise as
possible but should contain in a unified framework all
purely thermoelastic properties arising in the linear the-
ory. Second, the number of variables introduced should
be kept to a minimum but sufficient to allow for materi-
als of arbitrary symmetry. And third, a pragmatic com-

promise was sought between correctness of the state-
ments and the attempt to explain the physical meaning
of these statements in terms familiar to readers without
requiring special knowledge in mathematics.

The present paper has grown out of a lecture given
by the author for upper-level undergraduates within the
Mechanics of Materials course at the ICT Prague since
1997 and exploits a certain feedback experienced
through the years from the audience of students. It is
based on a number of textbooks, monographs, and orig-
inal papers of other authors, too many to be cited here,
most of them rooted in the tradition of the Truesdell-
Noll school of rational thermomechanics. Some of the
most important of them, which have been directly used
for or consulted during the preparation of this paper, are
[1-9]. Among all the texts dealing with thermoelasticity,
however, one deserves special mention: Šilhavý's book
of 1997 [1]. This book, brilliantly condensing an enor-
mous wealth of results in rational thermomechanics (by
far exceeding the scope of thermoelasticity) and written
in a concise mathematical style, may be considered as
the most outstanding work in the field since Truesdell
and Noll's handbook article of 1965 [2]. Although the
present paper is meant to serve as an easy-to-grasp and
self-contained introduction into the large literature on
thermoelasticity in general, it has been tried, wherever
possible, to be in accord with Šilhavý's authoritative
treatment [1]. Thus, the interested materials scientist
and engineer, after having read the present shortcut, will
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be in a position to go one step further and to delve into
the mathematical details of the theory by studying [1].
For these interested readers' better orientation page
numbers have been added to reference [1] wherever
cited in the text.

PRELIMINARIES

Mechanics in general deals with motion, while
thermomechanics deals with motion and temperature.
Continuum mechanics deals with the motion of materi-
al bodies, consisting of so-called material particles. The
most fundamental function describing motion of materi-
al bodies in continuum mechanics is the so-called defor-
mation function (transplacement) χχ. This vector func-
tion χχ uniquely determines the actual position x of a
material particle (in the sense of continuum mechanics)
at time t, which has been at a referential position X (in
an arbitrarily chosen reference frame) at an arbitrarily
chosen reference time:

.                          (1)

For fixed X (i.e. selecting a certain material parti-
cle) χχ determines a trajectory, for fixed t (i.e. imaging
the whole body at a certain moment) χχ determines a
configuration (placement). The referential gradient (i.e.
the derivative with respect to the referential position) of
the deformation function is a second-order tensor, the
so-called deformation gradient (transplacement gradi-
ent)

.                    (2)

The function χχ contains complete information
about the motion of a material body (translation, rota-
tion, and change of volume and shape), while the defor-
mation gradient F is a local measure of motion and con-
tains information only on rotation and change of volume
and shape. Materials that can be modelled by using the
deformation gradient (2) only (i.e. without invoking
deformation gradients of higher order) are called simple
materials [2] (materials with local response, i.e. materi-
als for which the principle of local action [2] can be
adopted). Obviously, most real materials of engineering
interest can be modelled within this class. Note e.g. that
a major part of the literature on elasticity (linear as well
as non-linear) deals exclusively with simple materials,
of course without explicitly emphasizing this fact.

In the theory of linear elasticity it is useful to intro-
duce another vector function, the so-called displace-
ment, via the definition

.                      (3)

Using equation (3), the deformation gradient can be
written as 

, (4)

where Grad u is the displacement gradient and 1 the
second-order unit tensor. For practical purposes it is
often useful to apply only the change-of-volume-and-
shape (i.e. strain) part of the deformation gradient F.
This is possible after eliminating the rotational part of
F via Cauchy's polar decomposition theorem, cf. e.g.
[2,10]. The most popular strain measure, frequently
applied in theories of nonlinear elasticity, is the Green-
Lagrange strain tensor

,     (5)

which is a symmetric second-order tensor (in contrast to
F, which is not symmetric in general), appropriate to
describe finite (i.e. arbitrarily large) strains. In the theo-
ry of linear elasticity the so-called small strain tensor

.                  (6)

is often used, cf. [10]. In addition to the vector field (1),
continuum thermomechanics introduces an additional
scalar field, the temperature

(7)

and its (referential) gradient

.                      (8)

Nonlinear thermoelasticity
in referential description

The material response of a simple thermoelastic
material is assumed to depend on (more precisely, to be
a function of) the deformation gradient (transplacement
gradient) F, the temperature T and its (referential) gra-
dient Grad T. Invoking Truesdell's equipresence rule
[2,3], there is no a priori reason to exclude a certain
independent variable from any member of the set of
constitutive equations. These are therefore as follows:

,                        (9)

,                       (10)

,                       (11)

.                        (12)

In these expressions P is the first Piola-Kirchhoff
stress tensor, h the referential heat flux vector, f ≡ u - Ts
(with specific internal energy u) the specific free energy
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(Helmholtz energy) and s the specific entropy. The first
Piola-Kirchhoff stress tensor P is related to the Cauchy
stress tensor T, cf. [10], by

.                           (13)

Similarly, the referential heat flux vector h is rela-
ted to the spatial (actual) heat flux vector q via the rela-
tion

.                          (14)

In these expressions F-T = (F-1)T = (FT)-1 is the trans-
pose of the inverse deformation gradient (or the inverse
of the transposed deformation gradient) and J the Jaco-
bian determinant J ≡ detF ≠ 0 (non-singular).

Note that the first Piola-Krichhoff stress tensor P is
not symmetric, in contrast to the second Piola-Kirchhoff
stress tensor S, cf. [10], which is 

.                    (15)

In referential description, where all variables are
referential fields, i.e. functions of time t and the refe-
rential position X, the balance laws of rational thermo-
mechanics (continuum mechanics and thermodynamics)
are as follows (for simplicity only the local or differen-
tial forms of the balances, i.e. those valid for uniform
bodies, are given here; in the case of non-uniform bod-
ies, of course, global or integral forms have to be used):

1. Mass balance:

,                            (16)

where ρ0 = ρ⏐J⏐ is the referential density and ρ the
actual density of the material. 

2. Linear momentum balance:

,                   (17)

where Div is the referential divergence operator Div P ≡
≡ tr(Grad P), where tr denotes the trace, a superimposed
dot (v) a material (or substantial) time derivative, v the
velocity and b the specific body force.

3. Angular momentum balance:

.                         (18)

Note that for the second Piola-Kirchhoff stress ten-
sors the angular momentum balance reduces to the sym-
metry statement

,                             (19)

while the linear momentum balance adopts the more
complicated form

.                 (20)

Because of its symmetry, the second Piola-Kirch-
hoff stress tensor is more adequate to develop constitu-
tive theories of non-linear elasticity or thermoelasticity.
Nevertheless, in cases where the linear theory is aimed
at, the first Piola-Kirchhoff stress tensor is equally con-
venient. The advantage of the latter (being the natural
variable complementary to F in the energy balance, see
below) is, that the application of the Coleman-Noll
approach (see below) is more convenient.

4. Energy balance:

,                (21)

where u is the specific internal energy, Q the specific
heat supply and the inner product P · F = tr(PF) is a
scalar quantity describing the dissipation of mechanical
energy. In thermoelastic materials without viscosity, i.e.
in the absence of memory effects, this latter part of dis-
sipation is usually weak (it is present only in shock
waves or moving phase boundaries, cf. [1], p. 152).

5. Entropy inequality (Clausius-Duhem inequality):

,                  (22)

where s is the specific entropy.
In the following we exploit a combination of the

energy balance (first law of thermodynamics) and the
entropy balance (second law of thermodynamics), the
so-called dissipation inequality, cf. [1], p. 77:

.        (23)

According to Coleman and Noll's interpretation of
the second law of thermodynamics [4] we now insert
the material time derivative (i.e. a special case of what
has been called "total differential" in traditional thermo-
dynamics) of the free energy f,

,  (24)

with Grad T being the material time derivative of the
referential temperature gradient, into the dissipation
inequality:

.                                     (25)

This inequality must be valid for arbitrary thermo-
mechanical processes, i.e. for arbitrary values of all
time rates, i.e. F, T and Grad T. This corresponds to the
Coleman-Noll interpretation of the second law which
states roughly that the constitutive equations must be
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such that the entropy inequality (22) is satisfied in all
thermomechanical processes or more precisely, in every
smooth admissible process (it is evident that A=B=C=0
and D ≥ 0 must hold if the inequality Ax+By+Cz+D≥0
is to hold for arbitrary values of x, y, z; for a more pre-
cise formulation of this statement cf. [4]). 

There are three direct consequences of this applica-
tion of the dissipation inequality:

First result - Thermostatic relations:

,                  ,                       .    (26 a,b,c)

Second result - Gibbs equations:

,                                 .      (27 a,b)

Third result - Heat conduction inequality (Fourier's
inequality):

.              (28)

Note that in thermoelastic materials (in contrast e.g.
to materials with viscosity) P is always an equilibrium
stress, i.e. a stress which is fully determined by the free
energy (which can in this sense be called a "potential"
from which the stress can be derived) and for which the
Gibbs equations are valid. Note also that for other than
thermoelastic materials a heat conduction inequality of
the form (28) does not necessarily exist. E.g. for mate-
rials with heat conduction and viscosity the heat con-
duction inequality (28) must be replaced by the internal
dissipation inequality

,
(29)

where Pd is the non-equilibrium (dynamical) part of the
stress tensor, cf. [1,2,4].

Since the free energy f is independent of Grad T, cf.
equation (26c), and at the same time f is a "potential" for
P and s, also the latter are independent of Grad T. Thus,
as a consequence of the dissipation inequality (23), the
constitutive equations of thermoelastic materials are 

,                          (30)

,                    (31)

,                          (32)

.                           (33)

In particular, as a consequence of the Coleman-
Noll interpretation of the second law [4], the stress can-
not depend on the temperature gradient. Material mod-

els for which, additionally, h ≡ o, i.e. material models
which do not admit heat conduction, may be called "adi-
abatic materials". They are of importance in dynamical
situations (fast processes); for example, in the case of
"adiabatic elasticity" only shock waves can be responsi-
ble for energy dissipation, cf. [1], p. 152. For adiabatic
materials it is common practice to replace the constitu-
tive equation for the free energy f by that of the internal
energy u and to use the (specific) entropy s instead of the
temperature T as an independent variable, cf. [1], p. 179.

Physical linearization
of the constitutive equations

In order to obtain a linear theory of thermoelastici-
ty, we consider the series expansions about a reference
state (F0,T0). The linear approximation of the first Piola-
Kirchhoff stress tensor (for small deformation gradients
and small temperature differences) is

.    (34)

The linear approximation of the heat flux is taken
about the thermal equilibrium state with Grad T = o, i.e.
h0 ≡ h (F0,T0,o),

(35)
and the linear approximation of the entropy is a scalar
analogue of that of the stress tensor,

.       (36)

Note that in order to achieve consistency with the
thermostatic relations above, equations (26 a,b), the free
energy must contain quadratic terms:

(37)

Based on these approximations (series expansions),
we can now identify the following thermoelastic prop-
erties as the coefficients occuring in the linear terms:

1. Elasticity or stiffness tensor (more precisely, the ref-
erential tensor of isothermal elasticities):

.                     (38)

Note that, with a slight abuse of terminology, we will
use C interchangeably to denote also the spatial and
the Cauchy-Hooke tensor of isothermal elasticities
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for the purpose of this article, since after introducing
the small strain approximation (i.e. the geometric lin-
earization of the kinematic measures) below, this dis-
tinction is without concern. Thus, we can assume C
to be a fully symmetric fourth-order tensor. Howev-
er, the difference between the three types of elastici-
ty tensors plays a role in nonlinear thermoelasticity,
cf. [1], p. 174. When the (specific) entropy s is used
instead of the temperature T as an independent vari-
able, adiabatic (or "isentropic") elasticities C can be
defined in complete analogy to equation (38), cf. [1],
pp. 179-180.

2. Stress-temperature tensor (more precisely, the refer-
ential stress-temperature tensor, also called thermal
coefficient of stress):

.                  (39)

The stress-temperature tensor is intimately connected
to the latent heat with respect to deformation LF (a
symmetric second-order tensor corresponding to the
heat that must be supplied to the body to achieve unit
relative deformation while maintaining the tempera-
ture fixed, cf. [1], p. 180):

.            (40)

Although redundant, the latent heat tensor is some-
times preferred, e.g. in connection with phase trans-
formations. Further, the stress-temperature tensor M
is related to the thermal expansion tensor A via the
relation

,                         (41)

where C-1 is the fourth-order compliance tensor (i.e.
the inverse of the stiffness tensor), cf. [11-13]. From
the above it is evident that the information contained
in the stress-temperature tensor and the latent heat
tensor is equivalent to that contained in the thermal
expansion tensor. Only one of these quantities is nec-
essary to describe the thermoelastic response of
solids. With respect to practical measurability, the
thermal expansion tensor turns usually out to be the
most convenient one.

3. Heat conductivity tensor (referential heat conductiv-
ity tensor):

.                      (42)

4. Specific heat at constant deformation (a scalar corre-
sponding to the heat supplied to unit mass of a body
in order to achieve a unit temperature change while
keeping the deformation constant):

.                     (43)

Note that, although the Clausius-Duhem inequality
(22) says nothing about the sign of cF ([1], p. 181), the
positivity of cF can be derived from the requirement
of thermodynamic stability of the body ([1], p. 279).

The stress-temperature tensor (and therefore the
latent heat tensor and the thermal expansion tensor as
well) is a symmetric tensor of second order. Although
the general validity of the Onsager reciprocity relations
[14] has been seriously questioned by Truesdell [15],
also the heat conductivity tensor is usually assumed to
be symmetric. Truesdell has convincingly shown that
this is not the case in general. Wang [16], however, has
proved that at least for isotropic materials, cubic crys-
tals, orthorhombic crystals and trigonal, tetragonal and
hexagonal crystals of classes 32, 3m, 3m, 422, 4mm,
42m, 4/m mm and 622, 6mm, 6m2, 6/m mm, respective-
ly, the heat conductivity tensor is indeed necessarily
symmetric.

Note that the adiabatic elasticities C are related to
the isothermal elasticities via the relation

,                 (44)

where ⊗ denotes a tensor product of two second-order
tensors, resulting in a fourth-order tensor (cf. [1],
p. 180). Similarly, the specific heats at constant stress
and constant deformation, respectively, are related via
the relations

,               (45)

where C [LT,LT] is a scalar product of two fourth-order
tensors (cf. [1], pp. 28 and 181) and LT is the latent heat
tensor with respect to stress (i.e. the heat that must be
supplied to the body to achieve a unit change of the
Cauchy stress while maintaining the temperature fixed),
which is related to the latent heat tensor with respect to
deformation LF by 

.                            (46)

Further, the following relation is valid between the
specific heats (cf. [1], p. 181):

.                            (47)

In terms of specific heats and latent heat tensors the
(rate of external specific) heat supply is (cf. [1], p. 180)

.           (48)

Additional simplifications, usually tacitly adopted
in the linear theory of thermoelasticity, are introduced
as follows: Obviously, without loss of generality we can
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assume zero free energy and zero entropy in the refe-
rence state (F0,T0), i.e.

(49)

and 

.                              (50)

Further we assume the reference state to be a natu-
ral (preferred) state with zero initial stress (residual
stress), i.e. we assume absence of stress when strain is
absent (at the reference temperature), i.e.

if                 .                   (51)

Finally, it is evident that the heat conduction
inequality in the form

(52)

(obtained by inserting the linearized constitutive equa-
tion (35), together with definition (42), into equation
(28)) is valid for arbitrary temperature gradients Grad T
if and only if

(53)

and 

,                 (54)

i.e. firstly, the heat flux vanishes whenever the temper-
ature gradient vanishes and secondly, the heat conduc-
tivity tensor is positive semi-definite. The latter is the
tensorial counterpart of the statement that the scalar
heat conductivity cannot be negative. 

Geometric linearization
of the kinematic measures

What has been performed up to now may be called
physical linearization of the constitutive equations. For
real materials such a linearization is justified for small
deviations from the reference state (F0,T0), i.e. for defor-
mation gradients close to the reference value F0 and for
small temperature changes (T - T0). Note that in a con-
sistent linear theory, the material coefficients cannot
depend on the actual temperature T but only on the (uni-
form) reference temperature T0. This has to be kept in
mind when the temperature dependence of elastic and
thermoelastic properties is discussed. The deformation
gradient F itself, however, is a nonlinear deformation
measure, similar to the finite strain tensor (Green-
Lagrange strain tensor) G, cf. equations (2) and (5)
above. Strains are small when the (referential) displace-
ment gradients Grad u are in some sense small com-
pared to the unit tensor 1, i.e.

.                           (55)

Usually this criterion is formalized by stating that
its norm (magnitude) is small compared to unity:

(56)

Some of the consequences of this condition are

(57)

and 

.                            (58)

Therefore e.g. the referential gradient and diver-
gence (Grad and Div) reduce to the usual spatial gradi-
ent and divergence (grad and div) and ρ0 = ρ. Conse-
quently, the Piola-Kirchhoff stress tensors P and S coin-
cide with the Cauchy stress tensor T,

,                          (59)

and the referential heat flux h with the spatial heat flux q

.                             (60)

In other words, the difference between referential
(Lagrangian) and spatial (Eulerian) description vanish-
es. Concomitantly with this, the balance equations (16),
(17), (18), (21), including the entropy inequality (22),
adopt the following more common forms, cited in most
textbooks in hydromechanics and undergraduate contin-
uum mechanics:

Mass balance:

.                      (61)

Linear momentum balance:

,                      (62)

where div is the spatial divergence operator div T ≡
≡ tr(grad T). 

Angular momentum balance:

.                               (63)

Energy balance:

,                  (64)

where the stretching tensor (deformation rate tensor) D
is the symmetric part of the velocity gradient (irrelevant
in the absence of viscosity) 

.                   (65)

Entropy inequality (Clausius-Duhem inequality):

.                      (66)
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In the geometrically linearized theory of thermo-
elasticity the small strain tensor

(67)

is used as a measure of deformation, cf. equation (6).
Before we now proceed to formulate the physically and
geometrically linearized theory of thermoelasticity,
which corresponds rather closely to more traditional
treatments (e.g. [17]) and should serve as a guide for the
reader to easily recognize the analogies to classical ther-
modynamics, we would like to emphasize at this point
the approximate character of the above expressions,
equations (57) through (60), and all constitutive equa-
tions which follow below. A theory for which these
approximate expressions would be exact is inconsistent
- it violates the Clausius-Duhem inequality, cf. [1], p.
183. For the exact treatment of the completely lin-
earized theory the reader should consult Šilhavý's book
[1], especially pp. 461-465 and 474-477. 

Linear thermoelasticity
of anisotropic solids

Within the completely (i.e. physically and geomet-
rically) linearized theory the constitutive equation for
the stress tensor can be written in the form of a general-
ized Hooke's law, extended to include thermal effects:

.                    (68)

Evidently, the stress-temperature tensor M gives
the stress resulting from a given temperature distribu-
tion when the strain vanishes, i.e. 

,                         (69)

when E = O. For invertible elasticity or stiffness tensors
C (with C-1 being the compliance tensor) the strain ten-
sor can be expressed in terms of the stress tensor as

,                    (70)

where A = C-1M is the thermal expansion tensor, cf.
equation (41), which gives the strain resulting from a
given temperature distribution when the stress vanishes,
i.e. 

,                         (71)

when T = O. The constitutive equation for the heat flux
vector (Fourier's law) is

,                           (72)

where K is the heat conductivity tensor. The remaining
constitutive equations are

(73)

for the entropy and

(74)

for the free energy. Since all three second-order proper-
ty tensors (the stress-temperature tensor M, the thermal
expansion tensor A and, with the aforementioned reser-
vations, the heat conductivity tensor K) are symmetric
they can be transformed to principal axes, so that the
maximum number of independent components is three
(for triclinic, monoclinic and orthorhombic monocrys-
tals and for orthotropic composites). For materials of
higher symmetry the number is further reduced. For all
materials with an axis of rotational symmtery (i.e. trig-
onal, tetragonal and hexagonal monocrystals as well as
transversely isotropic composites) there are two inde-
pendent components, while for cubic monocrystals and
isotropic materials there is only one [11]. Of course,
with respect to the heat conductivity tensor K the read-
er should keep in mind the aforementioned fact that the
assumed symmetry is not guaranteed, in particular not
for triclinic, monoclinic and transversely isotropic
materials [16]. Generally, with respect to second-order
tensor properties cubic monocrystals behave like
isotropic materials, but not with respect to tensorial
properties of higher order, e.g. elasticity, cf. [10]. 

Linear thermoelasticity
of isotropic solids

For isotropic materials the following simplifica-
tions result: The generalized Hooke law of linear elas-
ticity,

,                             (75)

with its fourth-order elasticity tensor C (with 21 inde-
pendent components in the case of triclinic monocrys-
tals) can be replaced by the Cauchy-Hooke law,

,                    (76)

where the scalar coefficients λ and µ (this is all that
remains for isotropic materials) are the isothermal Lamé
constants (cf. [10,12]). Further, the stress-temperature
tensor M, the thermal expansion tensor A and the heat
conductivity tensor K (all second-order) reduce to iso-
tropic tensors, determined by one scalar component, i.e.

,                              (77)

,                               (78)

,                               (79)

where k is the heat conductivity and the stress-tempera-
ture modulus (thermal coefficient of stress) m is con-
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nected with the coefficient of linear thermal expansion
α via the relation

.                       (80)

Due to the small strain assumption at the outset of
this and the preceding section tr E turns out to be
approximately equivalent to the relative volume change
(tr E ≈ ∆V/V) and the coefficient of volumetric thermal
expansion αvolumetric is approximately 3α. The constitu-
tive equation for the stress tensor of isotropic solids
within the completely linearized theory of thermoelas-
ticity (Duhamel-Neumann law) is

.          (81)

When the strain vanishes (E = O) stress equals
pressure in an isotropic body, i.e.

.                       (82)

Conversely, when the stress vanishes (T = O) strain
equals omnidirectional dilatation or hydrostatic com-
pression in an isotropic body, i.e.

.                       (83)

The latter, of course, is possible only when the fol-
lowing inverse Duhamel-Neumann law exists:

.    (84)

The remaining constitutive equations are

(85)

for the heat flux (Fourier's law), 

(86)

for the entropy (Biot's law) and

(87)

for the free energy. Note that the adiabatic Lamé con-
stants λ and µ of isotropic solids are

(88)

and 

,                               (89)

cf. [1], p. 189. All other (isothermal or adiabatic) elas-
ticity moduli (tensile modulus E, shear modulus G, bulk
modulus K) and the Poisson ratio v can be calculated
from the two Lamé constants (isothermal and adiabatic,
respectively), according to the standard relations of

elasticity theory, cf. [10,12]. E.g. the adiabatic bulk
modulus is 

.                            (90)

For real bodies cF > 0 and therefore λ > λ (cf. [1],
p. 189). Further we have  

(91)

(with the specific volume V = ρ-1 = ⏐J⏐/ρ0) and

.                               (92)

The latent heat tensors (with respect to deformation
LF and with respect to stress LT, respectively) are 

(93)

and 

.                      (94)

Linear thermoelasticity
of fluids

Common fluids are isotropic materials of a very
special type, in a subtle sense more symmetric than
isotropic solids, cf. [2]. For reasons of this symmetry
the deformation gradient F as an independent variable is
replaced by the density ρ or its inverse, the specific vol-
ume  V = ρ-1 = ⏐J⏐/ρ0). That means, all information
about the deformation of an elastic fluid (e.g. a gas) is
contained in a single scalar variable. Therefore e.g. the
free energy function f(F,T) becomes f(V,T) and the
Cauchy stress T(F,T) is fully determined by the pres-
sure p(V,T):

.                  (95)

In the case of elastic fluids the constitutive equation
p(V,T) is also called equation of state, the simplest and
most famous example being that of an ideal gas. As a
consequence of the first and second law, equations (21)
and (22), one obtains the well-known thermodynamic
relations

(96)

and 

.                             (97)

Accordingly, the total differential of the free ener-
gy function is

.                       (98)
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These expressions should be compared with equa-
tions (26a), (26b) and (27a), respectively. Since shear
strains (corresponding in solid bodies to changes of
shape) are not sustained in fluids, the Duhamel-Neu-
mann law reduces for fluids to the constitutive relation

,           (99)

where ∂p/∂T = -m is the thermal coefficient of pressure,
i.e. for fluids

.                           (100)

The coefficient of volumetric thermal expansion is

(101)

(defined only if ∂p/∂V ≠ 0), in accordance with classical
thermodynamics, cf. [17,18]. Generally the coefficient
of volumetric thermal expansion αvolumetric is connected to
that of linear thermal expansion α via the relation

.                 (102)

Already for gases, however, the coefficient of volu-
metric thermal expansion is quite small (and nearly the
same for all gases, viz. αvolumetric ≈ T-1, i.e. approx.
0.003 K-1 at room temperature), for condensed phases
(liquids) even smaller, cf. [17,18]. Therefore, the coef-
ficient of linear thermal expansion can be calculated
from αvolumetric ≈ 3α, as above for isotropic solids. 

In the case of fluids the specific heats at constant
deformation cF and at constant stress cT are denoted cV

and cp, respectively. For the specific heat at constant
(specific) volume we have 

(103)

and for the specific heat at constant pressure (defined
only if ∂p/∂V ≠ 0)

.                  (104)

In terms of adiabatic and isothermal bulk moduli
their ratio is

.                    (105)

Finally, for fluids the latent heat tensors (with
respect to deformation LF and with respect to stress LT,
respectively) are both isotropic, 

,                          (106)

.                        (107)

with the scalar coefficients 

(108)

(latent heat with respect to volume) and 

(109)

(latent heat with respect to pressure, defined only if
∂p/∂V ≠ 0). In terms of specific heats and latent heats
the (rate of external specific) heat supply for fluids is

,                (110)

cf. [1], p. 195. With these examples it should be evident
that the complete structure of classical thermodynamics
(thermostatics) arises in a natural way from the more
general relations of the preceding sections. In other
words, the linear theory of thermoelasticity, as sketched
in this paper, comprises the whole classical thermody-
namics of elastic (i.e. inviscid) fluids as a special case.
Viscous fluids, however, are included in this theory only
in special situations (equilibrium). Also note, that with
this theory alone it is not possible to treat the specific
features of mixtures. "Miscible" or single-phase mix-
tures (i.e. fluid or solid solutions) are the main issue of
chemical thermodynamics or the thermodynamics of
reacting mixtures [18,19], while "immiscible" or multi-
phase mixtures are in the focus of micromechanics or
composite theory [20,21]. The thermoelastic properties
of the latter mixtures, including composites, porous
media and other materials with microstructure (e.g.
polycrystals) will be treated in forthcoming papers.

CONCLUSIONS

The linear theory of thermoelasticity has been sum-
marized for materials scientists and engineers from the
viewpoint of exact theory (rational thermomechanics).
Following modern treatments of rational thermome-
chanics, the physically linearized theory has been
derived in referential formulation, using the first Piola-
Kirchhoff stress tensor P, the referential heat flux h, the
free energy f and the entropy s as the material respons-
es (dependent variables), for which constitutive equa-
tions are given. The deformation gradient F, the tem-
perature T and the referential temperature gradient
Grad T have been used as independent variables (simple
thermoelastic materials). Linear approximations of the
series expansions about a natural reference state (F0,T0)
and thermal equilibrium (with Grad T = o) have been
invoked to define the fourth-order elasticity tensor C,
the stress-temperature tensor M, the thermal expansion
tensor A, the latent heat tensors LF and LT (with respect
to deformation and stress, respectively), the heat con-
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ductivity tensor K and the specific heats cF and cT (at
constant deformation and constant stress, respectively)
for anisotropic solids. It has been shown that the sec-
ond-order tensors M, A and LF (or LT) contain essen-
tially the same information. For the completely (physi-
cally and geometrically) linearized theory the constitu-
tive equations and linear thermoelastic properties of
isotropic solids and fluids, including the scalar coeffi-
cients of thermal expansion and heat conductivity, have
been derived as special cases of the theory for
anisotropic materials in order to demonstrate the scope
of this theory and its connection to traditional thermo-
dynamics. The assumptions underlying each step of
simplification and the physical meaning of the coeffi-
cients have been emphasized throughout. Following the
spirit of rational thermomechanics as far as possible, but
avoiding mathematical formalities wherever possible,
this shortcut is intended to provide a relatively sound
basis for the future discussion of thermoelastic proper-
ties of heterogeneous materials from the viewpoint of
micromechanics. Subsequent papers will concern the
thermoelastic properties of alumina-zirconia compos-
ites and other ceramics.
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V tomto pøíspìvku je shrnuta lineární termoelasticita pro
materiálové vìdce a inženýry z hlediska exaktní teorie (tj.
racionální termomechaniky). Je zde odvozena v tzv. referenèní
formulaci, tj. pomocí prvního Piolova-Kirchhoffova tenzoru
napìtí, referenèního toku tepla, volné energie a entropie. Pro
všechny tyto materiálové odezvy jsou uvedeny konstitutivní
rovnice. Nezávislými promìnnými jsou gradient deformace,
teplota a referenèní gradient teploty (tzv. "prosté" termoela-
stické materiály). Lineární aproximací øadových rozvojù okolo
referenèního stavu (tj. elasticky "pøirozené" konfigurace a
tepelné rovnováhy) jsou definovány tenzor elasticity, tenzor
teplotní roztažnosti, tenzor tepelné vodivosti a specifické tepel-
né kapacity pro anizotropní pevné látky libovolné symetrie. Z
tìchto obecných vztahù jsou nakonec jako speciální pøípady
odvozeny konstitutivní rovnice a lineární termoelastické vlast-
nosti izotropních pevných látek a tekutin, které jsou známé z
klasické termodynamiky. 


