
Original papers

Ceramics – Silikáty  53 (2) 137-140 (2009)	 137

Elastic properties of soda-lime silica glass from 
first principles 

Jan Machacek, Ondrej Gedeon, Marek Liska* 

Department of Glass and Ceramics, Institute of Chemical Technology, Technicka 5, Prague 166 28, Czech Republic
*Vitrum Laugaricio – Joint Glass Center of Institute of Inorganic Chemistry SAS, Alexander Dubcek University of Trencin and 

RONA Lednicke Rovne, Studentska 2, Trencin 911 50, Slovak Republic

Email: Jan.Machacek@vscht.cz

Submitted November 7, 2008; accepted December 14, 2008

Keywords: Ab initio molecular dynamics, Soda-lime-silica glass, Structure, Elastic constants, Size effects, Silicate rings

This work describes preparation of soda-lime-silica (NCS) window glass by the first principles molecular dynamics and 
calculation of elastic properties from the Hellman-Feynman stresses. Small atomic glassy systems reveal deviations from 
isotropic solid. Such deviations can be quantified using differences among some stress tensor components. The first principles 
model applied in this work (DFT: PBE/PAW) underestimates elastic constants by 10-20 %. Size effects were studied with 
help of the classical molecular dynamics of binary glass Na2O·3SiO2 which is close to NCS glass stoichiometry. It was found 
that elastic properties of small atomic systems are essentially size-independent even if silicate ring statistics reveals strong 
dependence  on the number of atoms. 

INTRODUCTION
Nowadays, ab initio molecular simulations of bulk 

materials and surfaces are considered as standard tools 
of materials research covering electronic band-structure 
investigations, thermodynamic calculations of phase 
stability, molecular transport through the bulk and over 
the surface. The vast majority of applications involve 
well defined crystalline or slightly perturbed crystalline 
systems. Conversely, the amorphous systems, including 
glasses, are very badly defined and their modeling by a 
molecular simulation of any kind is rather troublesome. 
The electronic structure methods can handle only small 
systems comprising not more than several hundreds of 
atoms. On the other hand, the simulations with empirical 
force-fields contain usually much larger sets of atoms, 
but precision and generality of such simulations are 
incomparably lower. Small systems suffer from several 
illnesses: they are not isotropic but quasi-periodic; the 
medium (and long) range order is essentially lost; some 
physical quantities and parameters are not size invariant; 
and, last but not least, the calculated physical quantities 
are significantly noisy.

In spite of the limitations enumerated above, the ab 
initio molecular dynamics (MD) of glasses is becoming 
recognized by the scientific community as a valid 
analytical tool. Recently, this method was used to study 
structure and properties of many oxide glasses including 
silica [1], silicate [2-4] phosphosilicate [5], oxynitride [6, 
7], and aluminate glasses [8-10]. Vast majority of papers 
focus on atomic and electronic structure, some of them 

also provide vibrational properties. To the best of the 
authors’ knowledge, elastic properties of alkali silicate 
glasses have been already calculated only by classical 
MD with empirical potentials, where analytical second 
derivatives of energy with respect to strain were used 
[11].

This work put forward a method of calculation of 
elastic properties of a small glassy system from first 
principles using the common window glass as a model. 
The method is based on the direct application of the 
Hook’s law. Aim of this work is to quantify and discuss 
size limitations inherently involved in ab initio molecular 
simulations of glassy systems.

COMPUTATIONAL

The ab initio (Born-Oppenheimer) MD calculation 
using the Hellmann-Feynman forces of the NCS 
glass was performed with help of the Vienna ab-initio 
simulation package VASP [12]. The valence-electron 
wave-functions were expanded in plane waves. The 
Kohn-Sham equations of density-functional theory (DFT) 
were solved using generalized gradient approximation 
(GGA) adapted by Perdew, Burke and Ernzerhof (PBE). 
The projector augmented wave (PAW) pseudopotentials 
[13] were used. The pseudopotentials can be found in 
the VASP pseudopotential PAW_PBE database under the 
following designation: Si, Ca_sv, Na, O_s. The potential 
energy calculations were performed with the plane-wave 
cut-off of 213 eV. Brillouin-zone sampling was restricted 
to the Γ-point only. The default values of other VASP 
parameters were assumed.

Paper presented at the Czech and Slovak Conference on Glass, 
Luhačovice, November 5-7, 2008.



 Machacek J., Gedeon O., Liska M.

138	 Ceramics – Silikáty  53 (2) 137-140 (2009)

Three independent systems contained 110 atoms: 
28 Si, 4 Ca, 12 Na, and 66 O. It corresponds to 15.8 wt.% 
Na2O, 10.5  wt.% CaO, and 73.7  wt.% SiO2. Atoms 
were randomly placed into the cubic computational box 
adjusted to the temperature dependent densities of the 
studied systems (Table 1). The time-step of the numerical 
integration of the equations of motion was set to 0.002 ps. 
Temperature was rescaled in every 20 time-step.

Ionic positions and computational cell vectors of 
the glassy systems were optimized to obtain equilibrium 
structures at zero temperature and stress. This was done 
by the conjugate gradients method with the extended 
plane-wave basis expansion (368  eV) and VASP 
parameters adjusted for accurate calculations. The 
Hellmann-Feynman forces converged below 10-3  eV/Å. 
The optimized structures were achieved in about 200 
iteration steps.

The optimized structures were used in the calculation 
of the elastic constants, mechanic moduli, and other elastic 
properties. This was done by calculating of (Hellmann-
Feynman) stresses acting on distorted systems. Generally 
speaking, glass is isotropic solid medium which is 
characterized by only two elastic constants, c11 and c12. 
However, a small computational cells employed in ab 
initio MD simulations contain hardly more than several 
hundred atoms. Thus, the simulated systems are quasi-
periodic and substantially anisotropic. 

In this work, we have chosen two independent 
strains, ecomp and etrig, this way [14]:

	                        ,				    (1)

where ecomp is a compressive strain, etrig is a trigonal 
strain, and δ is the strain parameter, δ = 0.003n, where 
n = 0, ± 1, ± 2 that ensures retaining of the elastic regime. 
Ionic positions were re-optimized (relaxed) whenever 
dimensions of the computational cells had changed. The 
stresses, τj(δ), where j = 1, 2, ..., 6, responding to strains, 
ecomp(δ) and etrig(δ), were tabulated and fitted by regression 
lines. A typical result is seen in Figure 1.

The elastic constants, c11 and c12, and bulk and shear 
moduli, B and G, were calculated as follows:
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(2)

Young modulus, E, Poisson ratio, ν, and longitudinal 
and transversal sound velocities, vl and vt, were calculated 
according to usual relationships:

		          ,				    (3)

	                   ,				    (4)

The stress tensor components, τ1, τ2, τ3, in case of the 
compressive strain, and τ4, τ5, τ6, in case of the trigonal 
strain, were used to estimate variances within one 
configuration caused by anisotropy. 

RESULTS AND DISCUSSION

The optimized cell parameters (corresponding to the 
minimum system energy) are collected in Table 2. It is 
seen that all systems expanded approx. by 7 % and lost 
their cubic cell symmetry.

Figure 1 shows stress response to the compressive 
strain, as obtained from the system cnf-1. A similar 
plot was obtained also for the system cnf-3. On the 
other hand, the stress-compressive strain relation in the 
system cnf-2 was not linear but v-shaped being centered 
at δ  =  0. This behavior can be explained by relaxation 
of some structural instability during expansion and its 

Figure 1. Stress-compressive strain dependence in the system 
cnf-1.
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Table 1. Scheme of cooling of the simulated NCS glassy 
systems.

Temperature (K)	D ensity (g/cm3)	 Box length (Å)	T ime (ps)

5000	 2.12	 12.129	 4
4000	 2.12	 12.129	 10
2500	 2.12	 12.129	 10
1000	 2.43	 11.590	 10
300	 2.50	 11.481	 10
300	 2.50	 11.481	 10
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transformation into diagonal stress components. In case 
of trigonal deformation, all graphs looked similar to the 
one in Figure 1. The slopes, kcomp and ktrig, are collected 
in Table  3. In the isotropic solid, the diagonal and off-
diagonal stress tensor elements should be the same, i.e. 
for ecomp: τ1 = τ2 = τ3 = τcomp; τ4 = τ5 = τ6 = 0 and for etrig: 
τ1 = τ2 = τ3 = 0; τ4 = τ5 = τ6 = τtrig. It is not the case of 
the small glassy systems presented in this work. Here, 
differences among respective matrix components can be 
used to quantify non-isotropic character of the system 
under study. 

Average values of the slopes kcomp and ktrig, elastic 
constants, elastic moduli and sound velocities are 
presented in Table  4. This table is also completed 
with experimental values of elastic moduli. It can be 
seen that the simulated elastic moduli are in all cases 
underestimated comparing with the experimental ones 
by 10-20 %. The major part of such discrepancy can be 
attributed to the electronic structure model adopted in this 
work. We have found that PBE/PAW as implemented in 

the VASP package gives longer and weaker Si-O bonds in 
the silicate glasses [3]. Other models e.g. PBE/US-PP or 
CA/PBE would improve results significantly.

It can be also seen that the variance of data within 
the simulated systems is quite large. It is caused by poor 
statistics of small atomic systems. To improve statistics 
of results and check size effects, additional simulations of 
a binary glass (close in stoichiometry), Na2O·3SiO2, was 
performed using the classical molecular dynamics with 
the empirical Buckingham-type potential. The cooling 
procedure was the same, only the force-field differed. 
Number of atoms, N, gradually increased from 110 up to 
798. Averages and deviations of physical quantities were 
calculated from 14 independent configurations at each N 
(Figure 2). It is clearly seen that the standard deviations of 
the elastic moduli exceed 10 GPa for the smallest systems 
and the elastic moduli are nearly size-insensitive with 
respect to the error-bars. It is rather surprising because 
the medium range order of glass expressed by the silicate 
ring statistics (Figure 3) reveals strong dependence on the 
number of atoms. 

CONCLUSION

One may deduce that elastic properties of MD 
simulated glasses are determined most by the short range 
ordering, i.e. the atomic local structure. Therefore, small 
glassy systems can be used to obtain reasonable elastic 
constants providing that more independent calculations 
are carried out to improve statistics. This is important 
result because computer time-consumption scales 
linearly with the number of independent configurations 

Table 2. Optimization of ionic positions and cell parameters.

System	D ensity (g/cm3)	 Energy (kJ/mol)	 a (Å)	 b (Å)	 c (Å)	 α (°)	 β (°)	 γ (°)

cnf-1	 2.351	 -1991.51	 11.295	 11.857	 12.046	 87.4	 89.6	 86.9
cnf-2	 2.335	 -1990.61	 11.775	 11.857	 11.664	 95.5	 89.0	 90.0
cnf-3	 2.327	 -1992.15	 11.717	 11.830	 11.756	 91.8	 86.9	 89.7
mean	 2.337	 -1991.06	 11.596	 11.848	 11.822	 91.6	 88.5	 88.9
st. dev.	 0.013	 0.77	 0.262	 0.015	 0.199	 4.1	 1.4	 1.7
max-min	 0.025	 1.54	 0.480	 0.027	 0.381	 8.1	 2.7	 3.1

Table 3. Slopes ktrig and kcomp (GPa).
 

	
Compressive deformation	T rigonal deformation

	 cnf-1	 cnf-2	 cnf-3	 cnf-1	 cnf-2	 cnf-3

∂τ1/∂δ	 110.6	 95.0	 98.0	 1.5	 -17.2	 17.6
∂τ2/∂δ	 122.2	 65.0	 99.2	 1.5	 2.5	 4.5
∂τ3/∂δ	 128.5     102.3	 97.6	 -5.7	 -30.3	 -15.7
∂τ4/∂δ	 -3.4	 3.3	 11.3	 54.3	 26.0	 46.0
∂τ5/∂δ	 -7.1	 -8.3	 -6.1	 44.0	 36.7	 53.3
∂τ6/∂δ	 9.2	 -15.7	 -2.3	 44.2	 37.3	 35.6

Table  4. Elastic constants and moduli of the simulated NCS glasses (in GPa).

	 cnf-1	 cnf-2	 cnf-3	 this work†	 experim.*

kcomp	 120.4 ± 9.1	 87.4 ± 19.8	 98.3 ± 19.8	 109.4 ± 13.4	
ktrig	 47.5 ± 5.9	 33.3 ± 6.4	 45.0 ± 8.9	 46.2 ± 6.9	
c11	 71.8 ± 7.0	 51.4 ± 10.8	 62.8 ± 6.2	 67.3 ± 13.6	
c12	 24.3 ± 5.0	 18.0 ± 4.5	 17.8 ± 3.2	 21.0 ± 6.8	
B	 40.1 ± 3.0	 29.1 ± 6.6	 32.8 ± 6.6	 36.5 ± 4.8	 41.3
G	 23.8 ± 3.0	 16.7 ± 3.2	 22.5 ± 4.5	 23.1 ± 3.8	 28.6
E	 59.5 ± 9.0	 42.0 ± 12.9	 54.9 ± 7.3	 57.2 ± 16.2	 69.8
ν	 0.253 ± 0.043	 0.260 ± 0.063	 0.221 ± 0.035	 0.237 ± 0.069	 0.218
vl (m/s)	 5527 ± 269	 4690 ± 493	 5193 ± 256	 5360 ± 542	 5248
vt (m/s)	 3216 ± 331	 2779 ± 347	 2763 ± 249	 2989 ± 485	 3363

† averages of the cnf-1 and cnf-3 configurations
* compiled from [16] using a method described in [15].
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but increasing of the number of atoms scales quadratic 
at best. It was shown that differences among some stress 
tensor components can be used to quantify deviations 
from isotropic solid. The first principles model used in 
this work underestimates elastic constants; however this 
can be improved by using other models better adapted to 
glassy silicates. 
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Figure 2. Elastic moduli of Na2O·3SiO2 glass. A classical molecular dynamics simulation. Data points are fitted by the function 
M(N)=M0+c/Nn, where M is a modulus, N is the number of atoms, and M0, c, n are parameters. The data can be easily completed 
with B(1536) = 45.33 GPa and E(1536) = 63.22 GPa obtained for the same system and referenced in [11]. 
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Figure 3. Silicate ring statistics in Na2O•3SiO2 glass. A classical 
molecular dynamics simulation. A small system generates small 
ringselectron wave-functions were expanded in plane waves.
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