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A quantum model solving the charge carrier mobility between polyacetylene-like polymer nanorods is presented. The model 
assumes: a) Quantum mechanical calculation of hole on-chain delocalization involving electron-phonon coupling leading to 
the Peierls instability, b) Hybridization coupling between the polymer backbone and side-groups (or environmental states), 
which act as hole traps, and c) Semi classical description of the inter-chain hole transfer in an applied voltage based 
on Marcus theory. We have found that mobility resonantly depends on the hybridization coupling between polymer and 
linked groups. We observed also non-trivial mobility dependences on the difference of energies of the highest occupied 
molecular orbitals localized on the polymer backbone and side-groups, respectively, and hole concentration. Those findings 
are important for optimization of hybrid opto-electronic devices.

INTRODUCTION 

	 Organic semiconductors keep going on attracting 
our attention due to their some very good intrinsic 
properties allowing device performance tuning as well 
as fabrication for industry concerns [1]. Meanwhile, 
some existing limitations in their properties reduce the 
performances of the device applications, e.g., low carrier 
mobility and short lifetime [2-3]. In general, in ideal 
molecular devices people suppose the carriers transport 
along the backbone of the molecular chains [4]. Actually, 
the disordered structures of polymers make this ideal limit 
hard to achieve because the structures are rather twining 
[5]. For real systems the charge transport in the bulk is 
rather controlled by the hopping mechanism between 
polymer chains [6] inside segments of „crystalline-like“ 
domains.  
	 In this article we present a study of charge carrier 
mobility in acetylene-like systems [7] within the Su-
Schrieffer-Heeger (SSH) model [8]. We assume that 
for each monomer unit (site) there is just one unpaired 
electron. For neutral polymer chain consisting of N sites 
there are 2N available states due to the spin degeneracy, 
but only N electrons. Therefore, in the ground state the 
band is half-filled. Moreover, electron-phonon coupling 
breaks the symmetry of the length of bonds leading to 
the Peierls instability (bond alternation). Our model 
additionally assumes that each monomer unit is coupled 

to environment, (e.g., side groups) which allows a charge 
transfer, i.e., hybridization of the backbone [9]. Those 
environmental states can also represent surface states 
linked to charge transporting channel in optoelectronic 
devices. The main goal of this article is to study the 
influence of this hybridization coupling on charge 
carrier mobility in such polyacetylene-like systems as it 
provides insight to the basic processes in functionalized 
optoelectronic devices. 

MODEL

Inter-chain transport of charges

	 The mobility μ of the charge carrier in a polymer 
crystal domain consisting of π-stacked layers (lamellas) 
as shown in Figure 1 is dominantly controlled in the bulk  
by the hopping between chains in the longest direction 
and therefore it is calculated in the following way. We 
have taken into account a fixed number (in our case 20) 
of polymer lamellas in a “box” (corresponding to an el- 
bow of polymer chains in Fig. 1) and for the applied 
voltage as indicated in Figure 1 we have calculated 
self-consistently charge occupation probabilities of all 
eigenstates of all chains as well as charge transition rates 
between all chains. At the boundaries of the “box” we 
have assumed periodic boundary conditions. Then, the 
charge mobility was directly obtained from the formula
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,                    (1)

where d and E are the space distance between two nearest 
neighbor polymer layers and the intensity of the applied 
electric field, respectively; TAB and TBA are transition 
rates from layer A to the nearest neighbor layer B and 
vice versa. These transition rates form an ensemble 
of the transition probabilities between occupied and 
un-occupied states belonging to two nearest neighbor 
polymer layers, respectively. Thus the transition rate can 
be written as 

TAB = Σα∈A,β∈B f (Eα) (1 – f (Eβ))ναβ,                 (2)

where Eα (or f (Eα)) is the electron energy level (or 
charge occupation probability, respectively) of the α-th 
state of the polymer chain in the layer A; ναβ is the charge 
exchange rate from the state α of the polymer chain in 
layer A to the state β of the polymer chain in layer B. 
For the calculation of the charge exchange rate ναβ we 
employ the Marcus theory and its formula is written in 
the form

.           (3)

	 In this formula the charge exchange rate involves 
some quantum parameters: a) λ is the  reorganization 
energy given by the difference of equilibrium position of 
respective potentials for donor and acceptor states. This 
includes all vibrational modes not introduced below as 

well as depolarization field from the “cavity effects” and 
in conductive polymers can reach values in tenths of eV. 
b) Jαβ is the charge transfer integral between eigenstates 
α and β, which can be expressed as

Jαβ = Σn∈A,m b∈B Jnm Zαn Zβm δnm,                   (4)

where n and m are molecular site indexes in different 
polymer layers. The transfer integral in Eq. (4) is deter-
mined by the inter-chain transfer integral Jnm between 
local sites |cn〉 and |cm〉 on adjacent polymer chains and 
Zαn ≡ 〈α|cn〉 are on-chain orbital expansion coefficients of 
the α-th eigenstate into the basis of electronic states |cn〉 
located on individual repeat units (site representation). 
The expansion coefficient Zαn needs to be calculated 
from the eigenvectors of Hamiltonian and its square 
value means the probability of finding a carrier resi- 
ding in the α-th state at the site n. In our simulation 
below we assume constant inter-chain transfer integrals, 
i.e., Jnm = J.  

Quantum states of
the polymer chains

	 We assume that the electronic levels are dominantly 
controlled by the following Hamiltonian [9]. 

H = He + Hh .                            (5)

	 The first term in Eq. (5) He describes the on-chain 
delocalization of electronic states as well the electron-
phonon coupling in the framework of the semi-classical 
SSH model leading to the effect of the Peierls instability, 
where in the stable configuration the bond lengths alter, 
and can be written as follows

(6)
                                               .

where tn,n+1 = t0 – α(un+1 – un) + (-1)n te is the on-chain 
transfer integral between adjacent repeat units linearly 
dependent on their mutual distance (un+1 – un), t0 and α 
are the interaction constants, te describes alternation 
of tn,n+1 arising from the alternation of the inter-unit 
distances (un+1 – un) due to Peierls instability; ϵ0 is the 
highest occupied orbital energy of the isolated n-th repeat 
unit, which can be varied by the applied bias voltage; un 
is the displacement for the n-th molecule. The last term 
on the right side of Eq. (6) represents the spring potential 
with an effective spring constant Ks and the equilibrium 
inter-unit distance C. The second term Hh in Eq. (5) 
describes the hybridization coupling (charge transfer) 
between the polymer backbone and its side groups (or 
alternatively environmental states or additives)

Hh = Vp (Σn|cn〉〈dn| + h.c.) + Ep (Σn|dn〉〈dn|.        (7)

	 In Eq. (7) Vp determines energy of orbital hybridi-
zation (transfer integral) between states |cn〉 and |dn〉 

µ =     ΣA,B (TAB – TBA)d
E

ναβ =                       exp {–                        }
Jαβ
h √

2        (Eα – Eβ – λ)2

      4 λ kB T
    �
λkB T

He = Σn ∈0|cn〉〈cn| – Σn tn,n+1 (|cn+1〉〈cn| + h.c.) +       Σn (un+1 – un + C)2Ks
2

He = Σn ∈0|cn〉〈cn| – Σn tn,n+1 (|cn+1〉〈cn| + h.c.) +       Σn (un+1 – un + C)2Ks
2

Figure 1.  The polymer crystalline-like domain is constructed 
from many lamellar layers. The long polymer chain is perio-
dically warped to like a paper clip in each layer and many 
functional groups (represented by Y shape here) link to the 
polymer chain. The direction of the arrow line represents the 
direction of the carrier transport.
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located at the n-th repeat unit of the polymer backbone 
and its side group (substituent), respectively. The second 
term, Ep, represents the orbital energy of |dn〉 with respect 
to ϵ0. We set it to be a constant for all n sites. 
	 Eigenstates |α〉 of the Hamiltonian H (see Eq. (5)) 
and displacements un are calculated self-consistently, 
while the latter are obtained from the minimum position 
∂EG/∂un = 0 of the total ground energy EG ≡ Σα〈α|H|α〉 
f (α〉. In the last summation states |α〉 are weighted by 
their Fermi-Dirac distribution f (α〉. From this, we can 
determine Zαn ≡ 〈α|cn〉 needed for the estimation of the 
transfer integral (4), mean electronic densities nc and 
nd on polymer backbone and side groups, respectively, 
and also mean density of charge transfer Δn ≡ nc – nd 
between polymer and linked group. 
	 The model of charge transfer depicted above was 
formulated in the state space of electronic orbitals, the 
reformulation to the state space of holes is straightfor-
ward. For the polymers carrying N sites and mean con-
centration nh of holes in the limit of half-filled band, 
the electronic densities nc and nd are coupled by the 
constraint nc + nd = 2 – nh.
	 All the energy parameters in this paper are scaled in 
the unit of eV, moreover, the units of the e-ph coupling 
constant α and the spring constant Ks are eV/Å2 and 
eV/Å, respectively. The values of the parameters are 
t0 = 1.5, te = 0.1, α = 4.0 and Ks = 15.0. The former three  
parameters are chosen suitably for some general organic 
polymers and the relatively large value of Ks was used 
to model the stiff polymers [9]. The number of mole-
cular sites of a polymer chain in 30 and the number of 
lamellar layers in “the discrete box” is 20. The distance 
d between two nearest neighbour polymer layers is 
3.85 Å and the inter-chain transfer integral J = 0.01 
eV, which is a characteristic value for such distances. 
For applied electric voltage both local on-chain energy 
∈0 and energy level Ep of the state |dn〉 shifts with the 

electric field by the same amount. For the energy level 
Ep of attached groups we assume that it is of the order 
0.2 eV similarly as in Toman et al. [10]. For efficient 
charge transfer between monomer sites and side-groups, 
the values of the coupling interaction Vp should be of 
comparable values. Throughout the model calculation 
we have assumed the room temperature. 

RESULTS AND DISCUSSION

	 In our simulations we assumed that the electronic 
orbital levels of side groups Ep > 0, so that these groups 
are electron donor (hole acceptor) states and for holes 
moving along the polymer backbone those side groups 
act as trap states. In the simulation below, the limiting 
hole concentration nh → 0 corresponds to the case of 
half-filled band as for the sites |cn〉 and |dn〉, respectively, 
just one unpaired electron is available independently 
of its spin orientation. The Peierls instability of the 
polymer chain creates a depletion of density of states 
(DOS) in the middle of the band, promoting thus a 
formation of an “effective” gap, however, linked side-
groups significantly promote formation of localized 
states close to the middle of DOS. Consequently, for the 
limit of the half-filled band, the Fermi level EF is close 
to those localized states and the “hole” mobility will be 
significantly influenced by the hybridization coupling 
here. In Figure 2 we studied dependence of calculated 
mobility on the on-chain site–side group hybridization 
coupling Vp for low nh = 0.03 and mean nh = 0.1 hole 
concentration and for fixed value of the orbital energy 
Ep = 0.1 eV. We observe that the mobility provides 
a strong resonant amplification for relatively small 
coupling Vp ~ 0.03 eV. This may be explained as a result 
of competition between two different processes. For the 
first, in the limit of very strong hybridization coupling 

0 0.05 0.1 0.15 0.2 0.25 0.3

10

0

20

30

40

50

60

µ 
(c

m
2 /

V
s)

Vp

nh = 0.03 λ = 0.1
λ = 0.2
λ = 0.3
λ = 0.5

Figure 2.  The mobility dependence on the hybridization coupling Vp. The applied voltage Va = 0.5 V. The values of hole concentration 
nh = 0.1 (a), 0.03 (b), the reorganization energies λ (in eV) are depicted in the figure. The orbital energy of side groups is Ep = 0.1 eV.
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Figure 3.  Density of states calculated for different values of hybridization coupling Vp and hole concentration nh (see legend). The 
orbital energies of linked groups are Ep = 0.1 eV. 
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Vp, the electronic eigenstates |α〉 near the middle of DOS 
are strongly localized to some local site, i.e., |α〉 → |K〉. 
Then, Zαn ~ δnK and the transfer integral in (4) will be 
almost diagonalized Jαβ ~ δαβ. The product f (Eα)(1 – (Eα)) 
in (2) takes maximum value at f (Eα) = 1/2, i.e, Eα = EF. 
Consequently, near Fermi level practically only charge 
transfer between corresponding energy level occurs, 
which significantly lowers the charge mobility. Additio-
nally, increased hybridization coupling Vp between the 
site |K〉 and the adjacent side group will increase their 
local energy splitting √ Ep

2 + 4Vp
2, which pushes Fermi 

level from charge transporting DOS (cf. Figure 3), which 
in turn will significantly decrease the charge transfer. 
On the other hand, for the limit of very weak hybridiza-
tion coupling, the holes will be trapped in side-groups 
as Ep > 0. In Figure 4 we studied the mobility depen- 
dence on the orbital energy Ep of side-groups for fixed 
value of the hybridization coupling Vp = 0.1 eV. We 
observe that increase of the mobility happens for two 
different limiting values of the orbital energy Ep. For 
high values of Ep the local dimer energy splitting 
increases (cf. Figure 5), but Fermi level also increases 
(gets closer to the orbital level Ep) as the DOS near Fermi 
level becomes asymmetrical and the transfer integral in 
(4) can mutually couple more states, which effectively 
increases the charge mobility. For the opposite limit 
of Ep → 0 the “local dimer” energy splitting ~ 2Vp 
still exists, however, splitted (“+” and “–“) levels have 
the same occurrence probability (projection coeffi- 
cients) on the on-chain states so that both of them can 
participate in the inter-chain charge transfer. As for 
higher hole concentrations the overlap between DOS 
and probability of available states (“–“ levels) increa-
ses, we observe stronger increase of charge mobility 
for higher charge concentrations in the limit Ep → 0 (cf. 
Figure 4). Another important information is to study 
the measure of charge transfer density Δn = nc – nd 

between on-chain sites and linked groups as this quan-
tity controls the mean hole density 1 – nc on the poly- 
mer backbone by the relation 1 – nc = (nh – Δn)/2. In 
Figure 6 we studied the dependence of Δn on the 
hybridization coupling Vp (for fixed Ep = 0.1 eV) and 
orbital energy Ep (for fixed Vp = 0.1 eV) at various 
hole concentrations nh. We observed that for zero hole 
concentration the mean hole concentration on the poly-
mer backbone 1 – nc = (nh – Δn)/2 < 0, i.e., holes are 
trapped on side-groups for both dependences and the 
backbone is negatively charged. By careful inspection in 
Figure 6 we observe that for non-zero hole concentra-
tion such “negatively charged backbone” (Δn > nh) 
appears for higher values EP and lower values of Vp. 
This not necessarily means that for such cases the 
layers are “no longer hole transporting”, because 
such “negatively charged polymer backbones” appear 
equivalently on adjacent polymer lamellas, where the 
Fermi levels are increased in the same way. However, 
for the case of nh = 0.1 we see (cf. Figure 6, left) that 
for Vp < 0.05 eV the backbone becomes negative 
(Δn > nh) and for lower values of Vp this “negativity of 
the polymer backbone” increases and holes are trapped 
in the linked groups. This is correlated with very 
stronger decay of mobility for very small hybridization 
coupling in Figure 2. In Figure 6, left, we can also notice 
that for small values of Vp the backbone is “negative” 
(Δn > nh) for all hole concentrations, while for higher 
values of Vp the backbone is “negative” (Δn > nh) 
for lower hole concentrations and becomes “positive” 
(Δn < nh) for higher hole concentration, because linked 
groups are filled with holes. This is very correlated with 
profiles of mobility dependences on hole concentration 
shown in Figure 7 where we observe that for weak 
coupling VP the mobility only slightly decreases with 
hole concentrations, while for higher values of VP the 
mobility increases up with hole concentration up to some 
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Figure 4.  The mobility dependence on the orbital energy of linked groups Ep calculated for different reorganization energies λ 
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coupling Vp = 0.1 eV.
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Figure 5.  Density of states calculated for different values of energies Ep of side groups and hole concentration nh (see legend). 
The hybridization coupling Vp = 0.1 eV. 
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critical value due to the trap-filling and then it decreases 
for high hole concentration due to the Pauli exclusion 
principle. Generally, lower mobilities for higher values 
of the hybridization coupling VP were discussed above 
due to the effect of the on-chain charge localization 
accompanied by the reduction of charge transfer between 
corresponding energy levels. We also note slight “jags” 
in the mobility dependence, which are related to the 
discrete structure of density of states and its partially 
asymmetrical distribution. As the charge concentration 
gets to some critical value, the contribution of a particular 
level to the mobility can be promoted. However, the 
relative deviations in mobility due to these “jags” are 
less than 5 percent.

CONCLUSIONS

	 We have studied mobility dependences of the trans- 
versal hole transfer between stacks of conductive poly-
acetylene-like polymer lamellas in the limit of transi-
tion from the conductive to semiconductive phase 
due to the Peierls instability induced by the electron-
phonon coupling. The model also assumed hybridization 
coupling Vp of local monomer sites to linked groups with 
positive orbital energy Ep with respect to the monomer 
units of the polymer backbone. We have found that the 
charge mobility:
●	resonantly increases with small values of hybridization 

coupling Vp 
●	takes minimum value for some “moderate” value of 

the orbital energy Ep of linked group, but increases for 
high and low values of Ep.

●	slightly decreases with hole concentration for low 
values of hybridization coupling Vp, but takes maxi-
mum at some critical hole concentration for strong 
hybridization coupling Vp.

	 We find those conjectures important for chemistry 
design of organic optoelectronic devices as it provides an 
important insight to the problem how the hybridization 
coupling of the polyacetylene-like polymers controls 
the hole mobility. Namely, we have proved very strong 
sensitivity to those couplings. 
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Figure 7.  The mobility dependence on the hole concentration nh. The orbital energies of linked groups are Ep = 0.1 eV, the applied 
voltage Va = 0.5 V and the reorganization energy λ = 0.2 eV. The hybridization coupling Vp varies from the weak up to the strong 
limit as shown in figure legend.
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