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Generalized mean values of size distributions are defined via the general power mean, using Kronecker’s delta to allow 
for the geometric mean. Special cases of these generalized mean values are the superarithmetic, arithmetic, geometric, 
harmonic and subharmonic means of number-, length-, surface-, volume- and intensity-weighted distributions. In addition 
to these special cases, however, our generalized r-weighted k-mean allows for non-integer values of k, which can be an 
advantage for describing material responses or effective properties of heterogeneous materials or disperse systems that 
are determined in a different way by different parts of a size distribution. For these generalized mean values a theorem is 
proved, which contains Herdan’s theorem as a special case and turns out to be identical to Alderliesten’s symmetry relation 
for moment ratios. In contrast to the moment-ratio notation, however, the interpretation of our notation is simple, intuitive 
and self-evident.

INTRODUCTION

	 Size distributions of particles, droplets, bubbles, in-
clusions and pores play an important role in many fields 
of science, including materials science. For example, 
the size distributions of dust particles or water droplets 
in the atmosphere of the Earth, particles or droplets 
of immiscible liquids in liquid media, i.e. suspensions 
and emulsions, second-phase particles or pores in 
transparent ceramics, all determine the effects of light 
scattering in these disperse media and heterogeneous 
materials. Size distributions contain the maximum 
amount of size information available. In practice, 
however, it is desirable to reduce this amount to the 
minimum amount of information necessary, ideally to 
one number (a mean size), that represents the whole size 
distribution for the purpose of phenomena explanation, 
process control or property calculation. Of course, there 
is an infinite number of mean sizes, and the selection of 
the appropriate mean for a certain phenomenon, process 
or property is a question of the underlying theory. For 
all these purposes, however, a rational terminology and 
notation must be available for mean sizes. 
	 Probably the most important milestones in this field 
are Herdan’s classical book on Small Particle Statistics 

[1], the German school of particle sizing [2-4] and Alder-
liesten’s profound and authoritative treatment of mean 
particle diameters [5-12]. The latter has clearly em-
phasized the insufficiency of the German DIN 66141 [13] 
and European ISO 9276-2 [14] notation, which is based 
on the moment notation, and has proposed an alterna-
tive in the form of the so-called moment-ratio notation, 
which has been the basis of the British standard BS 2955 
[15]. We fully agree with Alderliesten’s criticism of 
mean values based on the moment notation. In particu-
lar, the fact that geometric means cannot be defined 
within this framework, is indeed a servere deficiency of 
moment-based mean values. More than that, the German 
school of particle sizing has introduced a great deal of 
unnecessary confusion into particle sizing terminology 
by not clearly distinguishing between volume-weighted 
distributions (of particle size measures, e.g. equivalent 
diameters) from volume distributions (i.e. number-
weighted distributions of particle volumes). Of course, 
in terms of any rational definition of size, which always 
has dimensions of length, the latter should not be called 
a size distribution at all. The same argumentation 
holds for surface-weighted distributions, for example. 
Repeatedly we have come across the opinion that this 
criticism concerns only some early papers and that most 
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current authors use the correct term “volume-weighted 
distributions” instead of “volume distributions”, but this 
standpoint ignores the fact that volume distributions 
do exist (e.g. as the primary result of Coulter counter 
measurements) and are closely related to volume-
weighted distributions. In spite of all these justified 
points of criticism, however, it has to be admitted that 
Alderliesten’s moment-ratio notation is somewhat 
awkward, because the meaning of the indices is not 
intuitively clear and can be understood only after 
considerable training. 
	 In this context it has to be recalled that in other 
fields of engineering science, e.g. the theory of multi-
phase materials, generalized mean values are defined 
without any recourse to moments [16-18]. In the tra-
ditional formalism this definition consists of two parts: 
the definition of a general power mean and an extra 
definition for the geometric mean (which is included 
in the general power mean only asymptotically and has 
no equivalent at all in the moment notation). This is the 
usual way e.g. to extract specific mixture rules (e.g. the 
volume-weighted arithmetic or harmonic mean) from 
the generalized mean values (which may be considered 
as a general mixture rule). In any case the quantity to 
be averaged (e.g. an elastic modulus, thermal conducti-
vity etc.) and also the type of weighting (e.g. mass- or 
volume-weighting) is clearly given and no one would 
have the idea to consider generalized mean values for 
squares or cubes of these quantities (e.g. the square of 
an elastic modulus or the cube of a thermal conductivity). 
In the same sense, it should be clear that size distribu-
tions, whatever their statistical weighting on the ordi-
nate (e.g. number-weighted, length-weighted, surface-
weighted or volume-weigthted) are distributions of 
length measures (not surface or volume measures) on 
the abscissa.   
	 In the present paper we show that the aforementioned 
two parts of the definition of generalized mean values 
can be formally combined into one definition by 
using Kronecker’s delta to include the singular case of 
geometric means. Further we propose to use this defi-
nition as the fundamental definition of mean values of 
discrete particle size distributions, without any recourse 
to moments (it has to be noted that all computer-based 
representations of size distributions and all ensuing 
calculations of mean values are based on discrete 
distributions and that continuous distributions, which are 
the basis of the moment notation and Mellin transforms, 
are just idealizations that allow a formal foundation of 
the mean value definition by coupling it to the more basic 
concept of moments; for real size distributions, which are 
always discrete, such a formalization is unnecessary). 
In this way the intuitive notation of the German school 
can be retained, but without their traditional ballast 
of terminological inconsistencies and relics from the 
moment notation. This leads to a crystal-clear, simple 
and intuitive index notation for mean values. Moreover, 

in this paper we show that the fact that some of these 
mean values can be identical is not due to a redundancy 
in the German notation, as surmised by Alderliesten [5], 
but the consequence of a non-trivial theorem, equivalent 
to Alderliesten’s symmetry relation for moment ratios, 
whose general form is presented here for the first time in 
DIN/ISO notation.

THEORETICAL

Classification of size distributions

	 Objects like particles, droplets, bubbles, inclusions 
and pores can be characterized by their size (in the 
present paper denoted as x). Size is a measure with 
dimensions of length [m], usually an equivalent diameter 
[19], for example the diameter of a (hypothetical) sphere 
that has some geometric characteristic or physical pro-
perty in common with the object in question (which is 
usually of nonspherical shape). As trivial as it seems, it 
should be emphasized that if we are talking about size 
distributions, we are talking about distributions of these 
length measures, not surfaces or volumes. Of course, 
as mentioned in the introduction, also surfaces and vo-
lumes can have their distributions, but distributions of 
these quantities should not be called size distributions. 
Unfortunately, this simple rule of correct scientific 
language is not always obeyed, which constantly leads to 
a great deal of confusion in the literature. In particular, 
the current ISO standard [14], which is based on the old 
German industry standard [13], has contributed a major 
part to this confusion and has therefore been justly 
criticized by Alderliesten [5-10]. Not only beginners and 
newcomers in the field, but also many authors as well 
as companies producing particle size equipment and 
utilizing particle sizing software seem to be confused 
by this misleading terminological tradition.
	 Disperse systems (including heterogeneous mate-
rials with matrix-inclusion microstructure) containing 
particles, droplets, bubbles, inclusions or pores of only 
one size are called monodisperse. However, the majority 
of real disperse systems is polydisperse, i.e. exhibits 
a size distribution of finite width. Such a size distribu- 
tion can be represented in discrete form as a histogram 
or in continuous form as a curve, both either as a proba-
bility density graph (here denoted as q) or as a cumulative 
graph (here denoted as Q). The size distribution is 
called monomodal when its probability density graph 
(histogram or curve) exhibits one maximum (so-called 
mode) or polymodal (also called multimodal) when 
its probability density graph exhibits more than one 
mode, with two modes called bimodal, with three 
modes trimodal etc. The mode, i.e. the maximum in the 
probability density graph, corresponds to a point of in-
flection in the cumulative graph. Apart from the modes, 
also quantiles are useful characteristic values. The most 
important of these is the so-called median, i.e. the size 
value, below and above which there is exactly 50 % of 
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the overall amount (either their overall number or the 
sum of all diameters, all surfaces or all volumes etc.) 
of all objects. The most fundamental size distribution 
is number-weighted (denoted q0 or Q0). It is the primary 
results e.g. of microscopic image analysis and the input 
information e.g. for calculating optical transmittance. 
On the other hand, the majority of common methods 
for size distribution measurements does not provide 
a number-weighted distribution directly, but most often 
volume-weighted distributions (q3 or Q3), and in these 
cases it is necessary to obtain the number-weighted 
distribution via transformation from the (usually volu-
me-weighted) primary data [20, 21]. For example, 
laser diffraction yields volume-weighted distributions 
as primary results [22, 23]. Much less common are 
length-weighted (q1 or Q1) or surface-weighted (q2 or 
Q2) size distributions. A rather abstract, but in practice 
quite important, type of size distribution is a so-called 
intensity-weighted size distribution (q6 or Q6), which 
is the primary result of dynamical light scattering or 
photon correlation spectroscopy [23].   

General power means,
expectation values, moments

and moment ratios

	 When the size distribution is given in discrete form 
(i.e. as a histogram), the general power mean of a size 
measure x, e.g. an equivalent sphere diameter, can be 
defined as 

,                      (1)

where k is an integer number denoting the type of ave-
rage (e.g. arithmetic mean for k = +1 and harmonic mean 
for k = –1) and r is another integer number denoting the 
type of distribution (e.g. number-weighted for r = 0, 
length-weighted for r = 1, surface-weighted for r = 2 and 
volume-weighted for r = 3) etc. Since in this definition 
k cannot be zero, the geometric mean is usually defined 
by the additional relation 

.                    (2)

	 In these equations xi denotes the size fraction 
(more precisely the midpoint of the size fraction or 
histogram bin), ni the number of objects in this size 
fraction (histogram bin), and here and in the sequel 
summation is from the minimum size to the maxi-
mum size. Strictly speaking, these are definitions of 
estimators, because the true size distribution is not 
necessarily represented by the midpoints of size frac-
tions. It should be noted that without Equation 2 the 
definition of general mean values is not complete. 
	 Herdan’s theorem [1] states that the harmonic mean 
of an r-weighted distribution equals the arithmetic mean 
of a (r – 1)-weighted distribution, i.e.

.        (3)

	 A special case of this theorem is the well-known 
fact that the harmonic mean of a volume-weighted 
distribution is equal to the harmonic mean of the surface-
weighted distribution. While all materials scientists 
know that small particle size implies higher particle 
surface, it is not known to all that it is the harmonic 
mean of the volume-weighted size distribution, and 
nothing else, that is inversely proportional to the 
specific surface. This equality (Herdan’s theorem) is 
a non-trivial result that has been unjustly criticized by 
Alderliesten [5], who interpreted it incorrectly as mere 
redundancy of the German DIN notation. 
	 The expectation value of a random variable x, e.g. a 
size measure, is generally defined as 

,                        (4)

where q0(x) is a number-weighted probability density 
distribution. When the random variable is replaced by 
a function (of the random variable) the expectation va-
lue is 

 ,                   (5)

and when the function is chosen to be g(x) = xk, the 
expectation value 

,                 (6)

is called the k-th general moment, which can also be 
considered as a Mellin transform of the number-weigh-
ted probability density curve (frequency curve). The 
zeroth general moment M0 is equal to unity (normali-
zation condition), and the first general moment M1 is the 
arithmetic mean. Central moments are obtained when 
the function xk is replaced by the function (x – M1)k.
	 For other than number-weighted distributions 
weighted moments are used. In particular, the weighted 
general moments are

 .           (7)

	 In terms of size fractions xi and their frequencies 
ni the weighted general moments of discrete size distri-
butions can be written as

.                         (8)
 
	 A fundamental relation between different moments, 
which can be used for interpreting the physical meaning 
of a given moment, is

.                  (9)
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	 Using this relation, Herdan’s theorem can be 
written in moment notation as 

M–1,r = (M1,r–1)–1 .                       (10)
	 The general power means introduced via Equation 1 
are related to the moments via the equation 

,                           (11)

where Mk,r is the k-th general moment of the r-weighted 
distribution. Note that only the first general moments 
have units of length [m], while zeroth general moments 
are dimensionless [1], second general moments have 
units of length squared [m2] etc. Moreover, obviously, 
for k = 0 this expression becomes undefined, because 
roots of zeroth order are not defined, so that geometric 
means actually have no equivalent in the moment nota-
tion. Both facts are serious and principal disadvantages 
of the moment notation and have been justly criticized 
by Alderliesten [5]. Unfortunately, in the current ISO 
standard [14] and the German industry standard [13], 
the general power means given by Equation 1 are 
coupled to moments via Equation 11, without taking 
into account that a complete definition of general mean 
values requires also Equation 2. Thus we completely 
agree with Alderliesten’s criticism of moments (and the 
related ISO and DIN standards), but we would not agree 
with extending this criticism to the general mean values 
as such.   
	 As mentioned above, compared to general power 
means and geometric means of size distributions, which 
all have constant units of length ([m]), moments of size 
distributions have the disadvantage of having varying 
units, depending on the order of the moment (e.g. [1], 
[m], [m2] etc.). This deficiency is avoided by moment 
ratios. In the so-called moment-ratio notation, used in 
the British standard 2955 [15] and elaborated by 
Alderliesten [5-12], the mean values ((p – s) -means of 
s-weighted distributions) are written as 

,          (12)

when p ≠ s with p ≥ s ≥ 0 and

,      (13)

when p = s (geometric means of s-weighted distribu-
tions). It can be shown that moment ratios are related to 
our general mean values via the equation

x─ k,r = Dk+r,r .                              (14)

	 In contrast to Equation 11 this equation does not 
exclude geometric means.  

Generalized mean values of
size distributions and generalized

meanvalue theorem

Definition: We define a generalized r-weighted k-mean 
as 

, (15)

where x is the size measure chosen (typically an equi-
valent sphere diameter), xi the size fraction i (usually the 
mid-point of the corresponding histogram bin) i, ni the 
number of objects in this bin, the summation symbol 
denotes the summation over all non-empty bins (or prin- 
cipally from 0 to ∞) and δk0 is the normalized delta 
distribution (Kronecker’s delta) defined as 

.                   (16)

	 Depending on the type of distribution, the value of 
r is either 0 (number-weighted distribution), 1 (length- 
weighted distribution), 2 (surface-weighted distribu-
tion), 3 (volume-weighted distribution) or 6 (so-called 
intensity-weighted distribution, which occurs e.g. in 
dynamic light scattering when the particles are small 
enough for the Rayleigh approximation to apply, in 
which the intensity of scattered light is proportional to 
the square of the polarizability, i.e. the particle volume). 
We are not aware of any other types of distributions and 
r values that would be of practical importance, but of 
course our notation can be extended to other cases as 
well.
	 The value of k determines the type of mean value. 
Special cases are the arithmetic mean (k = 1), the geo-
metric mean (k = 0) and the harmonic mean (k = –1). 
Beyond these types of means we have the quadratic 
mean (k = 2), the cubic mean (k = 3)  etc., means with 
k > 1 being generally denoted as superarithmetic means. 
Similarly, we have the first subharmonic mean (k = –2), 
the second subharmonic mean (k = –3) etc. For all these 
k-means the following majority relation holds:

…  x─ –3,r ≤ x─ –2,r ≤ x─ –1,r ≤ x─ 0,r ≤ x─ 1,r ≤ x─ 2,r ≤ x─ 3,r … .      (17)

	 Note, however, that – in contrast to more traditional 
definitions – in our definition of generalized means the 
value of k need not necessarily be an integer value. 
The rationale behind this is that in cases where small, 
medium-sized and large objects in a size distribution 
determine an effective property value to a different 
degree, e.g. optical transmittance of disperse systems 
(which is for small particles determined by Rayleigh 
scattering, for medium-sized particles by Mie scattering 
and for large particles by Fraunhofer diffraction), non-
integer values of k may be more appropriate for repre-
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senting the overall response of the material or disperse 
system. 
	 It should be emphasized that for each type of 
distribution (i.e. each value of r) there is a different 
set of these mean values. Moreover, in addition to 
the aforementioned classical majority relation, also 
another majority relation holds for differently weighted 
distributions:

…  x─ k,0 ≤ x─ k,1 ≤ x─ k,2 ≤ x─ k,3 ≤ x─ k,6 … .             (18)

	 Based on the aforementioned definition we can 
formulate the following:
Theorem: The (–k) -mean of an (r + k) -weighted 
distribution equals the k-mean of the corresponding 
r-weighted distribution, i.e.

x─ –k,r+k = x─ k,r .                            (19)

Proof: Using the definition, Equation 15, and inserting 
–k and r + k for k and r we obtain

,  (20)

q.e.d.

Corollary 1: The special case k = –k can occur only for 
k = 0 (geometric mean). Therefore, for the geometric 
mean our theorem reduces to a trivial identity (in 
other words, k = –k, holds if and only if the k-mean 
is the geometric mean). Our theorem provides non-
trivial results only if k ≠ 0. It concerns mean values 
symmetrically distributed around the geometric mean, 
i.e. k-mean pairs for which the k-values are +1 and –1, 
+2 and –2, +3 and –3 etc.   

Corollary 2: A special case of our theorem is the state- 
ment that the harmonic mean of an r-weighted distri- 
bution equals the arithmetic mean of an (r – 1)-weighted 
distribution (Herdan’s theorem [1]), or, more speci-
fically, that the harmonic mean of a volume-weighted 
distribution (r = 3) equals the arithmetic mean of a sur-
face-weighted distribution (r = 2). This special case is 
well known.    

Connection to other formalisms

	 The formalism used in this paper is classical and 
consistent in itself. It can be readily connected to the 
moment notation (German DIN standard and European 
ISO standard) as well as the moment-ratio notation 
(British standard). The connection to the moment 

notation is given by Equation 11. Using the moment 
notation our mean value theorem can be written as

Mk,r = (M–k,r+k)–1 .                       (21)

	 On the other hand, the connection to the mo-
ment-ratio notation is given by Equation 14, and in 
this notation our mean value theorem adopts the nicely 
symmetric form 

Dp,s = Ds,p ,                            (22)

where we have redefined the indices as p = k + r and 
s = r. Actually this symmetry relation for moment ratios 
has been discovered some time ago by Alderliesten 
[5]. However, Alderliesten interpreted the existence 
of this symmetry relation as an argument against the 
German DIN notation of mean diameters. For example, 
the fact that both x─  

–1,3 and x─ 1,2 are identical to D─  3,2 
has been invoked as an example to demonstrate the 
redundancy of the German DIN notation, which “may 
hamper the physical interpretation of mean particle 
diameters” [5]. However, as mentioned above, the 
identity x─  –1,3 = x─ 1,2 is a special case of Herdan’s theorem 
and an even more special case of our generalized 
mean value theorem. Far from being redundant and 
“hampering physical interpretation” it is the only way 
to understand, why the harmonic mean of the volume-
weighted size distribution (and no other type of mean 
value) is inversely proportional to the surface density 
(i.e. the specific surface multiplied by the density) 
without any shape factor: this is the case only because 
the harmonic mean of the volume-weighted distribution 
happens to be (due to Herdan’s theorem) the arithmetic 
mean of the surface-weighted distribution. The theorem 
presented here is just a generalization of Herdan’s 
theorem.
	 In contrast to the moment notation, the moment-
ratio notation allows the definition of geometric means 
and thus the formulation of generalized moment ratios 
in the form 
  

,  (23)

i.e. in the same way as our generalized r-weighted 
k-means, and, of course, in principle also the moment-
ratio notation could be generalized to non-integer values 
of p. Thus the two notations are completely equivalent 
or, in other words, there is a one-to-one correspondence 
between the two, our notation being just more intuitive. 
In the moment-ratio notation negative values of s = r 
would be required to calculate the harmonic mean of 
number-weighted distributions (or subharmonic means 
of distributions weighted with r ≤ 1). Actually, in the 
moment-ratio notation the harmonic mean of a number-
weighted distribution is formally calculated as D0,–1, 
i.e.an arithmetic mean of a distribution with weighting 
r = –1, which would be a distribution weighted by 
inverse lengths, a rather awkward interpretation indeed. 
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Therefore the use of negative indices is usually avoided 
in the moment-ratio notation, although there is no justi-
fication for this omission on physical grounds. Our 
notation avoids all these problems, and the harmonic 
means of number-weighted distributions, as well as the 
subharmonic means of distributions weighted with r ≤ 1, 
follow in a completely natural way. Moreover, in contrast 
to the moment-ratio notation, our notation allows 
a much simpler and much more intuitive interpretation 
of the respective mean values, the meaning of which is 
directly evident from the indices. 

CONCLUSION

	 Generalized mean values of size distributions, 
here called generalized r-weighted k-means, have been 
defined via the general power mean, using Kronecker’s 
delta to allow for the geometric mean. In this way 
the two original defining equations are combined 
into a single equation, without any direct recourse to 
moments. Special cases of these generalized mean 
values are the superarithmetic, arithmetic, geometric, 
harmonic and subharmonic means of number-, length-, 
surface-, volume- and so-called intensity-weighted dis-
tributions. In addition to these special cases, however, 
our generalized r-weighted k-mean allows for non-in- 
teger values of k, which can be an advantage for des-
cribing material responses or effective properties of 
heterogeneous materials or disperse systems that are 
determined in a different way by different parts of 
a size distribution (e.g. optical transmittance, which is 
principally determined by the whole size distribution, 
but is affected differently by small, medium-sized and 
large dispersed particles, inclusions or pores). For these 
generalized mean values a theorem has been proved, 
which contains Herdan’s theorem as a special case and 
turns out to be identical to Alderliesten’s symmetry 
theorem for moment ratios. In contrast to the moment 
notation and the moment-ratio notation, however, the 
interpretation of our notation is simple, self-evident and 
intuitive.  
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