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Recent work on the elastic constants of plagioclase feldspars is reviewed. Based on the 21 elastic constants (stiffnesses) 
reported in the literature for triclinic plagioclase monocrystals of different composition, the effective elastic constants of 
dense, single-phase, polycrystalline plagioclase aggregates with isotropic microstructure are calculated via standard Voigt-
Reuss-Hill averaging. Master curves show the good agreement of the constants obtained via the two approaches (experiment 
and simulation) and recall the fact that values reported in the older literature have been underestimated. Fit relations are 
given for the calculation of Young’s modulus, shear modulus, bulk modulus, Poisson ratio and density in dependence of the 
composition. These fit relations may serve as handy tools for obtaining relevant input information for the calculation of 
effective elastic constants of multiphase ceramics produced with Ca and Na containing raw materials.

INTRODUCTION

 Plagioclases, a series of tectosilicate minerals 
within the feldspar family with a composition between 
albite (NaAlSi3O8) and anorthite (CaAl2Si2O8), are the 
most common rock-forming minerals in the Earth’s crust 
[1]. Plagioclases occur as common phases in certain 
ceramics, especially in traditional ceramics prepared 
with calcium-containing raw materials. The majority 
of ceramic floor tiles (i.e. porcelain stoneware) are 
prepared by using natural felspathic sands as fluxing and 
tempering raw materials, and thus plagioclase crystals 
are one of the main constituents of the finished product 
[2]. Plagioclases can also crystallize if secondary 
raw materials (such as scrap glasses) are used [3, 4]. 
Traditional wall tiles (i.e. double-firing tiles) are often 
produced with calcite (CaCO3) or wollastonite (CaSiO3), 
which increases the strength of green tiles [5-9] due to 
its needle-like shape [10, 11] in a similar way as fiber 
reinforcements in composites. During firing, calcite and 
wollastonite react with other components, and calcium is 
available for the formation of anorthite or, if sodium is 
present, other plagioclases. 
 It is clear that in order to calculate the effective 
properties of multiphase materials the properties of 

each phase must be reliably known. In particular, 
the calculation of the elastic constants of statistically 
isotropic multiphase ceramics must be based on the 
elastic constants of the corresponding statistically iso-
tropic dense polycrystalline single-phase materials. 
However, these constants for the polycrystalline mate-
rials are often not reliably known from experiments, 
either due to presence of residual porosity or due to the 
fact that pure polycrystalline materials are not always 
available. Therefore, reliable elastic constants for the 
individual phases can only be calculated from the elastic 
tensor components (stiffness matrix components) of the 
corresponding monocrystals.
 Although to the best of our knowlegde the elastic 
constants of plagioclase feldspars have not been treated 
in the context of ceramics so far, fortunately a good 
deal of work has been done in geoscience, because of 
the importance of plagioclases as rock-forming minerals 
and the significance of the highly abundant plagioclase-
containing rocks in the context of seismology [12, 13]. 
In particular, the elastic constants of plagioclase mono-
crystals of different composition have been investigated 
both experimentally [14-18] and by simulation [19]. 
That means the complete information to calculate 
effective elastic constants of the corresponding dense 
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polycrystalline materials is in principle available. 
However, due to the traditional focus on seismological 
applications, all these papers provide averaged values 
only for the bulk and shear moduli and the sound 
velocities, not for the Young’s modulus and Poisson 
ratio, which are the most important material properties 
from the viewpoint of applications in materials science, 
especially ceramics. Therefore in the present paper the 
most relevant recent results concerning elastic properties 
of plagioclase monocrystals are summarized (and 
compared to older data), Young’s moduli and Poisson 
ratios are calculated as Voigt-Reuss-Hill averages and 
fitted master curves are given for the handy calculation 
of effective elastic constants of isotropic dense 
polycrystalline plagioclase materials in dependence of 
the anorthite content.                 

RESULTS AND DISCUSSION

From monocrystal data to
effective elastic constants

 Plagioclases are triclinic, therefore 21 independent 
elastic constants (stiffnesses) or elastic coefficients (com-
pliances) are required to describe the elastic behavior 
of plagioclase monocrystals [20]. Until recently, the 
only data available for plagioclases of different com-
position (9, 53 and 58 mol. % of anorthite, denoted 
An09, An53 and An58, respectively) were 13 constants 
determined via ultrasonic velocity measurements for 
polysynthetically twinned (and thus pseudomonoclinic) 
crystal aggregates rather than true monocrystals [14-16].  

These values, although frequently cited and used in seis-
mology [12, 13], were based on an inadequate evaluation 
scheme (as shown in [17]), are prone to large uncertainties 
and have been estimated to be too low by approximately 
10 %, probably mainly due to microcracks in the 
plagioclase samples used [21]. More recent experimental 
data have been obtained via impulsive stimulated light 
scattering (ISLS) [22] for albite [17] and plagioclases of 
different anorthite content (25, 37, 48, 60, 78 and 96 mol. 
%) [18]. Even more recently, ab initio calculations based 
on density functional theory (DFT) [23,24] have been 
performed for albite (An0), andesine/labradorite (An50) 
and anorthite (An100) [19], and generally good agree-
ment with the aforementioned recent experimental data 
has been found.
 Tables 1 and 2 list the room temperature elastic 
constants E (Young’s modulus = tensile modulus), 
G (shear modulus), K (bulk modulus = compressive 
modulus) and ν (Poisson ratio) of dense single-phase, 
isotropic polycrystalline plagioclase aggregates, as cal-
culated from the monocrystal elastic constants (stiffness 
and compliance matrix components based on [17-19]) 
via a standard Voigt-Reuss-Hill averaging procedure 
[25, 26]. The indices (subscripts) V, R and VRH that 
have been added to the symbols of the elastic moduli 
in these tables denote the Voigt bounds (calculated from 
the stiffnesses), Reuss bounds (calculated from the com-
pliances) and Voigt-Reuss-Hill averages (i.e. the arith- 
metic means of the two aforementioned quantities), 
respectively. The symbol Δ has been used to denote the 
deviation of the VRH average from the extreme values 
(i.e. the Voigt and Reuss bounds). Poisson ratios have 

Table 1.  Adiabatic elastic constants E (Young’s modulus) [GPa], G (shear modulus) [GPa], K (bulk modulus) [GPa] and ν (Poisson 
ratio) [dimensionless] of dense single-phase isotropic polycrystalline plagioclase aggregates and their end members albite (An0) 
and anorthite (An100), calculated from monocrystal elastic constants (based on the simulation results reported in [19]) via a 
standard Voigt-Reuss-Hill averaging procedure [25, 26]; for the shear and bulk moduli of An50 (LDA 1) a calculation error in [19] 
has been tacitly corrected here.

Plagioclase type An0  An0 An0  An0  An50  An50  An50  An100 

DFT approximation LDA GGA LDA LDA LDA LDA LDA LDA
Structural model  1 1 2 3 1 2 3 1
Density [g∙cm-3] 2.62 2.62 2.62 2.62 2.68 2.68 2.68 2.77
EVRH 84.2 92.0 80.9 79.8 93.3 93.1 92.1 99.1
EV 94.1 100.7 91.7 89.2 100.9 99.9 100.2 107.9
ER 74.2 83.3 70.1 70.3 85.7 86.3 83.9 90.3
ΔE 10.0 8.7 10.8 9.5 7.6 6.8 8.1 8.8
GVRH 33.8 36.0 32.3 32.4 36.5 36.5 35.9 38.3
GV 38.1 39.7 37.0 36.7 39.8 39.5 39.5 41.9
GR 29.6 32.3 27.5 28.2 33.2 33.6 32.4 34.6
ΔG 4.3 3.7 4.8 4.3 3.3 3.0 3.5 3.6
KVRH 55.0 68.9 55.3 49.5 70.7 68.8 70.6 80.5
KV 59.5 72.3 58.4 52.4 72.8 70.6 72.6 84.2
KR 50.5 65.5 52.3 46.5 68.5 66.9 68.6 76.8
ΔK 4.5 3.4 3.1 3.0 2.4 1.8 2.0 3.7
ν 0.245 0.277 0.255 0.231 0.280 0.274 0.282 0.295
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been calculated from the VRH averages of the elastic 
moduli via elasticity standard relations [20]. For the 
monocrystal data themselves the reader should refer 
to the original papers [17-19]. Both data sets concern 
adiabatic elastic constants, but the difference of adiabatic 
and isothermal elastic constants is negligibly small, viz. 
smaller than 1 % [17], similar as in the case of simple 
oxides [27].
 The simulation results are based on either the local 
density approximation (LDA) [28] or the generalized 
gradient approximation (GGA) [29]. The former is used 
in connection with three different structural variants for 
albite (An0) and plagioclase An50, taking into account 
different degrees of disorder, more precisely the Al 
arrangements within the tetrahedral sites [19]. For albite, 

model LDA 1 corresponds to ideally ordered albite (with 
Al occupying only specific types of tetrahedral sites), 
while models LDA 2 and LDA 3 correspond to albites 
with increasing disorder (with Al occupying partially all 
types of tetrahedral sites). For An50, models LDA 1 and 
LDA 2 correspond to an Al arrangement with lowest and 
higher energy, while model LDA 3 takes into account 
the effect caused by interchanging Na and Ca. The 
generalized gradient approximation (GGA) has been 
used only for ideally order albite.
 Figures 1 through 4 show the elastic constants 
E (Young’s modulus), G (shear modulus), K (bulk 
modulus) and ν (Poisson ratio) of dense, single-phase, 
isotropic polycrystalline plagioclase aggregates in 
dependence of the anorthite content (in mol. %). 

Table 2.  Adiabatic elastic constants E (Young’s modulus) [GPa], G (shear modulus) [GPa], K (bulk modulus) [GPa] and ν (Poisson 
ratio) [dimensionless] of dense single-phase isotropic polycrystalline plagioclase aggregates and their end members albite (An0) 
and anorthite (An100), calculated from monocrystal elastic constants (based on the experimental data reported in [17, 18]) via a 
standard Voigt-Reuss-Hill averaging procedure [25, 26].

Plagioclase type An0  An0 An25  An37  An48  An60  An78  An96  

EVRH 88.8 88.8 89.8 96.4 98.4 96.6 97.7 101.8
EV 101.7 102.0 99.4 106.3 108.7 104.9 105.7 109.8
ER 75.8 75.6 80.3 86.6 88.2 88.3 89.8 93.8
ΔE 13.0 13.2 9.6 9.9 10.2 8.3 8.0 8.0
GVRH 35.5 35.6 35.2 37.9 38.4 37.6 37.7 39.1
GV 41.2 41.4 39.4 42.3 42.9 41.2 41.1 42.4
GR 29.8 29.8 31.1 33.5 33.9 34.0 34.3 35.7
ΔG 5.7 5.8 4.2 4.4 4.5 3.6 3.4 3.4
KVRH 59.5 58.6 66.7 70.9 75.8 75.4 80.4 86.4
KV 63.7 63.1 69.2 73.0 77.6 77.0 82.4 88.7
KR 55.2 54.0 64.3 68.8 74.1 73.9 78.3 84.1
ΔK 4.3 4.5 2.4 2.1 1.8 1.6 2.0 2.3
ν 0.250 0.247 0.275 0.273 0.283 0.286 0.297 0.303

Figure 1.  Effective Young’s modulus of dense, single-phase, 
isotropic polycrystalline plagioclase aggregates in dependence 
of the anorthite content (in mol. %); simulation results by 
Kaercher et al. [19] (full triangles), experimental data by 
Brown et al. [17,18] (full squares) and Ryzhova [15] (empty 
squares) and fit curve based on [17-19].
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Figure 2.  Effective shear modulus of dense, single-phase, 
isotropic polycrystalline plagioclase aggregates in dependence 
of the anorthite content (in mol. %); simulation results by 
Kaercher et al. [19] (full triangles), experimental data by 
Brown et al. [17, 18] (full squares) and Ryzhova [15] (empty 
squares) and fit curve based on [17-19].
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Shown are the simulation results by Kaercher et al. [19] 
(full triangles), the recent experimental data by Brown 
et al. [17,18] (full squares) and, for the purpose of 
comparison, the old experimental data by Ryzhova [15] 
(empty squares). 
 It is evident that the simulation results (Kaercher) 
are in good agreement with the recent experimental data 
(Brown), while the old experimental data (Ryzhova) are 
significantly lower, especially for the Young’s modulus 
and shear modulus, and slightly higher for the Poisson 
ratio. Therefore the latter have been discarded, and only 
the simulation results and recent experimental data have 
been fitted by second-order polynomials (non-linear 
regression using MS Excel®). Denoting the anorthite 
content (in mol. %) as CAn, the master curves obtained 
for the elastic constants (moduli in GPa and Poisson ratio 
dimensionless) are 

 E = 86.2 + 209.0×10-3∙CAn – 0.7×10-3∙CAn
2,

 G = 34.5 + 62.7×10-3∙CAn – 0.2×10-3∙CAn
2,

 K = 58.1 + 324.2×10-3∙CAn – 0.7×10-3∙CAn
2,

 ν = 0.2511 + 0.7×10-3∙CAn – 0.003×10-3∙CAn
2.

 These relations can be used to generate indispensible 
input information in future calculations of the effective 
elastic properties of multiphase ceramics, in particular 
silicate ceramics produced with Ca-containing raw 
materials where plagioclase is a typical constituent phase 
of the microstructure. Using these relations, the effective 
elastic constants of dense polycrystalline single-phase 
materials with isotropic microstructure can be calculated, 
as soon as the Ca-content of the plagioclase is known, e.g. 
from energy-dispersive spectrometry or electron-probe 
microanalysis. Subsequently these values, together with 

the corresponding values for the other phases and the 
volume fractions of all phases, can be inserted e.g. into 
the Voigt and Reuss bounds for multiphase materials, 
also called Paul bounds [30, 31], in order to calculate 
the effective elastic constants of dense polycrystalline 
multiphase materials with isotropic microstructure.  
 In order to calculate the volume fractions from the 
mass fractions usually determined via quantitative X-ray 
diffraction phase analysis also the theoretical densities 
of all crystalline phases (and also the true density of the 
glass phase, if present) must be known. The theoretical 
density (in g∙cm-3) of plagioclase is very well known 
[1, 19] and its dependence of the anorthite content  (in 
mol. %), see Figure 5, can be expressed as  

 ρ = 2.62 + 1.1×10-3∙CAn + 3.0×10-6∙CAn
2.

Figure 3.  Effective bulk modulus of dense, single-phase, iso-
tropic polycrystalline plagioclase aggregates in dependence 
of the anorthite content (in mol. %); simulation results by 
Kaercher et al. [19] (full triangles), experimental data by 
Brown et al. [17, 18] (full squares) and Ryzhova [15] (empty 
squares) and fit curve based on [17-19].
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Figure 4.  Effective Poisson ratio of dense, single-phase, iso-
tropic polycrystalline plagioclase aggregates in dependence 
of the anorthite content (in mol. %); simulation results by 
Kaercher et al. [19] (full triangles), experimental data by 
Brown et al. [17, 18] (full squares) and Ryzhova [15] (empty 
squares) and fit curve based on [17-19].
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Figure 5.  Theoretical density (in g∙cm-3) of plagioclase as a 
function of the anorthite content (in mol. %); classical literature 
data based on experimental measurements (empty circles) [1] 
and recent simulation results (full circles) [19].
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CONCLUSIONS AND SUMMARY

 Recent work on the elastic constants of plagioclase 
feldspars has been reviewed. Based on the 21 elastic 
constants (stiffnesses) obtained experimentally by 
Brown et al. (using impulsive stimulated light scattering) 
and via computer simulation by Kaercher (using den-
sity functional theory) and reported in the literature for 
triclinic plagioclase monocrystals of different compo- 
sition, the effective elastic constants of dense, single-
phase, polycrystalline plagioclase aggregates with iso- 
tropic microstructure have been calculated via the 
standard Voigt-Reuss-Hill averaging procedure. Master 
curves obtained by fitting with second-order polynomials 
show the good agreement of the constants obtained via 
the two approaches (experiment and simulation) and 
recall the fact that values reported in the older literature 
(Ryzhova) have been underestimated. Fit relations are 
given for the calculation of Young’s modulus, shear 
modulus, bulk modulus, Poisson ratio and density in 
dependence of the composition. These fit relations may 
serve as handy tools for obtaining relevant input infor-
mation for the calculation of effective elastic constants 
of multiphase ceramics produced with Ca and Na 
containing raw materials.
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