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A generalized formulation of transformation matrices is given for the reconstruction of sphere diameter distributions from 
their section circle diameter distributions. This generalized formulation is based on a weight shift parameter that can be 
adjusted from 0 to 1. It includes the well-known Saltykov and Cruz-Orive transformations as special cases (for parameter 
values of 0 and 0.5, respectively). The physical meaning of this generalization is explained (showing, among others, that the 
Woodhead transformation should be bounded by the Saltykov transformation on the one side and by our transformation from 
the other) and its numerical performance is investigated. In particular, it is shown that our generalized transformation is 
numerically highly unstable, i.e. introduces numerical artefacts (oscillations or even unphysical negative sphere frequencies) 
into the reconstruction, and can lead to completely wrong results when a critical value of the parameter (usually in the range 
0.7 - 0.9, depending on the type of distribution) is exceeded. It is shown that this numerical instability is an intrinsic feature 
of these transformations that depends not only on the weight shift parameter value and is affected both by the type and the 
position of the distribution. It occurs in a natural way also for the Cruz-Orive and other transformations with finite weight 
shift parameter values and is not just caused by inadequate input data (e.g. as a consequence of an insufficient number of 
objects counted), as commonly assumed. Finally it is shown that an even more general class of transformation matrices can 
be defined that includes, in addition to the aformentioned transformations, also the Wicksell transformation.

INTRODUCTION

	 When simply connected objects are embedded in a 
microstructure, their size distribution can be defined and, 
in principle, determined. However, only in exceptional 
cases spatial (tomographic) images, e.g. in the form 
of discretized voxel models, are available from which 
the size distribution can be determined directly. Much 
more common in materials science is the situation that 
only planar sections are available. The question how 
to determine the diameter distribution of spherical and 
spheroidal inclusions or pores embedded in a three-
dimensional (3D) microstructure from the section 
circle diameter distribution on a two-dimensional (2D) 
planar cut through this microstructure has been for the 
first time correctly posed and answered by Wicksell in 
1925 and 1926 [1, 2]. Wicksell studied convex objects 
in biological tissues, but was fully aware of the implica-
tions of his results for other fields of science, including 
materials science and astronomy. Indeed, Wicksell’s 
random section problem for spherical or spheroidal 
inclusions in microstructures [1, 2], sometimes called 
“Wicksell’s corpuscle problem” (due to the biometric 

context in which Wicksell formulated it for the first 
time), is one of the classical problems of stereology. 
From the physical point of view the problem consists in 
reconstructing the 3D sphere diameter distribution from 
the 2D section circle diameter distribution, while from 
the mathematical point of view this so-called inverse 
problem consists in the approximate solution of an Abel-
type integral equation (or a Volterra integral equation of 
the first kind) [3, 4]. In his first paper on that topic [1] 
Wicksell proposed a correct approximate solution that 
could be applied to arbitrary frequency histograms and 
that could be expressed in the form of a simple universal 
transformation matrix. The practical application of his 
transformation matrix, however, was impeded by the 
fact that he used a rather awkward representation of his 
histograms by relating the individual columns or size 
classes (bins) to the interval midpoints, which required 
an extra treatment for the half-interval from zero to the 
lower limit of the first bin. In the sequel, Scheil [5], 
Schwartz [6] and Saltykov [7] reconsidered Wicksell’s 
random section problem for spheres and, based on 
Wicksell’s work, proposed an alternative transformation 
matrix applicable to histograms with full bins only, 
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starting from zero. This representation is common 
standard today. Saltykov’s work, on the other hand, was 
published first in Russian (in the second edition of his 
book “Stereometric Metallography” from 1958 [7]), 
and did not become available in a Western language 
until 1974 in the form of a German translation [8] of 
the third Russian edition [9] (a Czech translation of the 
second Russian edition [7] was published in 1968 [10]). 
This is the reason why Cruz-Orive in his 1976 paper 
[11] was obviously not aware of Saltykov’s work. In 
that paper and follow-up paper published in 1978 [12] 
Cruz-Orive developed another approximate solution of 
Wicksell’s random section problem for spheroids and 
derived a different transformation matrix for spheres, 
again for the aforementioned standard histograms (on 
which also Saltykov’s matrix is based). However, in 
contrast to Wicksell and Saltykov, Cruz-Orive suggested 
using the interval midpoints (and not their upper limits) 
of the sphere size classes for statistical weighting (see 
below). Independently, the result for spheres had been 
obtained before by Goldsmith in 1967 [13], but Cruz-
Orive, whose primary aim was to calculate size-shape 
distributions of spheroids (after having proved that the 
general triaxial ellipsoid problem is not only unsolvable 
but even indeterminate), was obviously not aware of 
that earlier work on spheres. Still another transformation 
matrix for spheres has been developed by Woodhead 
in 1980 or before. It seems that this matrix has never 
been published by Woodhead himself, but it is cited as a 
“private communication” in a more recent (2003) book 
by Higginson and Sellars [14] and corresponds to the 
transformation matrix derived (probably independently 
from Woodhead) by Blödner et al. in an appendix to 
their 1984 paper [15], assuming a “uniform distribution” 
within each sphere size class for the statistical weighting 
(instead of weighting the size classes by the interval 
midpoints, as Cruz-Orive did, or by the interval upper 
limits, as Saltykov did). All these transformations (called 
Saltykov, Cruz-Orive and Woodhead in the sequel) are 
based on the aforementioned standard representation 
of histograms and have been obtained as approximate 
solutions of the aforementioned inverse problem 
(Abel-type integral equation). Early discussions of this 
approach have been given by Underwood [16] and Lewis 
et al. [17]. Very recently all three transformations have 
been successfully used for reconstructing Rayleigh-
distributed grain size distributions in fully sintered 
ceramics [18]. Numerical aspects of the solution of 
Abel-type integral equations have been discussed by 
Anderssen and Jakeman in 1975 [19, 20], and a recent 
PhD thesis [21] proves that the numerical aspect of 
solutions to Wicksell’s random section problem is still 
a topic of immense interest. It has been reported in the 
literature several times [15, 22, 23], that the Cruz-Orive 
and Woodhead transformations lead to very similar 
results and that they are usually not “better” than the 
Saltykov transformation. On the contrary, they seem to 

be more prone to exhibit numerical instabilities which 
produce artefacts and may lead to errors (e.g. negative 
frequencies) in the reconstructed sphere size distributions. 
This problem will be more thoroughly investigated 
in a follow-up paper [24]. However, recalling all the 
aforesaid, it might be surprising why authors always 
used a statistical weighting using upper limit values, 
midpoints or assuming uniform distributions inside 
each size class and never considered the use of lower 
limit values for this purpose. Indeed this preference 
is not without reason, but this reason has never been 
explicitly stated, and it is well thinkable that the lower 
limit values are more representative of a size class, e.g. 
for the decreasing branch of a distribution. Therefore, in 
the present paper we propose a generalized formulation 
of the transformation matrix for reconstructing the 
sphere diameter distribution from the section circle 
diameter distribution. This generalized version contains 
the Saltykov and Cruz-Orive transformation matrices 
as special cases and should provide a bound also for 
the Woodhead transformation. By adjusting a weight 
parameter it can be fine-tuned in order to provide the 
most realistic representation of the size distribution to 
be expected, this giving room for further developments. 
It is, however, prone to numerical instability when the 
size class is weighted by a value too close to the lower 
limit. Based on a few paradigmatic examples, the critical 
values are indicated and it is shown how the numerical 
instability of this generalized transformation explains 
in a natural way the artefacts occurring in the Cruz-
Orive transformation. Albeit unusual, our formulation 
can be readily extended to include even the Wicksell 
transformation. Also this is shown.  

THEORETICAL BACKGROUND AND 
PRACTICAL CONSEQUENCES

	 The section circle diameter distribution is usually 
different from the sphere diameter distribution because of 
two reasons: First, the section circle diameters are almost 
always smaller than the sphere diameters; although the 
size class with largest section circles is the most frequent 
one, section circles with a diameter corresponding 
exactly to the sphere diameter occur with a probability 
of zero. Second, the probability of cutting isotropically, 
uniformly and randomly arranged spheres embedded in 
a microstructure by a random section plane is higher for 
large spheres than for small spheres; in particular, setting 
the probability of cutting a sphere of diameter D to 1 
(unity), the probability of cutting spheres of diameters 
2D, 3D, … jD by a random section plane is 1, 2, 3, … j, 
respectively. In his first memoir, Wicksell [1] pointed out 
that these two effects are counteracting and may partly 
or completely counterbalance each other. That means, in 
contrast to widespread belief, there is no reason to assume 
that the section circle diameter distribution is necessarily 
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shifted to smaller sizes compared to the sphere diameter 
distribution. And indeed there is a case where the two 
effects exactly counterbalance each other: the Rayleigh 
distribution. The frequency curve (probability density) 
of this one-parameter distribution is defined as [4]

,                     (1)

where x is either the sphere diameter D or the section circle 
diameter d, and the Rayleigh parameter a determines the 
distribution and all its characteristic values completely, 
e.g. the arithmetic mean x–  = a·√π/2. It has been used e.g. 
by Wicksell [1], Rysz and Wiencek [25] and Blödner 
et al. [15] to evaluate and compare the performance of 
reconstruction procedures. On the other hand, Drees and 
Reiss [26] have proved that the Rayleigh distribution is 
the only distribution with this property. Therefore it is 
justified to conclude reversely that if the transformation 
procedure leaves the section circle diameter distribution 
unchanged (or almost unchanged), the section circle 
diameter distribution is equal (or almost equal) to the 
original sphere diameter distribution and that this sphere 
diameter distribution equals (at least approximately) a 
Rayleigh distribution [18].
	 The practical application of transformation matrices 
is very simple, since frequency histograms of size classes, 
e.g. section circle or sphere diameters, can be considered 
as abstract i- or j-dimensional vectors, denoted as ni and 
Nj, respectively. In fact, ni  and Nj may also be considered 
as the number of section circles per unit area of the 
planar section and the number of spheres per unit volume 
in the respective size classes, in stereological standard 
notation denoted as NAi and NVj, respectively. When the 
size classes of spheres and section circles are chosen to 
be the same (which is common practice) the vector ni is 
related to the vector Nj a matrix transformation of the 
type

,                 (2)

where Δ is the interval width (which can be omitted when 
only relative frequencies, i.e. normalized frequency 
histograms are considered), the Einstein summation 
convention has been used (summation over adjacent 
repeated indices) and the summation symbol has been 
omitted. When the sphere diameter distribution, i.e. the 
vector Nj, is known (e.g. for a chosen model distribution 
in the form of a histogram), this relation can be used to 
calculate the vector ni, i.e. to construct the corresponding 
section circle distribution using the “section circle 
construction matrix”    

              (3)

for i ≤ j and Bij = 0 for i > j (expressing the fact that 
section circles cannot be larger than the spheres which 
are cut). It should be emphasized that Equation 3 is the 
only correct “section circle construction matrix”. It is 
derived by a procedure that is completely analogous to 

the procedure used by Saltykov [7-10]. When considered 
in greater detail it can be seen that Equation 3 is a 
product of two terms, one that allows the calculation of 
the probability density of section circle diameters di and 
di-1 for a given sphere diameter Dj [3],

                (4)

and one that takes into account the fact that larger sphe-
res have a higher probability to be cut at all. The latter 
effect is taken into account by a statistical weight factor 
for each sphere diameter. When section circles are to 
be obtained it is plausible that this weight factor is just 
the sphere diameter Dj itself, because for spheres with 
a diameter of 2Dj the probability to be cut by a random 
section plane is twice as high as for spheres with a 
diameter of Dj. It is clear, however, that the weight factor 
can also be any multiple of the sphere diameter Dj. In 
the section circle construction matrix these factors occur 
as the sums of the individual columns. For example, the 
sums of columns of the (4 × 4) section circle construction 
matrix calculated according to Equation 3, i.e.

               (5)

are 1, 2, 3 and 4, respectively. The inverse of the 
section circle construction matrix calculated according 
to Equation 3, i.e. the matrix Cij = Bij

–1, can be used to 
reconstruct the (initially unknown) sphere diameter 
distribution from the (directly measured) section circle 
diameter distribution according to the relation 

.                 (6)

	 When the section circle construction matrix Bij, i.e. 
Equation 3, is used to calculate the inverse matrix Cij, 
this is what is usually called the Saltykov transformation 
for the reconstruction of sphere diameter distributions. 
For example, the (4 × 4) matrix 

               (7)

is the Saltykov matrix for reconstructing a sphere dia-
meter distribution by transforming a section circle histo-
gram with 4 equally wide size classes, starting from 
zero, see [7-10]. 
	 The use of the Saltykov transformation amounts to 
weighting the size classes by their upper limit values. 
It is clear that this is not the only plausible way how 
this weighting can be done. Actually, from a physical 
point of view, when the sphere diameter distribution is 
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unknown, it would seem much more realistic in many 
cases to refer to the midpoints of the sphere size classes 
for weighting, as has been suggested by Cruz-Orive 
[11, 12]. In this case (Cruz-Orive transformation) 
the matrix for the reconstruction of sphere diameter 
distributions is the inverse of the matrix     

          for i < j,  (8a)

        (8b)

                                                    for i = j,

and Bij = 0 for i > j. It is evident that the shift from the 
upper limit value to the midpoints for weighting each 
sphere size class is realized by the numerical value 1/2. 
For example, the (4 × 4) matrix Bij is  

,      (9)

and the sums of the matrix elements in the columns are 
0.5, 1.5, 2.5 and 3.5, respectively. It should be noted that, 
although the formal status of the matrix in Equations 8 
and 9 is the same as of that in Equations 3 and 5, its 
physical meaning is not. In particular, in contrast to first, 
the latter is not a section circle construction matrix.    
	 One may now ask the question whether the shift of 
the weight factor may take another value between 0 and 
1/2 and whether it might go even beyond the value 1/2. 
The answer to both questions is in principle yes. This 
leads us to suggest the following generalized version of 
the matrix Bij:

          for i < j,  (10a)

(10b)
                                                                for i = j,

and Bij = 0 for i > j. It is evident that in the cases α = 0 
and α = 0.5 the Saltykov and Cruz-Orive matrices, 
Equations 3 and 8, are regained, respectively. By chan-
ging the weight shift parameter α from 0 to values 
approaching unity (α → 1) the whole range of possible 
choices is covered. Weight shift parameter values larger 
than 0.5 shift the weight towards the lower limit value 
of the size class, which should be more realistic e.g. for 
distributions (frequency histograms) that are steeply 
decreasing with increasing size. Equation 10 thus gives 
rise to a rather general class of transformations that 

include the Saltykov and Cruz-Orive transformations as 
special cases and provide bounds also for the Woodhead 
transformation, for which weighting is based on the 
assumption of a uniform distribution within each size 
class and which in practice requires the inverse of the 
matrix [14, 15]

,                            (11a)

,             (11b)

 for i < j     (11c) 

and Bij = 0 for i > j. Realizing the aforementioned physical 
meaning, it is not very surprising that this Bij matrix is 
similar to the Bij matrix calculated from Equation 8. In 
particular, the corresponding (4 × 4) matrix Bij is  

,     (12)

and the sums of the matrix elements in the columns are 
again 0.5, 1.5, 2.5 and 3.5, respectively.
	 For reasons of comparison we also provide the 
(4 × 4) matrix Bij for our generalized matrix Bij and 
a weight shift parameter α = 0.999 (this value is ob-
viously very close to unity and thus shows the numerical 
behavior of our matrix when the weighting tends towards 
the lower limit value of the size classes). The matrix in 
this case is

.    (13)

	 In this case the sums of the matrix elements in the 
columns are 0.001, 1.001, 2.001 and 3.001, respectively. 
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	 The corresponding inverse matrices for the Cruz-
Orive transformation, Woodhead transformation and our 
generalized transformation with a weight shift parameter 
α = 0.999 are

,      (14)

,       (15)

,   (16)

respectively. If desired, all these matrices can be nor- 
malized by dividing each matrix element by the nume- 
rical value in the left top corner, i.e. B11 or C11, respec-
tively. It is evident that the upper left corners of these 
matrices exhibit a checkerboard pattern of positive and 
negative values, in contrast to the Saltykov matrix, 
Equation 7, where all the diagonal elements are positive, 
while all the non-diagonal elements are negative. 
This, together with the increasing difference between 
neighboring matrix elements, is clearly one of the rea-
sons why these matrices exhibit an increasingly larger 
tendency to statistical instability and the formation of 
numerical artefacts compared to the Saltykov matrix. 
This tendency increases as the weight shift parameter 
α increases from zero (Saltykov transformation) to unity. 
While for α values up to 0.5 (Cruz-Orive transformation) 
the difference between neighboring matrix elements is 
still relatively small and thus relatively good stability can 
still be expected, there is obviously a strong nonlinear 
increase in these differences for α values exceeding a 
critical range. In the next section we will investigate 
this transition from the ”safe” range of α values to the 
critical range beyond which the transformation leads to 
completely wrong results.
	 We would like to emphasize that histograms with 
only 4 size classes and thus also (4 × 4) matrices are of 
course not very useful in practice. Here they serve only 
for the purpose of illustration and mutual comparison. 
Using Equations 3, 8, 10 and 11 it is straightforward to 
calculate the corresponding matrices for an arbitrary 
number of size classes in any common table calculator 
(e.g. MS Excel®) and perform the inversion of these 
matrices whenever desired. Most common are histograms 
with up to 15 size classes. The (4 × 4) matrices given 
in this paper represent the upper left corner of these 

matrices and may thus serve as a short check that the 
calculation formulae have been correctly inserted.    
	 Finally we note in passing that, tacitly correcting 
a few misprints in Wicksell’s paper [1], the Bij matrix 
leading to the Wicksell transformation [3] is 

          for i < j,    (17a)

(17b)

                                                              for i = j,

and Bij = 0 for i > j. Due to Wicksell’s unusual repre-
sentation of the histogram, with the first full interval 
starting at the midpoint of the first size class instead 
of zero, it is necessary to add ad hoc definitions for the 
values in the first line of this matrix. These are B00 = 1/4 
and 

                  (17c).

	 It is evident that the numerical value ½ is responsible 
for shifting the size class position by half an interval 
width. Thus, introducing a second parameter (position 
shift parameter) β it would be straightforward to extend 
our general matrix formula to include also Wicksell’s 
matrix. A basic condition that must be fulfilled for this 
matrix to be defined is α + β < 1. However, although 
in principle also this parameter can be changed from 0 
to 1, it is useful to adhere to the convention to fix this 
parameter always to a value of 1, which is tantamount 
with the commonly used standard representation of 
histograms today. Therefore, instead of giving here 
this purely formal extension, we give – for reasons of 
completeness – the (4 × 4) matrices Bij and Cij of the 
Wicksell transformation, which are 

.    (18)

(column sums 0.25, 1, 2 and 3, respectively) and 

,        (19)

	 The Wicksell transformation can e.g. be used 
when the data are available in the form of a histogram 
that starts from the midpoint of the first interval; in this 
case (where the first line and the first column should 
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be eliminated) it replaces the Saltykov transformation. 
The Wicksell transformation should generally not be 
used with histograms in the standard representation, 
i.e. starting from zero. A Wicksell-type analogue of the 
Cruz-Orive transformation is not defined, because when 
α = β = 0.5 the aforementioned condition α + β < 1 is 
not fulfilled.  

PERFORMANCE OF OUR GENERALIZED
TRANSFORMATION MATRIX

	 In this section we investigate the performance of our 
generalized transformation matrix with different values 
of the weight shift parameter α from 0 to 0.999 when 
applied to different model distributions (paradigmatic 
examples): Monodisperse, bidisperse, linear (triangular) 
increasing, uniform (rectangular), linear (triangular) 
decreasing and Rayleigh. In a first step a section circle 
diameter distribution has been constructed from a given 
sphere diameter distribution using Equation 1 and the 
section circle construction matrix defined via Equation 
3. Then, in a second step, transformation matrices with 
a different value of the weight shift parameter α are 
applied in an attempt to reestablish (reconstruct) the 
original sphere diameter distribution. The number of size 
classes (bins) used in all examples is 15, but in some of 
the examples several bins are empty.
	 The three-dimensional figures (labeled “b”) show 
the attempts of reconstructing the sphere diameter 
distribution (shown in the front x-y plane) in dependence 
of the weight shift parameter (in z direction). A weight 
shift parameter value of α = 0 corresponds to the Saltykov 
transformation (i.e. Equation 6 together with the inverse 
of Equation 3), which exactly restores the original sphere 
diameter distribution, because it is exactly the inverse 
of Equation 2 combined with Equation 3, by which the 
section circle distribution has been constructed. A weight 
shift parameter value of α = 0.5 corresponds to the 
Cruz-Orive transformation (i.e. Equation 6 together with 
the inverse of Equation 8). In all these figures the x-y 
planes show discrete cumulative distribution “curves”, 
representing the corresponding histograms via the upper 
limit values of their size classes. The two-dimensional 
graphs (labeled “a”) show the corresponding discrete 
frequency distribution “curves” (also representing histo-
grams via the upper limit values of their size classes).
	 Figures 1a (frequencies) and 1b (cumulative num-
bers) refers to a monodisperse sphere size distribution 
consisting of a single size class (all spheres are assumed 
to have a size of 7.5 µm, i.e. all lie in the interval 7 - 8 µm 
and their arithmetic mean diameter is 7.5 µm). It is 
evident that the reconstruction fails completely, i.e. shifts 
the section circle diameter distribution into the wrong 
direction, when the weight shift parameter value is α = 
= 0.8 or higher. In this case the reconstruction process 
goes into the wrong direction and – apart from exhibiting 

large oscillations (numerical instability), overshoots to 
positive and even negative unphysical values – shifts 
the distribution histogram towards zero, i.e. the original 
sphere diameter distribution cannot be reconstructed at 
all. When the weight shift parameter value is α = 0.7 
and lower, the reconstruction shows at least a qualitative 
similarity with the original sphere size distribution, 
although the oscillations are still large (numerical insta-
bility) and both positive and negative overshoots still 
occur. The latter are characteristic also for the Cruz-Orive 
transformation (α = 0.5) and are completely eliminated 
only for the Saltykov transformation (α = 0). 
	 Figures 2a and 2b refer to a bidisperse sphere size 
distribution consisting of two size classes (one class with 
2.5 µm diameter spheres and one with 11.5 µm spheres, 
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Figure 1.  Monodisperse sphere diameter distribution (7-8 
µm, arithmetic mean 7.5 µm) and its reconstruction by the 
generalized transformation with weight shift parameter values 
between 0 and 0.9; a) frequency histograms, b) cumulative 
histograms.
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arithmetic mean 7 µm). Also in this case the reconstruction 
fails completely or is very bad when α > 0.7. For values 
α = 0.7 and lower, the reconstruction shows all qualitative 
features of the Cruz-Orive transformation (α = 0.5), 
including numerical artefacts, which are eliminated only 
for the Saltykov transformation (α = 0).
	 Figures 3a, 3b, 4a and 4b all refer to increasing 
linear (triangular saw-tooth) distributions, Figures 3a 
and 3b starting with the size class 1-2 µm and ending 
with the size class 10 - 11 µm (arithmetic mean 7.5 µm), 
Figures 4a and 4b starting with the size class 2 - 3 µm and 
ending with the size class 11 - 12 µm (arithmetic mean 
8.5 µm). In both cases the reconstruction fails comple-
tely or is very bad when α ≥ 0.8 and relatively good when 

α ≤ 0.7. However, in the first case (Figures 3a and 3b) the 
cumulative curves approach the Cruz-Orive and Saltykov 
transformation results in a monotonous way from abo-
ve, whereas in the second case the transformation with 
α = 0.8 exhibits unphysical overshoots to negative 
numbers, obviously as a consequence of the numerical 
instability of transformations with such high weight 
shift parameter values, and for α ≥ 0.8 approach the 
Cruz-Orive and Saltykov transformation results in a mo-
notonous way from below. 
	 In the case of decreasing linear (triangular saw-
tooth) distributions starting with the same size class 
ranges as above (arithmetic means 4.5 µm and 5.5 µm, 
respectively, see Figures 5a, 5b, 6a and 6b), the situa-
tion is similar, but with the two cases reversed: the re-
construction fails completely or is very bad when α ≥ 0.8 
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Figure 2.  Bidisperse sphere diameter distribution (2-3 µm and 
11-12 µm, arithmetic mean 7 µm) and its reconstruction by the 
generalized transformation with weight shift parameter values 
between 0 and 0.9; a) frequency histograms, b) cumulative 
histograms.

Figure 3.  Increasing linear (triangular saw-tooth) sphere dia- 
meter distribution from interval 1-2 µm to interval 10-11 µm, 
arithmetic mean 7.5 µm) and its reconstruction by the genera-
lized transformation with weight shift parameter values between 
0 and 0.9; a) frequency histograms, b) cumulative histograms.

b) cumulative histograms b) cumulative histograms

a) frequency histograms a) frequency histograms
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and relatively good when α ≤ 0.7. However, in the first 
case (Figures 5a and 5b) the cumulative curves approach 
the Cruz-Orive and Saltykov transformation results in 
a monotonous way from below, exhibiting unphysical 
overshoots to negative numbers, whereas in the second 
case the Cruz-Orive and Saltykov transformation results 
are approached in a monotonous way from above. In 
the case of decreasing linear distributions, in contrast to 
increasing linear distributions, negative overshoots are 
exhibited also by the Cruz-Orive transformation. Only 
the Saltykov transformation is free of these effects in this 
case. The example of two similar distributions differing 
only by their starting point, clearly shows that the beha-

vior of numerically unstable transformations cannot be 
easily predicted and that general statements about their 
behavior should be made with utmost caution.
	 Figures 7a and 7b refer to a uniform (rectangular) 
sphere size distribution that exhibits a constant frequen-
cy between the size classes 2 - 3 µm and 11 - 12 µm (arith-
metic mean 7 µm), see Figure 7a. The corresponding 
cumulative numbers exhibit a linear increase, see Figure 
7b. Curiously, in this case the reconstruction fails 
completely or is very bad only for transformations with 
α ≥ 0.9, while already transformations with α ≤ 0.8 are 
numerically very stable and approach the Cruz-Orive and 
Saltykov transformation results rather closely. The same 
conclusion holds for the Rayleigh distribution example 
shown in Figures 8a and 8b (arithmetic mean 6.108 µm).  
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Figure 4.  Increasing linear (triangular saw-tooth) sphere dia-
meter distribution from interval 2-3 µm to interval 11-12 µm, 
arithmetic mean 8.5 µm) and its reconstruction by the genera-
lized transformation with weight shift parameter values between 
0 and 0.9; a) frequency histograms, b) cumulative histograms.

Figure 5.  Decreasing linear (triangular saw-tooth) sphere dia- 
meter distribution from interval 1-2 µm to interval 10-11 µm, 
arithmetic mean 4.5 µm) and its reconstruction by the genera-
lized transformation with weight shift parameter values between 
0 and 0.9; a) frequency histograms, b) cumulative histograms.

b) cumulative histograms b) cumulative histograms

a) frequency histograms a) frequency histograms
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SUMMARY AND CONCLUSIONS

	 In this paper a generalized formulation of trans- 
formation matrices has been proposed for the recon-
struction of sphere diameter distributions from their 
section circle diameter distributions. This generalized 
formulation is based on a weight shift parameter α that 
can be adjusted from 0 to 1. It includes the well-konwn 
Saltykov and Cruz-Orive transformations as special cases 
(for parameter values of α = 0 and α = 0.5, respectively). 
The transformation exploits the fact that larger spheres 
embedded in a microstructure have a higher probability 
to be cut by a random plane (planar section) than 
smaller spheres, but allows for the possibility that the 
center of inertia of the size class is not its upper limit 

value (Saltykov) or its midpoint (Cruz-Orive), but 
can be closer to the lower limit value α → 1. It seems 
plausible that this possibility should not be excluded a 
priori, because it could be more adequate e.g. for the 
decreasing branches of frequency curves or histograms. 
Moreover, when both extreme cases (α = 0 and α → 1) 
are considered it is clear that not only the Cruz-Orive 
transformation, but also the Woodhead transformation, 
which assumes a uniform distribution inside each sphere 
size class, should be somewhere inside the two extreme 
cases. However, our investigation of paradiagmatic 
examples has shown that our generalized transforma-
tion is numerically highly unstable, i.e. will introduce 
numerical artefacts (oscillations or even unphysical 
negative sphere frequencies) into the reconstruction, 
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Figure 6.  Decreasing linear (triangular saw-tooth) sphere dia- 
meter distribution from interval 2-3 µm to interval 11-12 µm, 
arithmetic mean 5.5 µm) and its reconstruction by the genera-
lized transformation with weight shift parameter values between 
0 and 0.9; a) frequency histograms, b) cumulative histograms.

Figure 7.  Uniform (rectangular) sphere diameter distribution 
from interval 2-3 µm to interval 11-12 µm, arithmetic mean 
7 µm) and its reconstruction by the generalized transforma-
tion with weight shift parameter values between 0 and 0.9; 
a) frequency histograms, b) cumulative histograms.

b) cumulative histograms b) cumulative histograms

a) frequency histograms a) frequency histograms
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and can lead to completely wrong results when a critical 
value of the parameter (usually in the range 0.7 - 0.9, 
depending on the type of distribution) is exceeded. It 
has been shown that the mentioned numerical instability 
is an intrinsic feature of these transformations that 
depends not only on the weight shift parameter value 
and is affected both by the type and the position of the 
distribution. It occurs in a natural way also for the Cruz-
Orive and other transformations with finite weight shift 
parameter values and is not just caused by inadequate 
input data (e.g. as a consequence of an insufficient 
number of objects counted), as commonly assumed. 
Finally it has been shown that an even more general class 
of transformation matrices can be defined that includes, 
in addition to the aforementioned transformations, also 
the Wicksell transformation.
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Figure 8.  Rayleigh distribution of sphere diameters with (arith- 
metic mean theoretical 6.15452 µm, arithmetic mean from his-
togram 6.10845 µm) and its reconstruction by the generalized 
transformation with weight shift parameter values between 0 
and 0.9; a) frequency histograms, b) cumulative histograms.
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