

EFFECTS OF NANO-ZrO₂ ADDITIVE ON THE PHASE TRANSFORMATION AND DENSIFICATION OF ZrO₂–MgAl₂O₄ CERAMICS PREPARED BY SINGLE-STAGE SRS PROCESS

YARAN ZHANG*, [#]BEIYUE MA*, CHANG SU*, JINGKUN YU*, GUANGQIANG LI**, QIANG ZHU***

*School of Metallurgy, Northeastern University, Shenyang 110819, PR China **The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, PR China ***Electron Microscope Unit, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW 2032, Australia

[#]E-mail: maby@smm.neu.edu.cn

Submitted June 25, 2017; accepted July 2, 2017

Keywords: MgAl₂O₄, Nano-ZrO₂, Reaction sintering, Phase transformation, Densification

A series of ZrO_2 –MgAl₂O₄ ceramics with additions of 0; 2.5; 5.0; and 7.5 wt. % nano-ZrO₂ were successfully fabricated at 1580°C for 4 h from powders of commercial Al₂O₃ and calcined MgO by single-stage solid state reaction sintering (SRS) method. Effects of nano-ZrO₂ additive on the phase compositions, microstructures and bulk density of the ceramics were investigated. Nano-ZrO₂ additive was found to remarkably promote the sintering densification and improve the microstructure of the ceramics. Uniform, dense and fine microstructures are obtained, and the mean grain size of MgAl₂O₄ particles is about 2 μ m. The as-prepared ceramics mainly consist of MgAl₂O₄ and c-ZrO₂ (cubic-Ca_{0.15}Zr_{0.85}O_{1.85}), due to the reaction between Al₂O₃ and MgO as well as the nano-ZrO₂ additive and CaO stabilizer. The formation process of the ceramics mainly includes the synthesis of MgAl₂O₄ and the conversion process of m-ZrO₂ to c-ZrO₂ under the stabilizing action of CaO.

INTRODUCTION

Magnesium aluminate spinel (MgAl₂O₄) has been attracted much attention due to its excellent properties such as high melting point, high strength, high hardness, low thermal expansion coefficient, good chemical inertness, good wear resistance and thermal shock resistance, and has been widely used in many fields including metallurgy, cement, glass and ceramic industries [1, 2].

With the development of above industrial technologies, MgAl₂O₄ based ceramics have received a great deal attention to meet the demand of high temperature service environment. Numerous preparation methods have been developed, such as reaction sintering [3], spark plasma sintering [4], hot pressing sintering [5], microwave sintering [6], and molten salt method [7], etc., among which reaction sintering is regarded as one of the most promising and popular process due to its simple operation and easy access of raw materials such as magnesite and bauxite [8] for example. MgAl₂O₄ ceramic with high density are very difficult obtained by a single-stage reaction sintering process because the formation of spinel from oxides mixture usually companies a volume expansion of about 8 % during the reaction [9]. A two-stage reaction sintering process is often adopted in order to solve this problem. The formation of spinel is completed at a lower temperature at the first stage, and then a sintering (or densification) process is conducted at the second stage. However, like other synthesis process mentioned above two-stage reaction sintering process suffers from expensive production cost and complexity.

To prepare the dense $MgAl_2O_4$ based ceramics, some oxide additives such as ZrSiO₄ [10-12], TiO₂ [13], SiO₂ [13], CaCO₃ [13], Cr₂O₃ [14], Dy₂O₃ [15], Sm₂O₃ [16], Y_2O_3 and Nb_2O_5 [17] have been chosen, and the spinel formation, densification, microstructure, etc., were found to be remarkably improved. Addition of ZrSiO₄-3 mol. % Y₂O₃ reduced the size of MgO grains, improved the bulk density, fracture toughness and thermal stress parameters of MgO-MgAl₂O₄ ceramics [10]. SiO₂ and CaCO₃ additives enhanced the densification of MgAl₂O₄ ceramic due to the formation of glassy phases in grain boundary region, and addition of TiO₂ remarkably improved the densification of the ceramic because of the formation of $TiAl_2O_5$ in grain boundaries and inside grains [13]. Cr_2O_3 additive was found to restrict the strength degradation after thermal shock for the stoichiometric MgAl₂O₄ ceramic [14]. Dy₂O₃ additive prevented the exaggerated grain growth and benefited to the sintering densification of MgAl₂O₄ ceramic [15]. Additions of Sm₂O₃ [16], Y₂O₃ and Nb₂O₅ [17] were reported to effectively improve the densification and cold compressive strength of MgAl₂O₄ ceramic in our previous work.

So far, to our knowledge, there are few reports on the improvement of sintering densification and microstructure of ZrO_2 –MgAl₂O₄ ceramics by addition of ZrO_2 [18-20], especially nano-ZrO₂. In this study, a series of ZrO_2 –MgAl₂O₄ ceramics doped with various amounts of nano-ZrO₂ were fabricated from commercial Al₂O₃ and calcined MgO by the single-stage SRS method. Effects of nano-ZrO₂ additive on the phase compositions, microstructures and densification behavior of ZrO₂–MgAl₂O₄ ceramics were investigated. The preparation process of the ceramics was also discussed.

EXPERIMENTAL

Materials

Table 1 lists the raw materials used for the fabrication of ZrO_2 -MgAl₂O₄ ceramics in this study.

Preparation of sample

The chemical reaction of $MgAl_2O_4$ from Al_2O_3 and MgO is shown in Equation 1.

$$Al_2O_3(s) + MgO(s) = MgAl_2O_4(s)$$
 (1)

In order to prepare stoichiometric MgAl₂O₄, commercial Al2O3 and calcined MgO powders was weighted according to a molar ratio of 1:1. Nano-ZrO₂ was chosen as additive and its addition amounts were designed as 0; 2.5; 5.0 and 7.5 wt. %, which were marked as Z0, Z1, Z2 and Z3, respectively. CaO was used as a stabilizer for monoclinic phase ZrO₂ (m-ZrO₂) to form CaO partially stabilized ZrO₂, namely cubic phase (c-ZrO₂) in as-sintered ZrO₂-MgAl₂O₄ ceramics, and the addition amount of CaO stabilizer was calculated according to $nCaO:n(CaO+ZrO_2) = 60$ mol. %. The powders containing above raw materials and additives were milled for 3 h in a planetary ball mill with alcohol as a medium. The as-milled powders were fully dried at 120°C, and they were pressed at 200 MPa to form a series of samples with size of ϕ 15 mm × 12 mm. Finally, the as-formed samples were all sintered at 1580°C for 4 h in air. The specific sintered system is as follows: the samples were heated from room temperature to 1000°C through a rate of 8°C·min⁻¹, and further heated to 1300°C through a rate of 5°C·min⁻¹, followed by a rate of 3°C·min⁻¹ to 1580°C and held for 4 h, and then cooled to 1000°C through a rate of 10°C·min⁻¹, and finally the samples were aircooled to room temperature.

Characterization of sample

 ZrO_2 -MgAl₂O₄ ceramic samples were taken out after cooling at room temperature. The surface of samples was polished, and scanning electronic microscope attached with energy dispersive spectrometry (SEM-EDS) was used to observe the microstructures and to measure micro area compositions of samples. Meanwhile, X-ray diffraction (XRD) was employed to examine the phase compositions of samples.

The bulk densities of the samples with addition of various amounts of nano- ZrO_2 were measured in water under vacuum using Archimedes' principle and calculated by Equation 2 [21].

$$D_{\rm b} = \frac{m_{\rm l} d}{m_{\rm s} - m_{\rm 2}} \tag{2}$$

where D_b is the bulk density of as-sintered samples (g·cm⁻³), m_1 is the mass of a dried sample in air (g), m_2 is the mass of the sample in water (g), m_3 is the mass of the sample with free bubbles on the surface (g), and d is the density of water (1.0 g·cm⁻³).

RESULS AND DISCUSSION

Phase transformation

Figure 1 shows XRD patterns of as-prepared ZrO_2 -MgAl₂O₄ ceramic samples doped with 0; 2.5; 5.0 and 7.5 wt. % nano-ZrO₂ and sintered at 1580°C for 4 h. It was clearly found that ZrO_2 additive has a great influence on the phase compositions of as-synthesized ZrO_2 -MgAl₂O₄ samples. For the undoped sample Z0, MgAl₂O₄ is formed, and Al₂O₃ and MgO phases are not

Table 1. Chemical compositions and mean particle size of raw materials.

Raw materials		Commercial Al ₂ O ₃	Calcined MgO	Chemical reagent CaO	Chemical reagent nano-ZrO ₂
	Al ₂ O ₃	98.66	0.26	_	_
	MgO	-	95.32	_	-
Chemical	CaO	_	1.10	99.99	_
composi-	ZrO_2	_	_	_	99.99
tions	SiO ₂	0.02	2.89	_	_
(wt. %)	Fe ₂ O ₃	0.02	0.43	_	_
	Na ₂ O	0.30	_	_	_
	Loss of ignition	1.00	_	_	-
Mean particle size (µm)		≤ 44	≤ 74	44	0.05

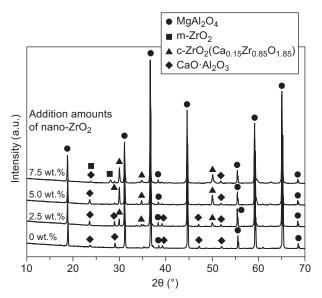


Figure 1. XRD patterns of as-prepared ZrO_2 -MgAl₂O₄ ceramic samples doped with various amounts of nano- ZrO_2 and sintered at 1580°C for 4 h.

detected. It reveals that during the sintering process, the chemical reaction between Al₂O₃ and MgO completely occurs at 1580°C for 4 h. Besides MgAl₂O₄, CaO·Al₂O₃ is also detected, and it is a reactive product of CaO and Al₂O₃, and its peak intensity is very low. When 2.5 wt. % nano-ZrO₂ was added, great changes in the phase compositions of sample Z1 happens. A new phase, c-ZrO₂ $(Ca_{0.15}Zr_{0.85}O_{1.85})$, which is a solid solution between ZrO_2 and CaO stabilizer, is observed in sample Z1. It can be seen that the peak intensity of c-ZrO₂ in sample Z2 (5.0 wt. % nano-ZrO₂) increases. The main crystalline phases of samples Z1 and Z2 all are c-ZrO₂ and $MgAl_2O_4.$ In the sample Z3 with addition of 7.5 wt. %nano-ZrO2, a new phase, m-ZrO2, is formed. It shows that a small amount of nano-ZrO2 cannot form the ZrO₂-CaO solid solution due to the lack of CaO stabilizer in sample, and the peak intensity of m-ZrO₂ is also very weak. Hence, ZrO₂-MgAl₂O₄ ceramics containing c-ZrO₂ can be successfully fabricated at 1580°C for 4 h from the powders of Al₂O₃, MgO, CaO and nano-ZrO₂ by the single-stage SRS method.

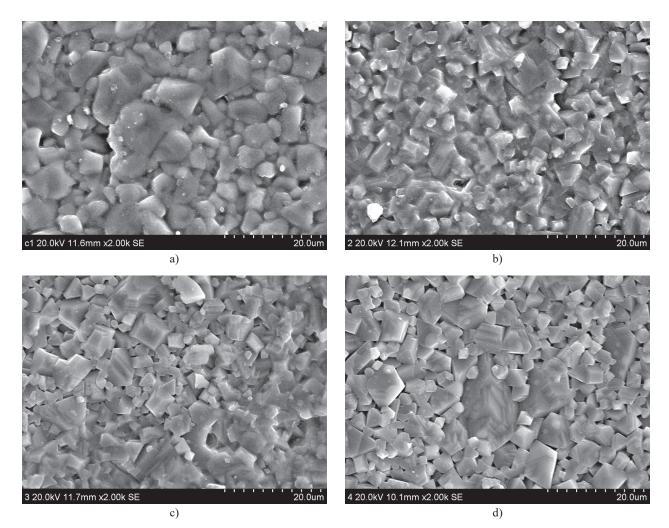


Figure 2. SEM images of as-prepared ZrO_2 -MgAl₂O₄ ceramic samples doped with: a) 0 wt. %, b) 2.5 wt. %, c) 5.0 wt. % and d) 7.5 wt. % nano-ZrO₂ and sintered at 1580°C for 4 h.

Microstructures

Figure 2 shows SEM images of as-prepared ZrO_2 --MgAl₂O₄ ceramic samples doped with 0; 2.5; 5.0 and 7.5 wt. % nano-ZrO₂ and sintered at 1580°C for 4 h. Nano-ZrO₂ additive was found to remarkably improve the

microstructures of the ceramics. For the undoped sample Z0 (Figure 2a), $MgAl_2O_4$ particles exist as granular shape. Their mean particle size is about 5 µm, and their grain sizes range from 1 to 10 µm. When 2.5 wt. % ZrO₂ was doped (Figure 2b), uniform and compact microstructure of sample Z1 is formed. The mean grain size of

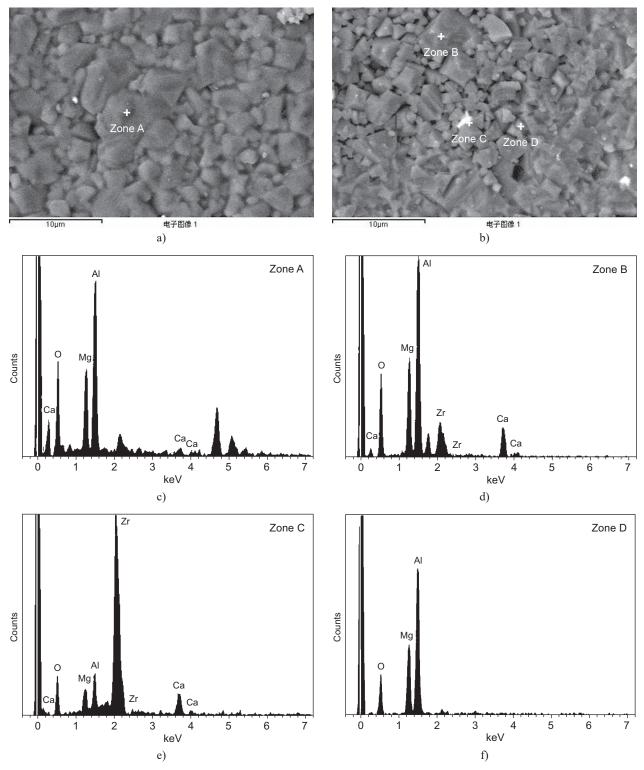


Figure 3. Back-scattering photos of as-prepared ZrO_2 -MgAl₂O₄ ceramic samples doped with: a) 0 and b) 5.0 wt. % nano- ZrO_2 and sintered at 1580°C for 4 h, and EDS patterns of zones A, B, C and D shown in Figure 3a, b.

MgAl₂O₄ particles is dramatically decreased to about 2 μ m, and they exist as prismatic shape. It attributes to the introduction of the nano-ZrO₂. When the doping amount of nano-ZrO₂ was further increased to 5.0 wt. % and 7.5 wt. % (Figures 2c, d), respectively, the microstructures of samples Z2 and Z3 are all improved compared with that of the sample Z0. Thus, nano-ZrO₂ additive is favorable for improving the microstructures of ZrO₂–MgAl₂O₄ ceramics.

Figure 3 shows back-scattering photos and EDS spectrums of as-synthesized ceramics doped with 0 and 5.0 wt. % nano-ZrO₂ respectively and sintered at 1580°C for 4 h. A large numbers of dark gray particles in the undoped sample Z0 consist of Al, Mg, O and Ca elements. Combining with XRD patterns shown in Figure 1, these gray particles are concluded as MgAl₂O₄–CaAl₂O₄ composite body (Figure 3a). The observed gray and big particles in sample Z2 are composed of Al, Mg, O, Ca and Zr elements, and they are MgAl₂O₄-Ca_{0.15}Zr_{0.85}O_{1.85} composite body (Figure 3b). Moreover, white and small particles are c-ZrO₂ (Ca_{0.15}Zr_{0.85}O_{1.85}) (Figure 3c), and dark gray and small particles are MgAl₂O₄ (Figure 3d).

Bulk density

Figure 4 shows the effect of nano-ZrO₂ additive on the bulk density of as-prepared ZrO₂–MgAl₂O₄ ceramic samples sintered at 1580°C for 4 h. It is clearly observed that adding ZrO₂ greatly affects the bulk density of samples. With increasing the addition amount of ZrO₂, the bulk density increases gradually. The bulk density of undoped sample Z0 is $3.15 \text{ g}\cdot\text{cm}^{-3}$. When 2.5 wt. % ZrO₂ was added (sample Z1), the bulk density sharply increases to $3.20 \text{ g}\cdot\text{cm}^{-3}$. Further increase of ZrO₂ addition amount to 5.0 wt. % (sample Z2) and 7.5 wt. % (sample Z3), the bulk densities steadily increases to 3.22 and $3.23 \text{ g}\cdot\text{cm}^{-3}$, respectively.

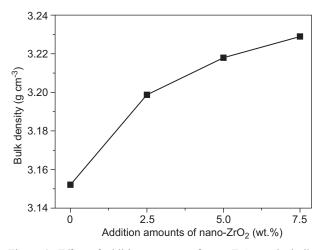


Figure 4. Effect of addition amounts of nano-ZrO₂ on the bulk density of as-prepared ZrO_2 -MgAl₂O₄ ceramic samples sintered at 1580°C for 4 h.

Ceramics - Silikáty 62 (1) 1-7 (2018)

During the sintering process of MgO-MgAl₂O₄ ceramics containing ZrO₂ additive, Zr⁴⁺ goes into MgO lattice to form a ZrO2-MgO solid solution, which creates mag-nesium ion vacancies in MgO crystals, and then the formed vacancies accelerate the oxygen ion diffusion to produce dense spinel products at over 1500°C [18]. Another study also indicated that ZrO₂ additive can improve the sinterability of MgAl₂O₄ by accelerating the oxygen ion diffusion [22]. In this study, the density is increased due to the addition of nano-ZrO₂ (Figure 4). Moreover, when nano-ZrO₂ was added to the MgAl₂O₄ based ceramics, nano-ZrO2 grains mostly exist at grain boundaries of MgAl₂O₄ particles (Figure 3), which controls grain growth, accelerates the oxygen ion diffusion through the grain boundaries, and thus promotes the sintering process [18].

Thermodynamic analysis of formation process

During the preparation process of $\text{ZrO}_2\text{-MgAl}_2\text{O}_4$ ceramics, the following chemical reactions maybe occur. Main reactions for producing $\text{ZrO}_2\text{-MgAl}_2\text{O}_4$ ceramics are shown in Equations 3 and 4. The relationship expressions between standard Gibbs free energy (ΔG^{θ} , J·mol⁻¹) and temperature (*T*, K) are as follows [23, 24].

$$Al_2O_3(s) + MgO(s) = MgAl_2O_4(s)$$
(3)
$$\Delta G_3^{\theta}/J \cdot mol^{-1} = -23\ 604 - 5.91\ T/K\ (T = 1\ 023 - 1\ 973\ K)$$

$$0.15 \text{ CaO}(s) + 0.85 \text{ ZrO}_2(s) = \text{Ca}_{0.15} \text{Zr}_{0.85} \text{O}_{1.85}(s)$$
(4)

CaO (s) + ZrO₂ (s) = CaO·ZrO₂ (s) (4')

$$\Delta G_{4'}^{\theta}$$
/J·mol⁻¹ = -39 300 + 0.42 *T*/K (*T* = 298 - 2 273 K)

 $3 \text{ CaO} (s) + \text{Al}_2\text{O}_3(s) = 3 \text{ CaO} \cdot \text{Al}_2\text{O}_3(s)$ (5) $\Delta G_5^{\,\theta}/\text{J} \cdot \text{mol}^{-1} = -12 \ 600 - 24.69 \ T/\text{K} \ (T = 773 - 1 \ 808 \ \text{K})$

$$CaO(s) + Al_2O_3(s) = CaO \cdot Al_2O_3(s)$$
(6)

 $\Delta G_6^{\theta} / \text{J·mol}^{-1} = -18\ 000 - 18.83\ T/\text{K}\ (T = 773 - 1\ 878\ \text{K})$

CaO (s) + 2 Al₂O₃ (s) = CaO·2Al₂O₃ (s) (7)

$$\Delta G_7^{\theta}$$
/J·mol⁻¹ = -16 700 - 25.52 *T*/K (*T* = 773 - 2 023 K)

$$CaO(s) + 6Al_2O_3(s) = CaO \cdot 6Al_2O_3(s)$$
(8)
$$\Delta G_8^{\theta}/J \cdot mol^{-1} = -16\ 380 - 37.58\ T/K\ (T = 1\ 373 - 1\ 873\ K)$$

Figure 5 shows $\Delta G^{\theta} - T$ curve for Al₂O₃-MgO– -CaO–ZrO₂ system plotted according to reactions 3–8 and their relationship expressions between ΔG^{θ} and T. In this study, the experimental temperature is 1 580°C (1853 K), so the ΔG^{θ} values at 1 853 K (dash line in Figure 5) ordered by size are $\Delta G_8^{\theta} < \Delta G_7^{\theta} < \Delta G_6^{\theta} <$ $< \Delta G_{4^{\theta}}^{\theta} < \Delta G_3^{\theta}$, and they are all negative. It reveals that reaction 8 easily occurs according to the relational thermodynamic. However, reaction 3 is the most difficult to generate. It is important noted that reaction 4 is replaced by reaction 4' due to the lack of thermodynamic data of reaction 4. Moreover, the ΔG_5^{θ} value of T > 1808 K cannot be calculated due to the thermodynamic expression is used in *T* between 773 and 1808 K, so the curve of reaction 5 at T > 1808 K is plotted as dotted line.

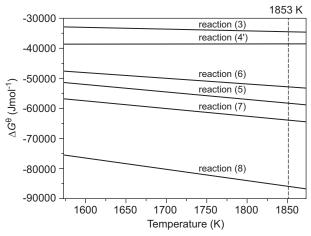


Figure 5. Change curves of $\Delta G^{\theta} - T$ for Al₂O₃-MgO-CaO-ZrO₂ system.

It is clearly observed from the XRD patterns shown in Figure 1 that the main crystalline phases involve MgAl₂O₄ and c-ZrO₂ (Ca_{0.15}Zr_{0.85}O_{1.85}), which are produced by reactions 3 and 4. Cubic-ZrO₂ (Ca_{0.15}Zr_{0.85}O_{1.85}) is formed due to the presence of CaO stabilizer. Moreover, CaO also reacts with Al₂O₃ in raw materials to form CaAl₂O₄ secondary crystalline phase by reaction 6. In the present work, other CaO–Al₂O₃ compounds such as 3CaO·Al₂O₃, CaO·2Al₂O₃ and CaO·6Al₂O₃ are not detected.

In a word, the formation process of ZrO_2 –MgAl₂O₄ ceramics includes the formation of MgAl₂O₄ and the conversion process of m-ZrO₂ into c-ZrO₂ under the action of CaO stabilizer.

CONCLUSIONS

- A stoichiometric MgAl₂O₄ spinel with a bulk density of 3.15 g·cm⁻³ can be prepared following a singlestage SRS process at 1 580°C for 4 h from a powder mixture of commercial Al₂O₃ and calcined MgO.
- The introduction of nano-ZrO₂ can remarkably promote the sintering densification of ZrO₂–MgAl₂O₄ ceramics and improve the microstructures, and dense ceramics with bulk density of 3.23 g·cm⁻³ were successfully prepared when sintered at 1 580°C for 4 h.

- The as-prepared ZrO₂-MgAl₂O₄ ceramics mainly include MgAl₂O₄ and c-ZrO₂ (cubic-Ca_{0.15}Zr_{0.85}O_{1.85}) phases. The mean grain size of MgAl₂O₄ particles is about 2 μm.
- The formation process of ZrO₂-MgAl₂O₄ ceramics includes the production of MgAl₂O₄, and the conversion of m-ZrO₂ to c-ZrO₂ under the stabilizing action of CaO.

Acknowledgements

This project was financially supported by the Fundamental Research Funds for the Central Universities (Grant no. N150204021), and the Open Research Fund for the State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology (Grant no. G201705).

REFERENCES

- Zhang S.W., Jayaseelan D.D., Bhattacharya G., Lee W.E. (2006): Molten salt synthesis of magnesium aluminate (MgAl₂O₄) spinel powder. *Journal of the American Ceramic Society*, *89*(5), 1724-1726. doi: 10.1111/j.1551-2916. 2006.00932.x
- Fernández B., Almanza J.M., Rodríguez J.L., Cortesd A., Escobedo J.C., Gutiérrez J. (2011): Corrosion mechanisms of Al₂O₃-MgAl₂O₄ by V₂O₅, NiO, Fe₂O₃ and vanadium slag. *Ceramics International*, *37*(8), 2973-2979. doi: 10.1016/j. ceramint.2011.05.118
- Tsai W.C., Liou Y.H., Liou Y.C. (2012): Microwave dielectric properties of MgAl₂O₄–CoAl₂O₄ spinel compounds prepared by reaction-sintering process. *Materials Science and Engineering: B, 177*(13), 1133-1137. doi: 10.1016/j.mseb.2012.05.023
- Benaissa S., Hamidouche M., Kolli M., Bonnefont G., Fantozzi G. (2016): Characterization of nanostructured MgAl₂O₄ ceramics fabricated by spark plasma sintering. *Ceramics International*, 42(7), 8839-8846. doi: 10.1016/j. ceramint.2016.02.130
- Zaki Z.I., Mostafa N.Y., Rashad M.M. (2012): High pressure synthesis of magnesium aluminate composites with MoSi₂ and Mo₅Si₃ in a self-sustaining manner. *Ceramics International*, 38(6), 5231-5237. doi: 10.1016/j. ceramint.2012.03.032
- Gómez I., Hernández M., Aguilar J., Hinojosa M. (2004): Comparative study of microwave and conventional processing of MgAl₂O₄-based materials. *Ceramics International*, 30(6), 893-900. doi: 10.1016/j.ceramint.2003.10.010
- Takahashi S., Kan A., Ogawa H. (2017): Microwave dielectric properties and crystal structures of spinel-structured MgAl₂O₄ ceramics synthesized by a molten-salt method. *Journal of the European Ceramic Society*, *37*(3), 1001-1006. doi: 10.1016/j.jeurceramsoc.2016.10.018
- Cunha-Duncan F.N., Bradt R.C. (2002): Synthesis of magnesium aluminate spinels from bauxites and magnesias. Journal of the American Ceramic Society, 85(12), 2995-3003. doi: 10.1111/j.1151-2916.2002.tb00569.x

- Ganesh I. (2011): Fabrication of near net shape magnesium aluminate (MgAl₂O₄) spinel components via aqueous processing. *Advances in Applied Ceramics*, *110*(8), 496-511. doi: 10.1179/1743676110Y.000000020
- Sahin B., Aksel C. (2012): Developments on the mechanical properties of MgO-MgAl₂O₄ composite refractories by ZrSiO₄-3 mol% Y₂O₃ addition. *Journal of the European Ceramic Society*, 32(1), 49-57. doi: 10.1016/j. jeurceramsoc.2011.07.024
- Aksel C., Aksoy T. (2012): Improvements on the thermal shock behaviour of MgO-spinel composite refractories by incorporation of zircon-3mol%Y₂O₃. *Ceramics International*, 38(5), 3673-3681. doi: 10.1016/j.ceramint.2012.01. 009
- Ceylantekin R., Aksel C. (2012): Improvements on corrosion behaviours of MgO-spinel composite refractories by addition of ZrSiO₄. *Journal of the European Ceramic Society*, 32(4), 727-736. doi: 10.1016/j.jeurceramsoc.2011.10.005
- Kim T., Kim D., Kang S. (2014): Effect of additives on the sintering of MgAl₂O₄. *Journal of Alloys and Compounds*, 587, 594-599. doi: 10.1016/j.jallcom.2013.10.250
- 14. Sarkar R., Das S.K., Banerjee G. (2002): Effect of addition of Cr₂O₃ on the properties of reaction sintered MgO–Al₂O₃ spinels. *Journal of the European Ceramic Society*, 22(8), 1243-1250. doi: 10.1016/S0955-2219(01)00446-0
- Tripathi H.S., Singla S., Ghosh A. (2009): Synthesis and densification behaviour of magnesium aluminate spinel: Effect of Dy₂O₃. *Ceramics International*, *35*(6), 2541-2544. doi: 10.1016/j.ceramint.2009.02.011
- 16. Ma B.Y., Yin Y., Zhu Q., Li Y., Li G.Q., Yu J.K. (2015): In-situ formation and densification of MgAl₂O₄–SmAlO₃ ceramics by a single-step reaction sintering process. *Ceramics- Silikáty*, 59(2), 109-114.

- 17. Zhang B.W., Ma B.Y., Zhu Q., Li S.M., Chen Y.K., Yu J.K., Li G.Q. (2017): In-situ formation and densification of MgAl₂O₄-Y₃Al₅O₁₂ and MgAl₂O₄-MgNb₂O₆ ceramics via a single-stage SRS process. *Science of Sintering*, 49(3), 285-297. doi: 10.2298/sos1703285z
- Ganesh I., Ferreira J.M.F. (2009): Synthesis and characterization of MgAl₂O₄-ZrO₂ composites. *Ceramics Internatio*nal, 35(1), 259-264. doi: 10.1016/j.ceramint.2007.10.006
- Ceylantekin R., Aksel C. (2012): Improvement on the mechanical properties and thermal shock behaviours of MgO-spinel composite refractories by ZrO₂ incorporation. *Ceramics International*, 38(2), 995-1002. doi: 10.1016/j. ceramint.2011.08.022
- 20. Mohann S.K., Sarkar R. (2016): Effect of ZrO₂ addition on MgAl₂O₄ spinel from commercial grade oxide reactants. *Ceramics International*, 42(8), 10355-10365. doi: 10.1016/ j.ceramint.2016.03.167
- 21. Ma B.Y., Li Y., Cui S.G., Zhai Y.C. (2010): Preparation and sintering properties of zirconia-mullite-corundum composites using fly ash and zircon. *Transactions of Nonferrous Metals Society of China*, 20(12), 2331-2335. doi: 10.1016/ S1003-6326(10)60650-4
- 22. Suzuki T., Itatani K., Aizawa M., Howell F.S., Kishioka A. (1996): Sinterability of spinel (MgAl₂O₄)-zirconia composite powder prepared by double nozzle ultrasonic spray pyrolysis. *Journal of the European Ceramic Society*, 16(11), 1171-1178._doi: 10.1016/0955-2219(96)00048-9
- Liang Y.J., Y.C. Che (1993). Handbook of Thermodynamic Data in Inorganic (in Chinese). 1st ed. Northeastern University Press.
- Chen Z.Y. (2005). Chemical Thermodynamics of Refractories (in Chinese). 1st ed. Metallurgical Industry Press.