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A simple model of bubble behaviour in a melting space with a vertical circulation of the molten glass was derived. 
Subsequently, two cases were considered. The first case with a constant, radially independent value of the angular velocity 
of the glass-melt rotation approximately demonstrated the heating through the wall of the pot furnace for glass melting, 
and the second case, where the angular velocity decreased from the centre of the space towards the wall, represented the 
heating of the pot furnace from above. The chosen values of the angular velocities corresponded to temperature gradients 
commonly occurring in melting spaces. The starting positions of critical (last removed) bubbles were sought along with their 
trajectories and fining times. The much higher calculated fining times of critical bubbles in the rotating melt as compared 
with the fining times of the bubbles just rising through the quiescent glass melt were explained by the deceleration of the 
bubble rising with respect to the fixed coordinates through the downward part of the glass vertical circulation. This fact leads 
to a long retention of the bubble in the melt and consequently to high energy consumption and low melting performance. The 
semiempirical equations were presented, providing the fining time of the critical bubble as a function of the bubble-growth 
rate and melt-rotation velocity.

INTRODUCTION

 The removal of small bubbles from viscous liquids 
in a gravitational field is always problematic. Bubble-rise 
velocity in viscous liquids is considerably low, the liquid 
layers often thick and the flow patterns, if present, may 
also slow the average bubble-rise velocity [1-4]. Similar 
problems may be observed when a small amount of liquid 
or solid particles is settling. In previous works [5-8], the 
authors have dealt with the impact of glass-flow character 
on bubble removal in a continuous glass-melting channel 
and found both beneficial and disadvantageous types of 
the natural glass flows in terms of the bubble removal 
process. In the discontinuous pot furnace, the glass-melt 
flow is determined by the radial temperature gradients 
between the pot wall and the inside. The circulations 
with the upward flow in the centre of the pot are caused 
when the temperature decreases from the space centre 
to the wall, and the opposite flow is induced when the 
temperature is higher near the wall. The mentioned 
circulations resemble the transversal glass circulations 
set in the horizontal channel, where the bubble should 
pass a part of its trajectory against the downward glass 
flow and its rising to the level is thus hindered [5-6]. 
This work is focused on the mathematical modelling of 
small bubbles in the mentioned circulation field in the 

glass-pot furnace with the aim of elucidating the relation 
between the fining efficiency, melt circulation intensity, 
and bubble-growth rate. A special simplified model has 
been derived for the purpose of this modelling.

THEORETICAL

 A new quantity called utilisation of the melting 
space has been introduced in a previous work to evaluate 
quantitatively the impact of glass-flow character on the 
dissolution of sand grains and the removal of bubbles 
[6]. The utilisation of the space for the process of the 
bubble removal in discontinuous space may be simply 
expressed as the ratio between the critical bubble-fining 
time in the space with quiescent molten glass and the 
corresponding time in the same space with flow patterns 
of the glass or by the ratio of the appropriate fining 
heights:

(1)

where u is the space utilisation, τFref is the critical fining 
time in the quiescent glass, τFcrit is the same time in the 
space with flow patterns, h0 is the thickness of the glass 
layer and hvirt is the height to which the critical bubble 
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should rise to reach the glass level with respect to the 
melt. The critical fining time designates the maximum 
fining time of the smallest (critical) bubble in the space. 
Both quantities in the fraction of Equation (1) are 
obtainable by a simple calculation (τFref) and by using 
the mathematical model (τFcrit). The value of τFref of very 
small bubbles can be calculated from the following 
equation [5]:

(2)

where η and ρ are the glass viscosity and density and ȧ is 
the bubble-growth rate.
 If the melt circulates, the critical fining time τFcrit 
may be obtained from an equation analogical to Equation 
(2) but the value of h0 is replaced by hvirt. 
 The bubble fining times of small bubbles in a quies-
cent or vertically rotating viscous liquid may generally 
be derived from several cases: 

The liquid is quiescent, ω = 0: 
a) if ȧ = 0, τFcrit = 9ηh0/2g ρa0

2

b) if ȧ > 0, equation (2) is valid.

 The liquid is rotating, ω > 0: 
a) if ȧ = 0, the ratio ω/vbub is significant where vbub is the 

bubble rising velocity:
 - if ω/vbub is sufficiently small, τF has a high but limited 

value,
 - if ω/vbub is sufficiently large, τF → ∞.
b) if ȧ > 0, equation (2) is valid, where τFref is replaced by 

τFcrit and h0 by hvirt.

 The most frequent cases of bubble behaviour in 
glass are growing bubbles, i.e. the case 2b for bubbles in 
a vertically rotating melt (natural circulation).
 The spatial velocity field in the pot furnace may be 
replaced by a 2D picture of the vertical central section 
through the space. When deriving the simplified model 
of bubble behaviour, the circular glass-rotation field 
of the melt and the bubble ascending through the melt 
according to the Stokes’ law are considered. The bubble 
grows linearly which corresponds well to the results 
of the experimental observations. The bubble behaviour 
in the circularly rotating melt is schematically depicted 
in Figure 1. Thus, the cylindrical space of the pot furnace 
is substituted by the vertical circular space with a radius 
of R0. 

Figure 2.  Two cases of the melt circulation in the pot furnace 
for the glass melting. a) the heating through the wall approxi-
mately characterised by the constant angular velocity of the 
melt; b) the heating from above approximately characterised 
by the angular velocity of the melt decreasing towards the pot 
wall. The downward part of melt circulation is important for 
bubble rise.

Figure 1.  A schematic view of bubble A in the circular field 
of the glass melt. The detail shows the parabolic decrease 
of the angular velocity with the growing radius of the circle; 
X, Z – the bubble orthogonal coordinates, vx, vz – the velocity 
components of the melt, vω – the circumference velocity of 
the melt, vp – the vertical velocity of the bubble, r – the radial 
distance, α – the rotation angle, ω – the clockwise angular 
velocity of the melt.

a)

b)
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 Two cases were considered: the case using the 
constant value of the melt angular velocity independent 
from the radius approximately describes the case with 
a higher temperature near the pot wall (heating through 
the wall), whereas the case with the angular velocity 
decreasing with radial coordinate towards the wall 
represents the case of temperature maximum in the centre 
of glass level (heating from above). Figure 2 presents 
both cases, where the left part represents heating through 
the wall and the right part shows heating from above. The 
downward part of the melt circulation is substantial for 
bubble rise, because the bubble spends more time in the 
downward flow than in the upward flow. Consequently, 
the case with downward circulation in the vertical axis 
of the pot - not hindered by pot walls - approximately 
simulates the case of heating through the pot wall, and 
the case with the downward flow close to the pot wall 
simulates heating from above.
 The components of the glass-melt velocity are 
described by the following equations:

          vx = vω cos α = vω cos (α0 + ωτ)
(3a, b)

         vz = -vω sin α = -vω sin (α0 + ωτ)

where vω is the circumferential velocity of the melt, ω is 
the angular velocity of the melt, and α0 is the initial angle 
in time τ = 0. Then:

(4)

where X0 and Z0 are the initial coordinates of the bubble, 
hence its starting position.
 The circumference velocity of the melt is given by:

vω = ωr = ω (X 2 + Z 2)1/2                       (5)

 After the substitution of equation (5) into (3a, b):

          vx = ω (X 2 + Z 2)1/2 cos (α0 + ωτ)
(6a, b)

         vz = -ω (X 2 + Z 2)1/2 sin (α0 + ωτ)

 The bubble-rise velocity is given by the Stokes’ law:

(7)

where ρl and ρp are the densities of the liquid (melt) and 
particle (bubble), respectively, η is its viscosity, a0 is 
the initial particle radius, and ȧ is the particle growth or 
dissolution rate.
 The elements of the bubble trajectory are then given 
by:
 dX = vx dτ = ω (X 2 + Z 2)1/2 cos (α0 + ωτ) dτ

(8a, b)

where vpz is the resulting vertical velocity of the particle. 
The following equation is proposed for the angular melt 
velocity at radius r in the circular space with the final 
radius R0 (space boundary):

(9)

where ω0 is the melt angular velocity in the circle centre. 
Equation (9) is substituted into Equations (8a, b):

(10a, b)

Equations (10a, b) are solved numerically. When the 
bubble reaches the radial distance R0 in the upper half 
of the space, the calculation is completed, i.e. the bubble 
attains the glass level.

Calculation conditions

 As already mentioned, the bubble behaviour in the 
space heated through the wall is simulated by the case 
with the angular velocity of the melt independent of the 
radial distance r, whereas glass heating from above is 
represented by the case with the value of the melt angular 
velocity decreasing towards the wall (according to 
equation (9)). The models are only an approximation of 
reality, but an important feature of the bubble behaviour 
is involved - the decisive part of the bubble rise takes 
place in the downward flow of the melt. The downward 
part of the melt-circulation flow is slowed down by the 
presence of the solid surface (pot wall) when the glass 
is heated from above, and no resistance is met in the pot 
centre when glass is heated through the wall.
 The impact of the temperature gradient on the 
circulation intensity is simulated by the value of the 
initial angular velocity of the melt, which in reality 
increases with the value of the temperature gradient. 
The interval of ω0 ∈ 〈10-3; 10-2〉 (rad/s) corresponds to 
the values obtained by the modelling of the horizontal 
melting channel in the range of temperature gradients of 
10-100°C/m [6]. The bubble-growth rate was chosen in 
the interval of 10-8 to 10-6 m/s. The choice is in agreement 
with the values of bubble-growth rates obtained by 
experiments with industrial glasses. The initial radius of 
the critical (smallest) bubble 5×10-5 m was chosen for 
the calculations; the glass-melt viscosity was 30.35 Pa.s 
and glass density 2415 kg/m3 (the model TV glass at 
1300°C). The value of R0 was 0.25 m. The starting point 
of the critical bubble has been identified by repeated 
calculations of the fining time by using the regular mash 
of the starting points with the aim to find the critical 
coordinates. The values of τFref have been calculated from 
equation (2), where h0 = 2R0. 
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RESULTS OF CALCULATIONS

 The typical critical bubble trajectories for the 
bubble-growth rates 5×10-8 and 2×10-7 m/s are presented 
in Figure 3. The bubbles draw spiral traces leading to 
the right and showing the growing radius with the 
increasing value of the bubble-growth rate. Both features 
are a natural result of the interaction of the circular 
and vertical movement. Figure 4 brings the calculated 
values of τFref and τFcrit for the case of a constant value 
of ω (ω = k, heating through the wall). The values of 

τFcrit were calculated for ω0 = 1×10-3, 2×10-3, 4×10-3 and 
1×10-2 rad/s. As arises from Figure 5, the positions of 
the starting points of the critical bubbles are located 
on the planar spiral, which opens as the value of the 
bubble-growth rate increases. When decreasing the melt 
rotational velocity, the starting points of the critical 
bubble should approach the lowest point of the circle 
with the radius R0. The approximately hyperbolical de-
crease of fining times with increasing bubble-growth rate 
is clear in all of the cases; the fining times grow with 
the intensity of the melt circulation and in all of the cases 
are much higher than the values of τFref.

Figure 5.  The positions of starting points of the critical bubbles 
as a function of values of the bubble-growth rates in the case 
of the constant value of ω0 = 10-3 rad/s (heating through the 
wall). The numbers close to the points are the values of the 
bubble-growth rates in m/s.

Figure 4.  The calculated values of τFref and τFcrit for the case of
a constant value of ω = k (heating through the wall). The values 
of τFcrit were calculated for ω0 = 1×10-3, 2×10-3, 4×10-3 and 
1×10-2 rad/s.

a)

b)

Figure 3.  The typical critical trajectories of bubbles in the 
circular velocity field of the melt for the bubble-growth rates of: 
a) 5×10-8 and b) 2×10-7 m/s. The case of the constant value of 
ω0 = 10-3 rad/s (heating through the wall).
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 Similar results were acquired for the more frequent 
case of ω values decreasing with the radial distance
(ω = ω(r), heating from above). Figure 6 presents the 
critical trajectories of bubbles at four values of the bubble-
growth rates, and Figure 7 shows the dependences of 
calculated values of the fining time, τFcrit, on the bubble 
growth rate for the case of angular velocity decreasing 
with r. The values of τFcrit were calculated for the same 
four values of the initial angular velocity ω0 as in the 
previous case. The positions of the starting points of the 
critical bubbles proved a similar trend as is presented in 
Figure 5.

DISCUSSION

 The critical starting point of a bubble in a melting 
space with flow patterns is never located at the bottom 
of the space, which in fact corresponds to both the theory 
[9] and calculations [6]. The spiral shape of the function 
describing the positions of the critical starting points in 
Figure 5 is a consequence of the common solution of 
the circular flow and bubble-rise functions. It is known 
from previous calculations that the small bubble of 
a constant size (ȧ = 0) can never reach the glass level in
a rotating melt; its starting point would probably be 

Figure 6.  The critical trajectories of bubbles in the circular velocity field of the melt for the bubble-growth rates of 2×10-8, 5×10-8, 
1×10-7 and 5×10-7 m/s at ω0 = 4×10-3 rad/s in the case of the value of ω decreasing with the radius of the space (heating from above).
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placed in the centre of the circular flow. As the bubble-
growth rate increases, the critical starting point moves 
from the centre, and the bubble trajectory is characterised 
by the increasing radius of the spiral (see Figures 3 
and 6). Despite the fact that the model is an idealised 
presentation of the pot furnace, the results presented 
here provide good qualitative information on the starting 
points and the shapes of trajectories. 
 Figures 4 and 7 showing the dependences of the 
fining times of the critical bubbles on the bubble-growth 
rates indicate that the shape of the dependence is similar 
to the case of a quiescent melt (τFref, see the approximate 
Equation (2)), so the dependence typifies a power 
function in the given extent of bubble-growth rates. The 
proposed semiempirical function of the fining time has 
the form:

(11)

where both C and n are constants dependent on the 
angular velocity ω. For the quiescent glass melt applied 
here, the value of C is 0.205 and n is 2/3. The use of
the same power function proved to be appropriate for 
fitting the results of both cases - heating through the 
wall (the constant value of ω) and heating from above 
(the value of ω decreasing with r). For heating through 

the wall (ω = k), the values of n fulfil the condition
n ∈ 〈0.95; 1〉 and, for heating from above (ω = ω(r)), 
the values of n show slightly lower values, n ∈ 〈0.95; 
0.98〉. Generally, the parameter n increases with growing 
angular velocity ω; at a higher circulation flow, n → 1,
which would fit the hyperbolic dependence. The para-
meter C shows a minimum at about ω = 2×10-3 rad/s. 
The values of both parameters in the calculations are 
presented in Table 1.
 Figure 8 provides the summarised results in the 3D 
presentation showing that the values of τFcrit are lower 
in the case of heating from above. This is an anticipated 
result as the bubble rising against the downward flow 
of the melt is slowed less when the angular velocity 
gradually decreases with the radius of the rotation of 
the melt. The impact of the melt angular velocity on the 
bubble-removal time is seen in Figure 9. The bubble-
removal times generally decrease with decreasing melt 
rotation velocity; nevertheless, the character of the 
dependence becomes more flattened at higher values 
of the bubble growth rates. As is evident, the value 
of τFcrit becomes almost independent of ω when the 
bubble-growth rate is greater than about 5×10-7 m/s. 
Consequently, in the region of intensive chemical fining, 
i.e. at relatively high bubble-growth rates, the character 
of the glass flow has only a minor influence on the fining 

Table 1.  The values of constants n and C as functions of ω0; the values are valid for cases of both constant values and those 
decreasing with the radius of the space.

   ω0
                                                  ω = k                                                ω = ω(r)

(rad/s) C n C n

1×10-3 2.59×10-3 ± 1.7×10-4 0.95539 ± 0.35×10-3 3.48×10-3 ± 4.9×10-4 0.91842 ± 7.15×10-3

2×10-3 2.17×10-3 ± 0.9×10-4 0.98468 ± 2.21×10-3 2.32×10-3 ± 2.2×10-4 0.95728 ± 4.86×10-3

4×10-3 2.70×10-3 ± 0.6×10-4 0.99200 ± 1.29×10-3 2.66×10-3 ± 1.8×10-4 0.96758 ± 3.57×10-3

1×10-2 4.02×10-3 ± 0.3×10-4 0.99556 ± 0.43×10-3 3.11×10-3 ± 0.7×10-4 0.98351 ± 1.24×10-3

Figure 7.  The calculated values of τFref and τFcrit for the case of 
the value of ω decreasing with radius (heating from above). 
The values of τFcrit were calculated for ω0 = 1×10-3, 2×10-3, 
4×10-3 and 1×10-2 rad/s.

Figure 8.  The summarizing dependence of the values of τFcrit 
on the bubble growth rate and the initial angular velocity of the 
melt for cases of both constant and with the radius of the melt 
rotation decreasing angular velocity.
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efficiency. In continuous glass melting, however, the 
character of the glass flow always distinctly improves or 
damages the bubble removal process [6, 8]. As is evident 
from equation (1), the results of bubble modelling may 
also be presented in terms of the utilisation of the melting 
space. An illustration of the dependence between u and 
the bubble-growth rate is presented in Figure 10. The 
values of u for the given initial rotation velocity of the 
melt and initial bubble radius should go to zero at  and 
approach 1 at high values of ȧ. Figure 10 confirms that 
the space is almost fully utilised for the bubble-removal 
process when ȧ = 10-6 m/s and higher.
 This work presents the application of the simple 
abstract model to describe the real process, and the 
question of the quantitative validity of the results is 
therefore relevant. The proposed model is easy to solve, 
provides almost instantaneous results yet involves only 
the principal features of the discontinuous melting 
process. It follows that some characteristics are not 
included - e.g. the time-dependent values of the melt 
angular velocity or the exact relation between the applied 
temperature gradient and the resulting angular velocity 
of the melt. The viscosity and density of the model 
TV glass were applied in this work, but no substantial 
changes should be expected when using other glass 
values. Nevertheless, some conclusions will be verified 
by a numerical modelling.

CONCLUSION

 The following qualitative conclusions may be 
drawn from the results of the simplified modelling of the 
discontinuous glass melting (in pot furnaces):
- the fining time of critical bubbles (the smallest bubble 

demonstrating the maximum time of rising to the 
glass level) in the vertical rotation field of glass melt 

decreases approximately hyperbolically with the in-
creasing bubble-growth rate. The minimum fining 
time is attained for the quiescent melt. Hence, good 
chemical fining is significant in both quiescent and 
rotating melts,

- the fining time of the critical bubbles decreases with 
the decreasing angular velocity of the melt. The im-
pact of glass-flow character on the fining process 
becomes negligible at bubble-growth rates higher than 
about 5×10-7 m/s. This value represents the currently 
achievable value of the bubble-growth rate when 
applying the appropriate temperature and fining agent,

- the heating of the melt from above with the temperature 
maximum in the centre of the level shows lower values 
of fining times in comparison with the case of heating 
through the wall, where the temperatures are the 
highest close to the wall,

a) b)

Figure 9.  The values of the critical fining time, τFcrit, as a function of the melt angular velocity, ω; a) The constant value of ω, 
heating through the wall, the bubble-growth rates: 2×10-8, 5×10-8, 1×10-7 and 5×10-7 m/s; b) The value of ω decreasing with the 
radial coordinate, the bubble-growth rates: 2×10-8, 5×10-8, 1×10-7 and 2×10-7 m/s.

Figure 10.  The utilisation of the space for bubble removal 
against the bubble-growth rate in the case of heating through 
the wall, ω0 = 1×10-3 rad/s.
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- the growing temperature supports both fining and flow 
intensity. Nevertheless, the increase in fining intensity 
given by the bubble-growth rate is more relevant for 
the fining process; therefore, higher temperatures are 
preferred. 

 Previous calculations have answered the question 
of why the relatively large bubbles are observed in the 
pot furnaces, reaching the glass level even during later 
stages of the glass fining, although their rising velocity 
should be very high; the long fining times are caused by 
their rotation trajectories evoked by natural convection 
of glass in the pot furnace.
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